doi: 10.15389/agrobiology.2019.5.847eng

UDC: 633.31:631.461.52:577.21



M.L. Roumiantseva

All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail (✉ corresponding author)

Roumiantseva M.L.

Received July 31, 2019


Alfalfa and soybeans are widely cultivated economically valuable fodder and leguminous crops the yield of which directly depends on bacterial microsymbionts. The legume seeds inoculation by nodule bacteria (rhizobia) is significantly increased the productivity of the plant-microbial system both in typical and in adverse growing conditions, for example, on degraded soils, including those subjected to salinization, waterlogging, aridity, etc. That is why obtaining new strains capable of forming highly productive and stress-tolerant symbiotic systems with leguminous plants is highly requested in agriculture. Modern technologies for the production of highly productive and environmentally friendly varieties of legumes require the use of a biogeocenotic approach which primary takes into account the symbiotrophic indicators (Z.S. Shamsutdinov, 2014). The formation of highly productive plant-microbial systems is based on the principle of complementarity of the interaction of macro- and microsymbiont genomes (I.A. Tikhonovich et al., 2015), that is ensured their successful introduction into agrocenoses, which differ in agroclimatic and soil conditions. Virulence, competitiveness, host specificity and effectiveness of nitrogen-fixing activity, which root nodule bacteria exhibit in relation to a certain species and sometimes to the variety of legume host plant, are among the symbiotically significant and genetically determined properties of rhizobia. All of the above symbiotically significant characteristics are determined by numerous groups of rhizobia genes. The review presents an analysis of data on the genes of soybean and alfalfa microsymbionts, the participation of which in the control of symbiotic activity and stress tolerance has been experimentally proven. Nodule bacteria of the species Sinorhizobium meliloti, S. fredii and Bradyrhizobium japonicum, contrastingly differing in the genetic and morphophysiological characteristics are the most studied. Analysis of recently published  data on the main groups of symbiotically significant genes (i.e. nod genes involved in the synthesis and decoration of the Nod factor signal molecule initiating the nodulation process during plant-microbial interaction, the nif, fix, and eff groups of genes responsible for the nitrogen fixation and symbiotic effectiveness) indicates a continuing high degree of incompleteness and fragmentation data for both fast- and slow-growing rhizobia species. At the same time, according to published data, allelic polymorphism for these genes is a factor that plays an important role in varying signaling, host specificity, and symbiotic effectivity in both fast and slow-growing species of nodule bacteria. It is concluded that a coupled analysis of sequences of genes from functionally different groups relating to the formation of highly effective stress-tolerant symbioses, which are represented by sym genes (symbiosis), srg (stress related genes; genes of resistance to stress factors), QS (quorum sensing genes), or sym-srg-QS genes, is promising for the search and creation of molecular markers associated with the symbiotic and adaptive properties of nodule bacteria and it is promising for monitoring them under laboratory conditions and in microbiome of agrocenosis.

Keywords: nodule bacteria, Sinorhizobium meliloti, S. fredii, Bradyrhizobium japonicum, alfalfa, soybean, genes of symbiotic activity, effectiveness, resistance to abiotic stresses.



  1. Shamsutdinov Z.Sh. Forage crops selection: progress and challenges. Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2014, 6: 36-45 CrossRef
  2. Tikhonovich I.A., Andronov E.E., Borisov A.Yu., Dolgikh E.A., Zhernakov A.I., Zhukov V.A., Provorov N.A., Rumyantseva M.L., Simarov B.V. Genetika, 2015, 51(9): 973-990 CrossRef (in Russ.). 
  3. Werner G.D.A., Cornwell W.K., Cornelissen J.H.C., Kiers E.T. Evolutionary signals of symbiotic persistence in the legume—rhizobia mutualism. PNAS, 2015, 112(33): 10262-10269 CrossRef
  4. Rumyantseva M.L., Stepanova G.V., Muntyan V.S., Onishchuk O.P., Kozhemyakov A.P., Simarov B.V. V sbornike: Aktual'nye napravleniya selektsii i ispol'zovaniya lyutserny v kormoproizvodstve. Moscow, 2014: 133-142 (in Russ.). 
