doi: 10.15389/agrobiology.2019.5.1024eng

UDC: 633.11:632.4:632.9



L.E. Kolesnikov1, E.V. Popova2, I.I. Novikova2, N.S. Priyatkin3,
M.V. Arkhipov3, Yu.R. Kolesnikova4, N.N. Potrakhov5, B. van Duijn6,
A.S. Gusarenko1

1Saint-Petersburg State Agrarian University, 2, Peterburgskoe sh., St. Petersburg—Pushkin, 196601 Russia, e-mail (✉ corresponding author),;
2All-Russian Research Institute of Plant Protection, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail,;
3Agrophysical Research Institute, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail, agroг;
4Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail;
5Saint Petersburg Electrotechnical University LETI, 5, ul. Professora Popova St. Petersburg, 197376 Russia, e-mail;
6Institute of Biology Leiden, PBDL, Leiden University, and Fytagoras BV: Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands, e-mail, bert.vaпduijn@fytagoг

Kolesnikov L.E.
Kolesnikova Yu.R.
Popova E.V.
Potrakhov N.N.
Novikova I.I.
van Duijn B.
Priyatkin N.S.
Gusarenko A.S.
Arkhipov M.V.

Received June 8, 2019


The developing of effective and high-tech preparations for microbiological plant protection is a crucial problem of agricultural biotechnology. In this paper, we revealed differences in the crop structure, grain introscopic characteristics and resistance of soft wheat plants to root rot when using novel multifunctional bioactive preparations. Our objective was to investigate effects of developed bioactive compositions based on microbial antagonists of plant pathogenic and chitosan complexes on spring soft wheat (Triticum aestivum L.) variety Leningradskaya 6. Plant protection against root rot, productivity and grain quality assessed by the methods of microfocus X-ray radiography and gas-discharge visualization were estimated in two-year field tests (Leningrad Province, 2016-2017). The weather conditions during growing season of 2016 were more favorable for wheat plants compared to 2017 due to a slight temperature fluctuation and a significant amount of precipitation. The number of spikelets per spike, flag and pre-flag leaf area, the weight of spike and vegetative parts were the indicators for wheat productivity, germination energy, seedling length, dynamics of plant growth phase and height, the number, length and weight of roots. According to significant positive influence of the studied compositions on yield structure, the biopreparations rank as follows: in 2016 — Vitaplan, Zh (ООО AgroBioTekhnologiya, Russia) > Vitaplan, Zh + Chitosan II (test preparation containing 50 and 100 kDa chitosans with the addition of 0.1 % vanillin, FSBSI VIZR) > Gamair, SP (ООО AgroBioTekhnologiya, Russia) > Chitosan I (test preparation containing 50 and 100 kDa chitosans with the addition of 0.05 % salicylic acid, FSBSI VIZR) > Chitosan II; in 2017 — Vitaplan, Zh > Vitaplan, SP > Vitaplan, Zh + Chitosan II > Gamair, SP > Chitosan II. In 2016, a combined use of Vitaplan, Zh and Chitosan II changed significantly not only the plant vegetative part weight, but also the spike weight, while separate use of Chitosan II significantly increased the vegetative biomass only. In 2017, the same combination of the biologicals made the flag leaf 86.84 % larger and the root weight 83.33 % higher compared to the control. In 2016, Chitosan I led to reliable 19.0 % increase (t = 3,0; р < 0.05) in potential grain yield compared to the control, however, there were no significant differences for Vitaplan, Zh, Chitosan II and their combination Vitaplan, Zh + Chitosan II. On the contrary, in 2017 Vitaplan, Zh + Chitosan II caused the maximum reliable (t = 7.2; p < 0.05) increase in yield (by 82.6 %). Vitaplan, Zh and Vitaplan, Zh + Chitosan II possess maximum efficiency against Helminthosporium root rot. Due to Vitaplan, Zh + Chitosan II, in 2016 root rot disease frequency was 80 % lower compared to the control, and in 2017 no symptoms were observed which may be due to less favorable weather conditions for root rot disease in 2017 compared to 2016. According to our findings, the potential grain yield in wheat correlates significantly and positively with grain X-radiographic projection area, integrated grain brightness and total intensity of the gas-discharge fluorescence. Chitosan I, Chitosan II and Vitaplan, F + Chitosan II have the greatest impact on grain structure and quality parameters assessed by X-ray and gas-discharge visualization. Perhaps the effectiveness of the studied drugs depended on weather conditions, but was generally positive in terms of the main assessed indicators. Thus, our data convincingly indicate the effectiveness of multifunctional biologics which combine microbial antagonists of fungal plant pathogens with chitosan, an activator of plant diseases resistance, to protect wheat against root rot, to increase grain yield with better quality.  

