doi: 10.15389/agrobiology.2019.5.905eng

UDC: 633.11:631.527.8

The work was performed according to the State task (priority area Х.10.4, program Х.10.4.150, projects Х.10.4.150)



V.V. Novokhatin1, V.A. Dragavtsev2, Т.А. Leonova1, Т.В. Shelomentseva1

1Research Institute of Agriculture for Northern Zayral’e — Branch of Tyumen Scientific Center, SB RAS, 2, ul. Burlaki, pos. Moskovskii, Tyumen Region, Tyumen Province, 625501 Russia, e-mail
2Agrophysical Research Institute, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail (✉ corresponding author)

Novokhatin V.V.
Leonova Т.А.
Dragavtsev V.A.Х
Shelomentseva Т.В.

Received November 16, 2018


Today, there is an excessive belief in the promise of molecular approaches to the problem of increasing yields, although so far there is not a single variety created by purely molecular methods. In addition, representatives of the new science, the epigenetics, rightly argue that in nature there are no specific genes for productivity and yield that could be molecularly marked or subjected to genomic editing. This article is the first to describe creation of a wheat variety Grenada using innovative breeding technologies emerged from the priority Russian Theory of Eco-Genetic Organization of Quantitative Traits (TEGOQT) which derived from the results of the Interdisciplinary DIAS Program (genetics of spring wheat productivity in Western Siberia) (1973-1984). The essence of these technologies are 1) a special selection of parental pairs on the basis of a deep analysis of the longest pedigrees of the old breeds of parents taken in crosses, 2) priority phenotyping of the group of the most productive varieties of the collection nursery for seven genetic-physiological systems (GPS) which positively or negatively contribute to the harvest, 3) selection of genotypes that have at least one GPS with the maximum plus contribution to the crop, 4) crossing of these genotypes to combine the plus contributions of all seven GPS in the future variety (with several saturations with the genome of one of the parents with the most valuable properties), 6) selection of elite plants after a number of stabilizing reproduction of the hybrid population under the conditions of typical dynamics of the environment lim-factors (in typical years for the breeding zone). Applying these technologies, we obtained a hybrid combination [F1 (Kazakhstanskaya rannespelaya × Tulunskaya 12) with five subsequent saturations with Tulunskaya 12 genome], from which the variety Grenada derived. Both parents of the maternal form Kazakhstanskaya rannespelaya, the Novosibirskaya 67 × Omskaya 9, having wide general adaptability, showed a much lower changes in GPS contribution to productivity as a response to changing environment and good combining ability. The Kazakhstanskaya rannespelaya variety created on their basis combines the best traits of the parents. As to the paternal and saturating form Tulunskaya 12, the improvement in quantitative traits is discrete-accumulative due to the genetic diversity of the East Siberian genotypes. The selection of elite plants under typical agro-climatic conditions resulted in higher yielding genotypes with a pronounced plasticity. A comprehensive assessment of the biotypes from this population in F5 according to seven GPS, positively contributing to productivity, showed their synergetic effect. This was well manifested in the early ripening line Lutescens 506-11 from which the Grenada variety derived. This variety successfully combines high productivity (26-39 % higher compared to the standard) with the resistance to lodging, drought, pre-harvest germination and the grain quality of valuable and strong varieties. A distinctive feature of the variety is the horizontal resistance to Septoria diseases, a dusty smut, powdery mildew, a red-breasted leech, and intra-stem pests. Grenada variety is much lower affected by rust fungi compared to the standard. From one hectare of arable land the Grenada variety gives 628 kg of protein (+119 kg to the standard variety). In 2019, the variety Grenada is zoned by State Commission on Variety Testing of the Ministry of Agriculture of the Russian Federation for the 9th (Ural) crop region including Bashkiria (about 1 million hectares), Chelyabinsk (1 million hectares), Orenburg (4 million hectares), Kurgan (1 million hectares), and Tyumen (500 thousand hectares) regions. When Grenada occupies these areas (about 7 million hectares), an increase in grain yield will provide an annual economic effect of about 30 million rubles.