  5. Dragomir N., Peţ I., Dragomir C.P.A., Toth S., Ravdan S. Enhancement of the capacity of biological nitrogen fixation in alfalfa by bacterial inoculation with Sinorhizobium meliloti strains. Romanian Journal of Grassland and Forage Crops, 2010, 1: 17-23.
  6. Mabrouk Y., Belhadj O. Enhancing the biological nitrogen fixation of leguminous crops grown under stressed environments. (Review). African Journal of Biotechnology, 2012, 11(48): 10809-10815 CrossRef
  7. O’Callaghan M. Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, 2016, 100(13): 5729-5746 CrossRef
  8. Checcucci A., Dicenzo G.C., Bazzicalupo M., Mengoni A. Trade, diplomacy, and warfare: the quest for elite rhizobia inoculant strains. Frontiers in Microbiology, 2017, 8: 2207 CrossRef
  9. Meghvansi M.K., Prasad K., Mahna S.K. Symbiotic potential, competitiveness and compatibility of indigenous Bradyrhizobium japonicum isolates to three soybean genotypes of two distinct agro-climatic regions of Rajasthan, India. Saudi Journal of Biological Sciences, 2010, 17(4): 303-310 CrossRef
  10. Umarov B.R. Universum: Khimiya i biologiya: elektronnyi nauchnyi zhurnal, 2019, 4(58): 1. Available No date.
  11. Gibson A.H., Demezas D.H., Gault R.R., Bhuvaneswari T.V., Brockwell J. Genetic stability in rhizobia in the field. Plant and Soil, 1990, 129(1): 37-44 (doi:  10.1007/BF00011689). (in Russ.). 
  12. Aronshtam A.A., Bazhenova O.V., Zaretskaya A.N., Kuchko V.V., Novikova N.I., Provorov N.A., Fedorov S.N., Fokina I.G., Chernova T.A. Geneticheskie metody selektsii kluben'kovykh bakterii (metodicheskie rekomendatsii) [Genetic methods for breeding nodule bacteria (guidelines)]. Leningrad, 1984 (in Russ.). 
  13. Denton M., Yates R., Seymour N., Herridge D. Northern, southern and western regions. Harvesting the benefits of inoculating legumes. In: Rhizobial inoculants FACT SHEET. Grains Research and Developments Corporation, January 2013. Available Accessed 26.09.2019.
  14. Sachs J.L., Ehinger M.O., Simms E.L. Origins of cheating and loss of symbiosis in wild Bradyrhizobium. Journal of Evolutionary Biology, 2010, 23: 1075-1089 CrossRef
  15. Tian C.F., Zhou Y.J., Zhang Y.M., Li Q.Q., Zhang Y.Z., Li D.F., Wang S., Wang J., Gilbert L.B., Li Y.R., Chen W.X. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. PNAS, 2012, 109(22): 8629-8634 CrossRef
  16. Lopez-Baena F.J., RuIz-Sainz J.E., Rodriguez-Carvajal M.A., Vinardell J.M. Bacterial molecular signals in the Sinorhizobium fredii-soybean symbiosis. International Journal of Molecular Sciences, 2016, 17(5): 755 CrossRef
  17. Sachs J.L., Russell J.E., Hollowell A.C. Evolutionary instability of symbiotic function in Bradyrhizobium japonicum. PLoS ONE, 2011, 6(11): e26370 CrossRef
  18. Batista J.S., Hungria M., Barcellos F.G., Ferreira M.C., Mendes I.C. Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic microsymbiont and the soybean host in a cerrados soil. Microbial Ecology, 2007, 53(2): 270-284 CrossRef
  19. Kaneko T., Nakamura Y., Sato S., Minamisawa K., Uchiumi T., Sasamoto S., Watanabe A., Idesawa K., Iriguchi M., Kawashima K., Kohara M., Matsumoto M., Shimpo S., Tsuruoka H., Wada T., Yamada M., Tabata S. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Research, 2002, 9(6): 189-197 CrossRef
  20. Melchiorre M., de Luca M., Gonzalez A.G., Suarez P., Lopez C., Lascano R., Racca R.W. Evaluation of bradyrhizobia strains isolated from field-grown soybean plants in Argentina as improved inoculants. Biology and Fertility of Soils, 2011, 47(1): 81-89 CrossRef
  21. Gyogluu C., Jaiswal S.K., Kyei-Boahen S., Dakora F.D. Identification and distribution of microsymbionts associated with soybean nodulation in Mozambican soils. Systematic and Applied Microbiology, 2018, 41(5): 506-515 CrossRef
  22. Chueire L.M.O., Hungaria M. N2-fixation ability of Brazilian soybean cultivars with Sinorhizobium fredii and Sinorhizobium xinjiangensis. Plant and Soil, 1997, 196(1): 1-5 CrossRef
  23. Hoque M.S., Broadhurst L.M., Thrall P.H. Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(2): 299-309 CrossRef
  24. Marinkovic J.B., Bjelic D.D., Tintor B.B., Ignjatov M.V., Nikolic Z.T., Dukic V.H., Balesevic-Tubic S.N. Molecular identification of Bradyrhizobium japonicum strains isolated from root nodules of soybean (Glycine max L.). Zbornik Matice Srpske za Prirodne Nauke, 2017, 132: 49-56 CrossRef
