PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.5.901eng

UDC: 635.652:632.3:631.52:577.2(470.311)

 

DEVELOPMENT PECULIARITIES OF BEAN COMMON MOSAIC VIRUS(Potyvirus, Potyviridae) IN MOSCOW REGION AND INITIAL MATERIAL FOR RESISTANCE BREEDING

I.A. Engalycheva , Е.G. Kozar, A.S. Domblides, A.A. Antoshkin,
V.F. Pivovarov, А.A. Ushakov, V.A. Ushakov

Federal Research Center for Vegetable Growing, 14, ul. Selektsionnaya, pos. VNIISSOK, Odintsovskii Region, Moscow Province, 143072 Russia, e-mail engirina1980@mail.ru (corresponding author ), kozar_eg@mail.ru,arthurdom@inbox.ru, aa_antoshkin@mail.ru, pivovarov@vniissok.ru, usasa74@rambler.ru,
goroh@vniissok.ru

ORCID:
Engalycheva I.A. orcid.org/0000-0003-4843-111х
Pivovarov V.F. orcid.org/0000-0001-9522-8072
Kozar Е.G. orcid.org/0000-0002-1319-5631
Ushakov А.A. orcid.org/0000-0002-1319-5631
Domblides A.S. orcid.org/0000-0002-5617-9498
Ushakov V.A. orcid.org/0000-0001-8901-1424
Antoshkin A.A. orcid.org/0000-0002-3534-2727

Received June 15, 2020

 

Recent years have seen a significant expansion in the distribution area of bean common (Phaseolus vulgaris L.) mosaic virus (BCMV) that has become an economically significant disease agent for the non-chernozem part of Russia. As early as 2014, the epiphytotics were observed in the Moscow region, but no BCMV resistance screening in both Russia and foreign bean accessions has been performed yet in these agroclimatic conditions. Thus, the presented study is the first one that has described the features of BCMV development in the Moscow region and defines climatic factors affecting the disease progression. An assortment of bean accessions has been estimated on a level of resistance to BCMV using different techniques including molecular markers. The goal of the study was to find an initial breeding material as a source for development of new competitive BCMV-resistant local yardlong bean cultivars. The research was carried out in the Moscow Province in 2014-2019. The research methods included visual and serological diagnosis and phytopathological monitoring of disease progression of artificial and natural infection. Field testing of disease resistance in accessions of various genetic and geographical origins over time was performed using a four-point scale; the accessions were ranked into resistance groups based on the degree of the disease with regard to the stability of expression of the characteristic in various years. DNA analysis of the main resistance genes, i.e. dominant gene I and recessive genes bc-12 and bc-3, was performed using the respective markers SW13, SBD5, and ROC11, following the developed procedures. The result of the study was the identification of the biological features of the BCMV isolate from the Moscow region affecting Phaseolus vulgaris L. and Pisum sativum L. from the Fabaceae family in biotest. The expression of symptoms and intensity of the disease in indicator plants in a greenhouse and bean accessions in field trials significantly depended on temperature, and the spread of the virus — on the accumulated precipitation. In general, reduced precipitation in combination with elevated temperatures served as a deterrent preventing the pathogen from further spreading in the climatic conditions of the Moscow region. At the same time, this combination facilitated viral infection manifestations on the plant leaf apparatus, especially during the vegetation period. Out of 207 accessions studied, only 6 % demonstrated a persistently high BCMV resistance in the context of epiphytotics. Screening of 30 accessions with different resistance levels showed that recessive genes bc-12 and bc-3 were present in the majority of the accessions and dominant gene I only in half of all accessions. Most accessions had genotypes I/bc-12/bc-3 (33 %) and bc-12/bc-3 (47 %), among which only 1/3 demonstrated a persistently high virus resistance. The plants lacking the genes I and bc-12 were severely damaged by the virus. The chi-square test (χ2) revealed a more significant effect of gene bc-12 on the field resistance of common bean accessions to BCMV. Based on the results obtained, as an initial breeding material for developing yardlong bean cultivars with high BCMV resistance we recommend 17 most promising accessions of different origin, including 5 cultivars (Khavskaya Universalnaya, Rant, Zolushka, Marlinka, Svetlyachok) and two perspective hybrids (SP-232, KP-84) selected at Federal Research Center for Vegetable Growing that are distinguished by several agronomic characters.

Keywords: Phaseolus vulgaris L., green bean, bean common mosaic virus, BCMV, virus resistance, resistance genes, sustainable resistance, DNA-markers, initial material.