Keywords: Triticum aestivum L., soft wheat, breeding, variety, population, selection, biotype, geno-physiological system, grain, immunity.



  1. Loyola-Vargas V.M., Ochoa-Alejo N. An introduction to plant tissue culture: advances and perspectives. In: Plant cell culture protocols. Methods in molecular biology, Vol. 1815. V. Loyola-Vargas, N. Ochoa-Alejo (eds.). Humana Press, New York, NY, 2018: 3-13 CrossRef
  2. Bridgen M.P., Van Houtven W., Eeckhaut T. Plant tissue culture techniques for breeding. In: Ornamental crops. Handbook of plant breeding, Vol. 11. J. Van Huylenbroeck (ed). Springer, Cham, 2018: 127-144 CrossRef
  3. Varshney R.K., Pandey M.K., Chitikineni A. Plant genetics and molecular biology: an introduction. In: Plant genetics and molecular biology. Advances in biochemical engineering/biotechnology, Vol. 164. R. Varshney, M. Pandey, A. Chitikineni (eds.). Springer, Cham, 2018: 1-9 CrossRef
  4. Pérez-de-Castro A.M., Vilanova S., Cañizares J., Pascual L., Blanca J.M., Díez M.J., Prohens J., Picó B. Application of genomic tools in plant breeding. Curr. Genomics, 2012, 13(3): 179-195 CrossRef
  5. Ashkani S., Rafii M.Y., Shabanimofrad M., Miah G., Sahebi M., Azizi P., Tanweer F.A., Akhtar M.S., Nasehi A. Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Front. Plant Sci., 2015, 6: Article 886 CrossRef
  6. Prohens J. Plant breeding: a success story to be continued thanks to the advances in genomics. Front. Plant Sci., 2011, 2: Article 51 CrossRef
  7. Mammadov J., Aggarwal R., Buyyarapu R., Kumpatla S. SNP markers and their impact on plant breeding. Int. J. Plant Genomics, 2012, 2012: 728398 CrossRef
  8. Kim S.K., Nair R.M., Lee J., Lee S.-H. Genomic resources in mungbean for future breeding programs. Front. Plant Sci., 2015, 6: Article 626 CrossRef
  9. Jiang G.-L. Molecular markers and marker-assisted breeding in plants. In: Plant breeding from laboratories to fields. S.B. Andersen (ed.). IntechOpen, 2013: 45-83 CrossRef
  10. Bhat J.A., Ali S., Salgotra R.K., Mir Z.A., Dutta S., Jadon V., Tyagi A., Mushtaq M., Jain N., Singh P.K., Singh G.P., Prabhu K.V. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front. Genet., 2016, 7: 221 CrossRef
  11. Nadeem M.A., Nawaz M.A., Shahid M.Q., Doğan Y., Comertpay G., Yıldız M., Hatipoğlu R., Ahmad F., Alsaleh A., Labhane N., Özkan H., Chung G., Baloch F.S. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 2018, 32(2): 261-285 CrossRef
  12. Kumari S., Jaiswal V., Mishra V.K., Paliwal R., Balyan H.S., Gupta P.K. QTL mapping for some grain traits in bread wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants, 2018, 24(5): 909-920 CrossRef
  13. Lozada D.N., Mason R.E., Sukumaran S., Dreisigacker S. Validation of grain yield QTLs from soft winter wheat using a CIMMYT spring wheat panel. Crop Sci., 2018, 58: 1964-1971 CrossRef
  14. Nedelkou I.-P., Maurer A., Schubert A., Léon J., Pillen K. Exotic QTL improve grain quality in the tri-parental wheat population SW84. PLoS ONE, 2017, 12(7): e0179851 CrossRef
  15. Guo Y., Du Z., Chen J., Zhang Z. QTL mapping of wheat plant architectural characteristics and their genetic relationship with seven QTLs conferring resistance to sheath blight. PLoS ONE, 2017, 12(4): e0174939 CrossRef