  25. Rumyantseva M.L., Muntyan V.S., Mengoni A., Simarov B.V. Genetika, 2014, 50(4): 400-412 CrossRef (in Russ.). 
  26. Tan Z., Hurek T., Vinuesa P., Muller P., Ladha J.K., Reinhold-Hurek B. Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. AppliedandEnvironmental Microbiology, 2001, 67(8): 3655-3664 CrossRef
  27. Zotov V.S., Punina N.V., Khapchaeva S.A., Didovich S.V., Mel'nichuk T.N., Topunov A.F. Ekologicheskaya genetika, 2012, 1(2): 50-63 (in Russ.). 
  28. Cherni A.E., Perret X. Deletion of rRNA operons of Sinorhizobium fredii strain NGR234 and impact on symbiosis with legumes. Frontiers in Microbiology, 2019, 10: 154 CrossRef
  29. Guo H.J., Wang E.T., Zhang X.X., Li Q.Q., Zhang Y.M., Tian C.F., Chena W.X. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max. Appliedand Environmental Microbiology, 2013, 80(4): 1245-1255 CrossRef
  30. Kanehara K., Minamisawa K. Complete genome sequence of Bradyrhizobiumjaponicum J5, isolated from a soybean nodule in Hokkaido, Japan. Genome Announcements, 2017, 5(6): e01619-16 CrossRef
  31. Itakura M., Saeki K., Omor I. H., Yokoyama T., Kaneko T., Tabata S., Ohwada T., Tajima S., Uchiumi T., Honnma K., Fujita K., Iwata H., Saeki Y., Hara Y., Ikeda S., Eda S., Mitsui H., Minamisawa K. Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. The ISME Journal, 2009, 3(3): 326-339 CrossRef
  32. Muntyan V.S., Cherkasova M.E., Andronov E.E., Simarov B.V., Rumyantseva M.L. Genetika, 2016, 52(10): 1126-1133 CrossRef (in Russ.). 
  33. Sullivan J.T., Patrick H.N., Lowther W.L., Scott D.B., Ronson C.W. Nodulating strains of Rhizobiumloti arise through chromosomal symbiotic gene transfer in the environment. PNAS, 1995, 92(19): 8985-8989 CrossRef
  34. Barcellos F.G., Menna P., da Silva Batista J.S., Hungria M. Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Applied and Environmental Microbiology, 2007, 73(8): 2635-2643 CrossRef
  35. Kobayashi H., Broughton W.J. Fine-tuning of symbiotic genes in rhizobia: flavonoid signal transduction cascade. In: Nitrogen-fixing leguminous symbioses. Nitrogen fixation: origins, applications, and research progress, vol. 7. M.J. Dilworth, E.K. James, J.I. Sprent, W.E. Newton (eds.). Springer, Dordrecht, 2008: 117-152 CrossRef
  36. Barnett M.J., Long S.R. The Sinorhizobium meliloti SyrM regulon: effects on global gene expression are mediated by syrA and nodD3. Journal of Bacteriology, 2015, 197: 1792-1806 CrossRef
  37. Roche P., Maillet F., Plazanet C., Debelle F., Ferro M., Truchet G., Prome J.-C., Denarie J. The common nodABC genes of Rhizobium meliloti are host-range determinants. PNAS, 1996, 93(26): 15305-15310 CrossRef
  38. Capela D., Carrere S., Batut J. Transcriptome-based identification of the Sinorhizobium meliloti NodD1 regulon. Applied and Environmental Microbiology, 2005, 71(8): 4910-4913 CrossRef
  39. Shamseldin A. The role of different genes involved in symbiotic nitrogen fixation (review). Global Journal of Biotechnology and Biochemistry, 2013, 8(4): 84-94 CrossRef
  40. Loh J., Stacey G. Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Applied and Environmental Microbiology, 2003, 69(1): 10-17 CrossRef