REFERENCES

  1. De Ron A.M. Grain legumes. In: Handbook of plant breeding. A.M. De Ron (ed.). Pontevedra, 2015 CrossRef
  2. Broughton W.J., Hernández G., Blair M., Beebe S., Gepts P., Vanderleyden J. Beans (Phaseolus spp.) — model food legumes. Plant and Soil, 2003, 252: 55-128 CrossRef
  3. FAOSTAT — Food and Agriculture Organization. Available: http://faostat.fao.org. No date.
  4. Vishnyakova M.A., Bulyntsev S.V., Burlyaeva M.O., Buravtseva T.V., Egorova G.P., Semenova E.V., Seferova I.V. Ovoshchi Rossii, 2013, 1(18): 16-25 CrossRef (in Russ.).
  5. Verhoeven Th.J., Roenhorst J.W., Lesemann D.E., Segundo E., Velasco L., Ruiz L., Janssen D., Cuadrado I.M. Southern bean mosaic virus the causal agent of a new disease of Phaseolus vulgaris beans in Spain. European Journal of Plant Pathology, 2003, 109: 935-941 CrossRef
  6. Gnutova R.V. Virusnye infektsii ovoshchnykh bobovykh kul'tur i soi na Dal'nem Vostoke. Zashchita i karantin rastenii, 2013, 1: 14-17 (in Russ.).
  7. Reddick D., Stewart V.B. Transmission of the virus of bean mosaic in seed and observations on thermal death point of seed and virus. Phytopathology, 1919, 9: 445-450.
  8. Flores-Estévez N., Acosta-Gallegos J.A., Silva-Rosales L. Bean common mosaic virus and Bean common mosaic necrosis virus in Mexico. Plant Disease, 2003, 87: 21-25 CrossRef
  9. Singh S.P., Schwartz H.F. Breeding common bean for resistance to diseases a review. Crop Science, 2010, 50(6): 2199-2223 CrossRef
  10. Zhou G.-C., Wu X.-Y., Zhang Y.-M., Wu P., Wu X.-Z., Liu L.-W., Wang Q., Hang Y.-Y., Yang J.-Y., Shao Z.-Q., Wang B., Chen J.-Q. Genomic survey of thirty soybean-infecting bean common mosaic virus (BCMV) isolates from China pointed BCMV as a potential threat to soybean production. Virus Research,2014, 191: 125-133 CrossRef
  11. Biddle A.J. Peas and beans. Crop production science in horticulture. R. Russel, A. Lainsbury (eds.). Boston, 2017.
  12. Verma P., Gupta U.P. Immunological detection of bean common mosaic virus in French bean (Phaseolus vulgaris L.) leaves. Indian J. Microbiol., 2010, 50: 263-275 CrossRef
  13. Worrall E.A., Wamonje F.O., Mukeshimana G., Harvey J.J.W., Carr J.P., Mitter N. Bean common mosaic virus and Bean common mosaic necrosis virus: relationships, biology and prospects for control. In: Advances in virus research. V. 93. M. Kielian, K. Maramorosch, T.C. Mettenleiter (eds.). Academic Press, NY, 2015: 1-46 CrossRef
  14. Polivanova T.A., Krylov A.V. V knige: Vzaimootnosheniya virusov s kletkami rasteniya-khozyaina. [In: The relationship of viruses with cells of the host plant]. Vladivostok, 1985: 87-93 (in Russ.).
  15. Tolkach V.F., Gnutova R.V. Doklady RASKHN, 1998, 5: 18-19 (in Russ.).
  16. Schippers B. Transmission of bean common mosaic virus by seed of Phaseolus vulgaris L. cv. Beka. Acta Botanica Neerlandica, 1963, 12(4): 433-497 CrossRef
  17. Drijfhout E. Genetic interaction between Phaseolus vulgaris L. and bean common mosaic virus with implications for strain identification and breeding for resistance. Wageningen, 1978.
  18. Gnutova R.V., Zolotareva E.V. Bolezni ovoshchnykh kul'tur i kartofelya na Dal'nem Vostoke Rossii [Diseases of vegetable crops and potatoes in the Russian Far East]. Vladivostok, 2011 (in Russ.).
  19. Chekalin N.M. Geneticheskie osnovy selektsii zernobobovykh kul'tur na ustoichivost' k patogenam [Genetic basis for breeding leguminous crops for resistance to pathogens]. Poltava, 2003 (in Russ.).
  20. Diagnosis of plant virus diseases. R.E.F. Matthews (ed.). CRC Press,NY, 2018 CrossRef
  21. Larsen R.C., Miklas P.N., Druffel K.L., Wyatt S.D. NL-3 strain is a stable and naturally occurring interspecific recombinant derived from Bean common mosaic necrosis virus and Bean common mosaic virus. Phytopathology,2005, 95(9): 1037-1042 CrossRef