  16. Gahlaut V., Jaiswal V., Tyagi B.S., Singh G., Sareen S., Balyan H.S., Gupta P.K. QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS ONE, 2017, 12(8): e0182857 CrossRef
  17. Imai A., Yoshioka T., Hayashi T. Quantitative trait locus (QTL) analysis of fruit-quality traits for mandarin breeding in Japan. Tree Genetics & Genomes, 2017, 13: 79 CrossRef
  18. Hernández Mora J.R., Micheletti D., Bink M., Van de Weg E., Cantín C., Nazzicari N., Caprera A., Dettori M.T., Micali S., Banchi E., Campoy J.A., Dirlewanger E., Lambert P., Pascal T., Troggio M., Bassi D., Rossini L., Verde I., Quilot-Turion B., Laurens F., Arús P., Aranzana M.J. Integrated QTL detection for key breeding traits in multiple peach progenies. BMC Genomics, 2017, 18: 404 CrossRef
  19. Tan Z., Zhang Z., Sun X., Li Q., Sun Y., Yang P., Wang W., Liu X., Chen C., Liu D., Teng Z., Guo K., Zhang J., Liu D., Zhang Z. Genetic map construction and fiber quality QTL mapping using the CottonSNP80K array in upland cotton. Front. Plant Sci., 2018, 9: Article 225 CrossRef
  20. Weinhold B. Epigenetics: the science of change. Environ. Health Perspect., 2006, 114(3): A160-A167 CrossRef
  21. Chen M., Lv S., Meng Y. Epigenetic performers in plants. Develop. Growth Differ., 2010, 52: 555-566 CrossRef
  22. Gallusci P., Dai Z., Génard M., Gauffretau A., Leblanc-Fournier N., Richard-Molard C., Vile D., Brunel-Muguet S. Epigenetics for plant improvement: current knowledge and modeling avenues. Trends in Plant Science, 2017, 22(7): P610-623 CrossRef
  23. Milomrica R.M., Dragan S.D., Desimir S.K., Fleksandar S.P., Snezana T.T. Combining abilities for spike traits in diallel cross of barley. J. Central Eur. Agric., 2014, 15(1): 198-116 CrossRef
  24. Sing B., Sharma A., Joshi N., Mittal P., Singh S. Combining ability analysis for grain yield and its components in malt barley (Hordeum vulgare L.). Indian Journal of Agricultural Sciences, 2013, 83(1): 96-98.
  25. Kompanets E.V., Kozachenko M.R., Vas'ko A.G., Naumov A.G., Solonechnyi P.N., Svyatchenko S.I. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(5): 537-544 CrossRef (in Russ.).   
  26. Dragavtsev V.A., Tsil'ke R.A., Reiter B.G., Vorob'ev V.A., Dubrovskaya A.G., Korobeinikov N.I., Novokhatin V.V., Maksimenko V.P., Babakishiev A.G., Ilyushchenko V.G., Kalashnik N.A., Zuikov Yu.P., Fedotov A.M. Genetika priznakov produktivnosti yarovykh pshenits v Zapadnoi Sibiri. Pod redaktsiei D.K. Belyaeva [Genetics of spring wheat productivity traits in Western Siberia. D.K. Belyaev (ed.)]. Novosibirsk, 1984 (in Russ.).    
  27. Glazko V.I., Glazko G.V. Tolkovyi slovar' terminov po obshchei i molekulyarnoi biologii, obshchei i prikladnoi genetike, selektsii, DNK-tekhnologii i bioinformatike. Tom 2 [Glossary of general and molecular biology, general and applied genetics, selection, DNA technology and bioinformatics. Vol. 2]. Moscow, 2008: 308 (in Russ.).
  28. Dragavtsev V.A., Litun P.P., Shkel' N.M., Nechiporenko N.N. Doklady AN SSSR, 1984, 274(3): 720-723 (in Russ.).
  29. Dragavtsev V.A. Biosfera, 2012, 4(3): 251-262 (in Russ.).
  30. D'yakov A.B., Dragavtsev V.A. V knige: Ekologo-geneticheskii skrining genofonda i metody konstruirovaniya sortov sel'skokhozyaistvennykh rastenii po urozhainosti, ustoichivosti i kachestvu [In: Ecogenetic screening of the gene pool and constructing cultivars for yield, sustainability and quality].St. Petersburg, 1998: 23-47 (in Russ.).