  41. Pessi G., Ahrens C.H., Rehrauer H., Lindemann A., Hauser F., Fischer H-M., Hennecke H. Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Molecular Plant-Microbe Interactions, 2007, 20(11): 1353-1363 CrossRef
  42. Krause A., Doerfel A., Gottfert M. Mutational and transcriptional analysis of the type III secretion  system of Bradyrhizobium japonicum, Molecular Plant-Microbe Interactions, 2002, 15(12): 1228-1235 CrossRef
  43. Jimenez-Guerrero I., Perez-Montano F., Medina C., Ollero F.J., Lopez-Baena F.J. NopC is a rhizobium-specific type 3 secretion system effector secreted by Sinorhizobium (Ensifer) fredii HH103. PLoS ONE, 2015, 10(11): e0142866 CrossRef
  44. Zhao R., Liu X.L., Zhang Y.Z., Jiao J., Cui W.J., Zhang B., Wang X.L., Li M.L., Chen Y., Xiong Z.O., Chen W.X., Tian C.F. Adaptive evolution of rhizobial symbiotic compatibility mediated by co-evolved insertion sequences. The ISME Journal, 2018, 12(1): 101-111 CrossRef
  45. Torres T.G., Del Papa M.F., Soria-Diaz M.E., Draghi W., Lozano M., Giusti M.L., Manyani H., Megias M., Serrano G.A., Puhler A., Niehaus K., Lagares A., Pistorio M. The nodulation of alfalfa by the acid-tolerant Rhizobium sp. strain LPU83 does not require sulfated forms of lipochitooligosaccharide nodulation signals. Journal of Bacteriology, 2011, 193(1): 30-39 CrossRef
  46. Lopez-Baena F.J., Ruiz-Sainz J.E., Rodriguez-Carvajal M.A., Vinardell J.M. Bacterial molecular signals in the Sinorhizobium fredii-soybean symbiosis. International Journal of Molecular Sciences, 2016, 17(5): E755 CrossRef
  47. Vinardell J.M., Acosta-Jurado S., Zehner S., Gottfert M., Becker A., Baena I., Blom J., Crespo-Rivas J.C., Goesmann A., Jaenicke S., Krol E., Mcintosh M., Margaret I., Perez-Montano F., Schneiker-Bekel S., Serrania J., Szczepanowski R., Buendia A.M., Lloret J., Bonilla I., Puhler A., Ruiz-Sainz J.-E., Weidner S. The Sinorhizobium fredii HH103 genome: a comparative analysis with S. fredii strains differing in their symbiotic behavior with soybean. Molecular Plant-Microbe Interactions, 2015, 28(7): 811-824 CrossRef
  48. Rumyantseva M.L., Saksaganskaya A.S., Muntyan V.S., Cherkasova M.E., Simarov B.V. Genetika, 2018, 54(5): 524-534 CrossRef (in Russ.). 
  49. Saksaganskaya A.S., Muntyan V.S., Rumyantseva M.L. Materialy Mezhdunarodnoi nauchnoi konferentsii PLAMIC2018 «Rasteniya i mikroorganizmy: biotekhnologiya budushchego» [Proc. Int. Conf. PLAMIC2018 «Plants and microorganisms: biotechnology of the future»]. Ufa, 2018: 222 (in Russ.). 
  50. Debelle F., Moulin  L., Mangin B, Denarie J., Boivin C. Nod genes and Nod signals and the evolution of the Rhizobium legume symbiosis. Acta Biochimica Polonica, 2001, 48(2): 359-365.
  51. Klipp W. Historical perspective — development of nif genetics and regulation in Klebsiella pneumonia. In: Genetics and regulation of nitrogen fixation in free-living bacteria. W. Klipp, B. Masepohl, O.R. Gallon, W.E. Newton (eds.). Kluwer Academic Publishers, the Netherlands, 2005: 1-25 CrossRef
  52. Baimiev An.Kh., Ivanova E.S., Gumenko R.S., Chubukova O.V., Baimiev Al.Kh. Genetika, 2015, 51(12): 1359-1367 CrossRef (in Russ.). 