  22. Feng X., Orellana G.E., Myers J.R., Karasev A.V. Recessive resistance to bean common mosaic virus conferred by the bc-1 and bc-2 genes in common bean (Phaseolus vulgaris) affects long-distance movement of the virus. Phytopathology,2018, 108(8): 1011-1018 CrossRef
  23. Feng X., Guzmán P., Myers J.R., Karasev A.V. Resistance to bean common mosaic necrosis virus conferred by the bc-1 gene affects systemic spread of the virus in common bean. Phytopathology,2017, 107(7): 893-900 CrossRef
  24. Flasinski S., Gunasinghe U.B., Gonzales R.A., Cassidy B.G. The cDNA seqence and infectious transcripts of peanut stripe virus. Gene, 1996, 171(2): 299-308 CrossRef
  25. Li Y., Cao Y., Fan Z., Wan P. Identification of a naturally ocurring Been common mosaic virus recombinant isolate infecting azuki bean. Journal of Plant Pathology, 2016, 98: 129-133 CrossRef
  26. Kelly J.D. A review of varietal response to bean common mosaic potyvirus in Phaseolus vulgaris. Plant Varieties & Seeds,1997, 10(1): 1-6.
  27. Li Y.Q., Liu Z.P., Yang Y.S., Zhao B., Fan Z.F, Wan P. First report of bean common mosaic virus infecting azuki bean (Vigna angularis) in China. Plant Disease, 2014, 98: 1017 CrossRef
  28. Kelly J.D., Afanador L., Haley S.D. Pyramiding genes for resistance to bean common mosaic virus. Euphytica,1995, 82: 207-212 CrossRef
  29. Naderpour M., Johansen I. E. Visualization of resistance responses in Phaseolus vulgaris using reporter tagged clones of Bean common mosaic virus. Virus Research, 2011, 159(1): 1-8 CrossRef
  30. Naderpour M., Lund, O. S., and Johansen, I. E. Sequence analysis of expressed cDNA of Bean common mosaic virus RU1 isolate. Iran J. Virus, 2009,3: 41-43.
  31. Mukeshimana G., Pañeda A., Rodríguez-Suárez C., Ferreira J.J., Giraldez R., Kelly J.D. Markers linked to the bc-3 gene conditioning resistance to bean common mosaic potyviruses in common bean. Euphytica, 2005, 144: 291-299 CrossRef
  32. Haley S.D., Afanador L., Kelly J.D. Identification and application of a random amplified polymorphic DNA marker for the I gene (potyvirus resistance) in common bean. Phytopathogy, 1994, 84: 157-160 (doi: 10.1094/phyto-84-157">CrossRef
  33. Melotto M., Afanador L. Kelly J.D. Development of a SCAR marker linked to the I gene in common bean. Genome, 1996, 39(6): 1216-1219 CrossRef
  34. Miklas P.N., Larsen R.C., Riley R., Kelly J.D. Potential marker-assisted selection for bc-12 resistance to bean common mosaic potyvirus in common bean. Euphytica, 2000, 116(3): 211-219 CrossRef
  35. Vandemark G.J., Miklas P.N. Genotyping common bean for the potyvirus resistance alleles I and bc-12 with a multiplex real-time polymerase chain reaction assay. Phytopathology, 2005, 95: 499-505 CrossRef
  36. Strausbaugh C.A., Myers J.R., Forster R.L., McClean P.E. Bc-1 and bc-u — two loci controlling bean common mosaic virus resistance in common bean are linked. Journal of the American Society for Horticultural Science, 1999, 124(6): 644-648 CrossRef
  37. Miklas P.N., Hang A.N., Kelly J.D., Strausbaugh C.A., Forster R.L. Registration of three kidney bean germplasm lines resistant to bean common mosaic and necrosis potyviruses: USLK-2 light red kidney, USDK-4 dark red kidney, and USWK-6 white kidney. Crop Science, 2002, 42(2): 674-675 CrossRef
  38. Pastor-Corrales M.A., Kelly J.D., Steadman J.R., Lindgren D.T., Stavely J.R., Coyne D.P. Registration of six great Northern bean germplasm lines with enhanced resistance to rust and bean common mosaic and necrosis potyviruses. Plant Registrations, 2007, 1(1): 77-79 CrossRef
  39. Sharma P.N., Pathania A, Kapil R., Sharma P., Sharma O.P., Patial M., Kapoor V. Resistance to bean common mosaic potyvirus strains and its inheritance in some Indian land races of common bean. Euphytica, 2008, 164: 173-180 CrossRef