  31. Kocherina N.V., Dragavtsev V.A. Vvedenie v teoriyu ekologo-geneticheskoi organizatsii poligennykh priznakov rastenii i teoriyu selektsionnykh indeksov [Introduction to the theory of ecological and genetic organization of plants polygenic traits and the theory of breeding indices]. St. Petersburg, 2008 (in Russ.).
  32. Börner A., Schumann E., Fürste A., Cöster H., Leithold B., Röder M., Weber W. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet., 2002, 105(6-7): 921-936 CrossRef
  33. Dragavtsev V.A., Dragavtseva I.A., Efimova I.L., Morenets A.S., Savin I.Yu. Trudy Kubanskogo GAU, 2016, 2(59): 105-121 (in Russ.).
  34. Ushiyama T., Nakamura K., Anas А., Yoshida T. Pedigree analysis of early maturing wheat cultivars in Japan for breeding cultivars with higher performance. Plant Production Science, 2009, 12(1): 80-87 CrossRef
  35. Witcombe J.R., Virk D.S. Methodologies for generating variability. Part 2: selection of parents and crossing strategies. In: Plant breeding and farmer participation. S. Ceccarelli, E.P. Guinarres, E. Weltizienm (eds.). Rome, 2009: 129-138.
  36. Novokhatin V.V. Dostizheniya nauki i tekhniki APK, 2016, 3: 42-45 (in Russ.).
  37. Voronin A.N., Stel'makh A.F. Nauchno-tekhnicheskii byulleten' VSGI, 1985, 3: 25-30 (in Russ.).
  38. Stel'makh A.F. Vestnik sel'skokhozyaistvennoi nauki, 1987, 6: 47-53 (in Russ.).
  39. Pisarev V.E. Selektsiya zernovykh kul'tur [Breeding of cereal crops]. Moscow, 1964 (in Russ.).
  40. Vedrov N.G. Yarovaya pshenitsa v Vostochnoi Sibiri [Spring wheat in Eastern Siberia]. Krasnoyarsk, 1998 (in Russ.).
  41. Jiang Z., Zhang B., Teng W., Han Y., Zhao X., Sun D., Zhang Z., Li W. Impact of epistasis and QTL × environmental interaction on the oil filling rate of soybean seed at different stages. Euphytica, 2011, 177(3): 431-442 CrossRef
  42. Zhuchenko A.A. Ekologicheskaya genetika kul'turnykh rastenii: adaptatsiya, rekombinogenez, agrobiotsenoz [Ecological genetics of cultivated plants: adaptation, recombinogenesis, agrobiocenosis]. Kishinev, 1980 (in Russ.).
  43. Gill K.S. Karlikovye pshenitsy [Dwarf wheats]. Moscow, 1984 (in Russ.).
  44. Kumakov V.A. Tezisy dokladov IV S"ezda obshchestva fiziologov rastenii Rossii. Mezhdunarodnaya konferentsiya «Fiziologiya rastenii — nauka 3-go tysyacheletiya» (Moskva, 4-9 oktyabrya 1999 goda) [Proc. VI Congr. of Russian Society of Plant Physiologists, Int. Conf. «Plant physiology science of the 3rd millennium» (Moscow, October 4-9, 1999)]. Moscow, 1999, V. 1: 400 (in Russ.).
  45. Zhuchenko A.A. Adaptivnyi potentsial kul'turnykh rastenii (ekologicheskie osnovy) [Adaptive potential of cultivated plants (ecological basis)]. Kishinev, 1988 (in Russ.).
  46. Guo R., Wu Q., Liu Y. Single-plant similarity-difference selection in wheat breeding. Advance Journal of Food Science and Technology, 2013, 5(11): 1413-1417 CrossRef
  47. Dragavtsev V.A., Dragavtseva I.A., Efimova I.L., Kuznetsova A.P., Morenets A.S. To the experimental confirmation of the hypothesis about an eco-genetic nature of the phenomenon  genotype × environment interaction for woody plants. Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2018, 53(1): 151-156 CrossRef