  53. Chang W.S., Franck W.L., Cytryn E., Jeong S., Joshi T., Emerich D.W., Sadowsky M.J., Xu D., Stacey G. An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. Molecular Plant-Microbe Interactions, 2007, 20(10): 1298-1307 CrossRef
  54. Becker A., Berges H., Krol E., Bruand C., Ruberg S., Capela D., Lauber E., Meilhoc E., Ampe F., de Bruijn F.J., Fourment J., Francez-Charlot A., Kahn D., Kuster H., Liebe C., Puhler A., Weidner S., Batut J. Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Molecular Plant-Microbe Interactions, 2004, 17(3): 292-303 CrossRef
  55. Bueno E., Richardson D.J., Bedmar E.J., Delgado M.J. Expression of Bradyrhizobium japonicum cbb3 terminal oxidase under denitrifying conditions is subjected to redox control. FEMS Microbiology Letters, 2009, 298(1): 20-28 CrossRef
  56. Galperin M.Y., Makarova K.S., Wolf Y.I., Koonin E.V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Research, 2015, 43: D261-269 CrossRef
  57. Onishchuk O.P., Chizhevskaya E.P., Kurchak O.N., Andronov E.E., Simarov B.V. Ekologicheskaya genetika, 2014, 12(1): 39-47 (in Russ.).   
  58. Onishchuk O.P., Sharypova L.A., Kurchak O.N., Bekker A., Simarov B.V. Genetika, 2005, 41(12): 1617-1623 (in Russ.). 
  59. Yurgel S.N., Sharypova L.A., Simarov B.V., Soberon M., Miranda J., Morera C. Isolation of Sinorhizobium meliloti Tn5 mutants with altered cytochrome terminal oxidase expression and improved symbiotic performance. FEMS Microbiology Letters, 1998, 165(1): 167-173 CrossRef
  60. Crespo-Rivas J.C., Navarro-Gomez P., Alias-Villegas C., Shi J., Zhen T., Niu Y., Cuellar V., Moreno J., Cubo T., Vinardell J.M., Ruiz-Sainz J.E., Acosta-Jurado S., Soto M.J. Sinorhizobium fredii HH103 RirA is required for oxidative stress resistance and efficient symbiosis with soybean. International Journal of Molecular Sciences, 2019, 20(787): 1-16 CrossRef
  61. Onishchuk O.P., Kurchak O.N., Chizhevskaya E.P., Provorov N.A., Simarov B.V. Population polymorphism of the alfalfa nodule bacteria (Sinorhizobium meliloti) for the genes encoding for symbiotic efficiency and competitiveness. Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2015, 50(3): 339-344 CrossRef
  62. Deaker R., Roughley R.J., Kennedy I.R. Legume seed inoculation technology — a review. SoilBiologyandBiochemistry, 2004: 36(8): 1275-1288 CrossRef
  63. Buntic A.V., Stajkovic-Srbinovic O.S., Knezevic M.M., Kuzmanovic D.Z., Rasulic N.V., Delic D.I. Development of liquid rhizobial inoculants and pre-inoculation of alfalfa seeds. Archives of Biological Sciences, 2018, 71 CrossRef
  64. Vriezen J.A., de Bruijn F.J., Nüsslein K. Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Applied and Environmental Microbiology, 2007, 73(11): 3451-3459 CrossRef