  40. Johnson W.C., Guzmán P., Mandala D., Mkandawire A.B.C., Temple S., Gilbertson R.L., Gepts P. Molecular tagging of the bc-3 gene for introgression into Andean common bean. Crop Science, 1997, 37(1): 248-254 CrossRef
  41. Engalycheva I.A., Kozar' E.G., Antoshkin A.A., Pronina E.P., Volkov Yu.G., Kakareka N.N., Shchelkanov M.Yu., Gapeka A.V. Ovoshchi Rossii, 2018, 6(44): 77-83 (doi: 10.18619/2072-9146-2018-6-77-83 (in Russ.).
  42. Rakina M.S. Bioresursnyi potentsial zernobobovykh kul'tur iz kollektsii mirovogo genofonda vserossiiskogo nauchno-issledovatel'skogo instituta rastenievodstva im. N.I. Vavilova. Avtoreferat kandidatskoi dissertatsii [Bioresource potential of leguminous crops from the world gene pool collection of the Vavilov All-Russian Research Institute of Plant Industry. PhD Thesis]. Novosibirsk, 2011 (in Russ.).
  43. Lazareva E.K. Morfobiologicheskie i biokhimicheskie osobennosti sortoobraztsov fasoli obyknovennoi (Phaseolus vulgaris L.) v usloviyakh Orlovskoi oblasti. Avtoreferat kandidatskoi dissertatsii [Morphobiological and biochemical characteristics of common bean varieties (Phaseolus vulgaris L.) in the conditions of the Orel region. PhD Thesis]. Ramon', 2006 (in Russ.).
  44. Pletneva M.M. Otsenka obraztsov fasoli obyknovennoi po khozyaistvenno-tsennym priznakam i kachestvu zerna dlya selektsii v yuzhnoi lesostepi Zapadnoi Sibiri. Avtoreferat kandidatskoi dissertatsii [Evaluation of common bean samples for economically valuable traits and grain quality for breeding in the southern forest-steppe of Western Siberia. PhD Thesis]. Omsk, 2019 (in Russ.).
  45. Engalycheva I.A., Pleshakova T.I., Gapeka A.V., Timina L.T. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii molodykh uchenykh i spetsialistov «Povyshenie effektivnosti sel'skokhozyaistvennoi nauki v sovremennykh usloviyakh materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii molodykh uchenykh i spetsialistov» [Proc. Int. Conf. «Improving the efficiency of agricultural science in modern conditions materials of the international scientific and practical conference of young rsearchers and practitioners»]. Krasnodar, 2015, 41-44 (in Russ.).
  46. Mills L.J., Silbernagel M.J. A rapid screening technique to combine resistance to halo blight and bean common mosaic virus in Phaseolus vulgaris L. Euphytica, 1991, 58: 201-208 CrossRef
  47. Metodicheskie ukazaniya i rekomendatsii po selektsii i semenovodstvu ovoshchnykh bobovykh i kapustnykh kul'tur/Pod redaktsiei V.F. Pivovarova, N.S. Tsyganka [Methodical instructions and recommendations for the selection and seed production of vegetable legumes and cabbage crops. V.F. Pivovarov, N.S. Tsyganok (eds.)]. Moscow, 2001 (in Russ.).
  48. Metodicheskie ukazaniya po selektsii i pervichnomu semenovodstvu ovoshchnykh bobovykh [Guidelines for selection and primary seed production of vegetable legumes]. Moscow, 1985 (in Russ.).
  49. Hegay S., Ortiz R., Garkava-Gustavsson L., Hovmalm H.P, Geleta M. Marker-aided breeding for resistance to bean common mosaic virus in Kyrgyz bean cultivars. Euphytica, 2013, 193(1): 67-78 CrossRef
  50. Vallejos C.E., Astua-Monge G., Jones V., Plyler T.R., Sakiyama N.S., Mackenzie S.A. Genetic and molecular characterization of the I locus of Phaseolus vulgaris. Genetics, 2006, 172(2): 1229-1242 CrossRef
  51. Dospekhov B.A. Metodika polevogo opyta [Methods of field trials]. Moscow, 1975 (in Russ.).
  52. Pasev G., Kostova D., Sofkova S. Identification of genes for resistance to bean common mosaic virus and bean common mosaic necrosis virus in snap bean (Phaseolus vulgaris L.) breeding lines using conventional and molecular methods. Journal of Phytopathology, 2014, 162(1): 19-25 CrossRef
  53. Antoshkin A.A., Degovtsov V.E., Pronina E.P., Antoshkina M.S. Zernobobovye i krupyanye kul'tury, 2014, 4(12): 86-89 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)