  48. Singh S., Dhindsa G.S., Sharma A., Singh P. Combining ability for grain yield and its components in barley (Hordeum vulgare L.). Crop Improvement, 2007, 34: 128-132.
  49. Novokhatin V.V., Shelomentseva T.V. Vestnik Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2014, 4: 14-17 (in Russ.).
  50. Li W.-Q., Zhang Z.-B., Li J.-J. Plant epicuticular wax and drought resistance as well as its molecular biology. Zhi wu sheng li yu fen zi sheng wu xue xue bao = Journal of plant physiology and molecular biology, 2006, 32(5): 505-512 (Article in Chinese).
  51. Syukov V.V., Zakharov V.G., Menibaev A.I. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(5): 534-536 CrossRef (in Russ.).
  52. Borlaug N.E. Wheat breeding and its impact on world food supply. Proc. 3rd Int. Wheat Symp. Canberra-Australia. Canberra, 1968: 1-36.
  53. Rajaram S., Borlaug N.E., van Ginkel M. CIMMIT international wheat breeding. In: FAO Plant Production and Protection Series. No. 30. Bread wheat — improvement and production. B.C. Curtis, S. Rajaram, H. Gómez Macpherson (eds.). FAO, Rome, 2002: 103-117.
  54. Srinivasan C.S., Thirtle C., Palladino P. Winter wheat in England and Walles, 1923-1995: what do indicates of genetic diversity reveal? Plant Genetic Resources: Characterization and Utilization, 2003; 1(1): 43-57 CrossRef
  55. Zhuchenko A.A., Korol' A.B. Rekombinatsiya v evolyutsii i selektsii [Recombination in evolution and breeding]. Moscow, 1985 (in Russ.).
  56. Fujimura S., Shi P., Iwama K., Zhang X., Gopal J., Jitsuyama Y. Comparison of growth and grain yield of spring wheat in Lhasa, the Tibetan Plateau, with those in Sapporo, Japan. Plant Prod. Sci., 2009, 12(1): 116-123 CrossRef
  57. Malik A.H., Prieto-Linde M.L., Kuktaite R., Andersson A., Johansson E. Individual and interactive effects of genetic background and environmental conditions on amount and size distribution of polymeric proteins in wheat grain. Czech J. Genet. Plant Breeding, 2011, 47(spec. Iss.): S186-S189 CrossRef
  58. Haberle J., Holzapfel J., Hartl L. Die Genetik der Fusariumresistens in ropaischem Winterweizen. In: Abwehrstrategien gegen biotische Schaderreger, Zuchtung Hackfruchten und Sonderkulturen. Irdning, 2009: 5-8.
  59. Kosova K., Chrpova J., Sip V. Cereal resistance to Fusarium head blight and possibilities of its improvement through breeding. Czech J. Genet. Plant Breeding, 2009, 45(3): 87-105 CrossRef
  60. El-Hendawy S.E., Ruan Y., Hu Y., Schmidhalter U. A comparison of screen criteria for salt tolerance in wheat under field and controlled environmental conditions. Journal of Agronomy & Crop Science, 2009, 195(5): 356-367 CrossRef
  61. Novokhatin V.V. The theoretical justification of intensive genetic potential of the varieties of soft wheat (Triticum aestivum L.). Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2016, 51(5): 627-635 CrossRef
  62. Novokhatin V.V. Materialy nauchno-prakticheskoi konferentsii «Sel'skokhozyaistvennaya nauka — razvitiyu APK Tyumenskoi oblasti» (15-17 fevralya 2000 goda, Tyumen') [Proc. Int. Conf. «Agricultural science as a tool to develop agrobusiness in the Tyumen region» (Tyumen', February 15-17, 2000)].Tyumen', 2000: 50-56 (in Russ.).
  63. Mal'chikov P.N., Myasnikova M.G. Vavilovskii zhurnal genetiki i selektsii, 2015, 19(2): 176-184 (in Russ.).







Full article PDF (Rus)

Full article PDF (Eng)