  65. Rumyantseva M.L., Muntyan V.S. Mikrobiologiya, 2015, 84(3): 263-278 CrossRef (in Russ.).   
  66. Yakimenko M.V., Begun S.A., Sorokina A.I. VestnikDVORAN, 2019, 3: 36-41 CrossRef (in Russ.).   
  67. Brechenmacher L., Lei Z., Libault M., Findley S., Sugawara M., Sadowsky M.J., Sumner L.W., Stacey G. Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiology, 2010, 153(4): 1808-1822 CrossRef
  68. Gourion B., Sulser S., Frunzke J., Francez-Charlot A., Stiefel  P., Pessi G., Vorholt J.A., Fischer H.M. The PhyR-EcfG signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum. Molecular Microbiology, 2009, 73(2): 291-305 CrossRef
  69. Masloboeva N. Role of ECF factors in stress response of Bradyrhizobium japonicum. DISS. ETH No. 20849 CrossRef
  70. Gonzalez J.E., Marketon M.M. Quorum sensing in nitrogen-fixing rhizobia. Microbiology and Molecular Biology Reviews, 2003, 67(4): 574-592 CrossRef
  71. Perez-Montano F., Jimenez-Guerrero I., Sanchez-Matamoros R.C., Perez-Montano F., Jimenez-Guerrero I., Rodriguez-Carvajal M.A., Bellogin R.A., Espuny M.R. Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Research in Microbiology, 2013, 164(7): 749-760 CrossRef
  72. Perez-Montano F., Jimenez-Guerrero I., Del Cerro P., Baena-Ropero I., Lopez-Baena I.J., Ollero F.J., Belloin R., Lloret J., Espuny R. The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by quorum sensing systems and inducing flavonoids via NodD1. PLoS ONE, 2014, 9(8): e105901 CrossRef
  73. Limoli D.H., Jones C.J., Wozniak D.J. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum, 2015, 3(3): MB-0011-2014 CrossRef
  74. Bazaka K., Crawford R.J., Nazarenko E.L., Ivanova E.P. Bacterial extracellular polysaccharides. In: Bacterial adhesion. Advances in experimental medicine and biology, vol. 715. D. Linke, A. Goldman (eds.). Springer, Dordrecht, 2011: 213-226 CrossRef
  75. Mendis H.C., Madzima T.F., Queiroux C., Jones K.M. Function of succinoglycan polysaccharide in Sinorhizobium meliloti host plant invasion depends on succinylation, not molecular weight. mBio, 2016 7(3): e00606-16 CrossRef
  76. Janczarek M. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. International Journal of Molecular Sciences, 2011, 12(11): 7898-7933 CrossRef
  77. Marczak M., Mazur A., Koper P., Żebrack I.K., Skorupska A. Synthesis of rhizobial exopolysaccharides and their importance for symbiosis with legume plants. Genes, 2017, 8(12): E360 CrossRef
  78. Noh J.G., Jeon H.E., So J.S., Chang W.S. Effects of the Bradyrhizobium japonicum waaL (rfaL) gene on hydrophobicity, motility, stress tolerance, and symbiotic relationship with soybeans. International Journal of Molecular Sciences, 2015, 16(8): 16778-16791 CrossRef
  79. Yoshida K., Kim W.-S., Kinehara M., Mukai R., Ashida H., Ikeda H., Fujita Y., Krishnan H.B. Identification of a functional 2-keto-myo-inositol dehydratase gene of Sinorhizobium fredii USDA191 required for myo-inositol utilization. Bioscience, Biotechnology and Biochemistry, 2006, 70(12): 2957-2964 CrossRef
  80. Sanchez S., Itakura M., Mitsui H., Minamisawa K. Linked expressions of nap and nos genes in a Bradyrhizobium japonicum mutant with increased N2O reductase activity. Applied and Environmental Microbiology, 2013, 79(13): 4178-4180 CrossRef
  81. Bueno E., Mesa S., Sanchez C., Bedmar E.J., Delgado M.J. NifA is required for maximal expression of denitrification genes in Bradyrhizobium japonicum. Environmental Microbiology, 2010, 12(2): 393-400 CrossRef
  82. Itakura M., Tabata K., Eda S., Mitsui H., Murakami K., Yasuda J., Minamisawa K. Generation of Bradyrhizobium japonicum mutants with increased N2O reductase activity by selection after introduction of a mutated dnaQ gene. Applied and Environmental Microbiology, 2008, 74(23): 7258-7264 CrossRef
  83. Khmel' I.A., Belik A.S., Zaitseva Yu.V., Danilova N.N. Vestnik Moskovskogo universiteta. Seriya 16: Biologiya, 2008, 1: 28-35 (in Russ.).   
  84. Bogino P.C., Nievas F.L., Giordano W. A review: quorum sensing in Bradyrhizobium. Applied Soil Ecology, 2015, 94: 49-58 CrossRef
  85. Beerenwinkel N., Gunthard H.F., Roth V., Metzner K.J. Challenging and opportunities in estimating viral genetic diversity from next generating sequencing data. Frontiers in Microbiology, 2012, 3: 329 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)