Keywords: Triticum aestivum L., spring soft wheat, biological preparations, chitosan composition, yield structure, root rot, grain quality, microsofus X-ray, gas discharge visualization.



  1. Lichko N.M., Kolomiets S.N. Zernovoe khozyaistvo, 2007, 7: 12-14 (in Russ.). 
  2. Petrov N.Yu., Bilous V.V., Kalmykova E.V. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa, 2010, 2(18): 55-58 (in Russ.). 
  3. Novikova I.I. Biologicheskoe obosnovanie sozdaniya i primeneniya polifunktsional'nykh biopreparatov na osnove mikrobov-antagonistov dlya fitosanitarnoi optimizatsii agroekosistem. Avtoreferat doktorskoi dissertatsii [Biological aspects of creation and use of multifunctional biological products based on antagonist microbes for phytosanitary optimization of agroecosystems. PhD Thesis]. St. Petersburg, 2005 (in Russ.). 
  4. Novikova I.I. Materialy 3-go Vserossiiskogo s"ezda po zashchite rastenii «Fitosanitarnaya optimizatsiya agroekosistem» [Proc. 3rd All-Russian Congress on plant protection «Phytosanitary optimization of agroecosystems»]. St. Petersburg, 2013: 372-378 (in Russ.). 
  5. Novikova I.I., Litvinenko A.I. Vestnik zashchity rastenii, 2011, 2: 5-12 (in Russ.). 
  6. Deepmala K., Hemantaranjan A., Bharti S., Nishant Bhanu A. A future perspective in crop protection: chitosan and its oligosaccharides. Adv. Plants Agric. Res., 2014, 1(1): 23-30 CrossRef
  7. Malerba M., Cerana R. Recent applications of chitin- and chitosan-based polymers in plants. Polymers, 2019, 11(5): 839 CrossRef
  8. Vasconcelos M.W. Chitosan and chitooligosaccharide utilization in phytoremediation and biofortification programs: current knowledge and future perspectives. Frontiers in Plant Science, 2014, 5: 616 CrossRef
  9. Tyuterev S.L. Prirodnye i sinteticheskie induktory ustoichivosti rastenii k boleznyam [Natural and synthetic inducers of plant resistance to diseases]. St. Petersburg, 2014 (in Russ.). 
  10. Tyuterev S.L. Vestnik zashchity rastenii, 2015, 1(83): 3-13 (in Russ.). 
  11. Starikova D.V. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta, 2014, 98: 1-13 (in Russ.). 
  12. Zimoglyadova T.V., Zhadan V.V., Nakaznoi S.V. Zashchita i karantin rastenii, 2009, 11: 25-26 (in Russ.). 
  13. Boonsongrit Y., Mitrevej A., Mueller B.W. Chitosan drug binding by ionic interaction. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 62(3): 267-274 CrossRef
  14. Wanichpongpan P., Suriyachan K., Chandrkrachang S. Effects of chitosan on the growth of gerbera flower plant (Gerbera jamesonii). In: Chitin and chitosan in life science. Proceedings of the eighth International chitin and chitosan conference and fourth Asia Pacific chitin and chitosan symposium. T. Uragami, K. Kurita, T. Fukamizo (eds.). Japan, Yamaguchi, 2001: 198-201.
  15. Bhaskara R.M.V., Arul J., Angers P., Couture L. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. Journal of Agricultural and Food Chemistry, 1999, 47(3): 1208-1216 CrossRef
  16. Orzali L., Forni C., Riccioni L. Effect of chitosan seed treatment as elicitor of resistance to Fusarium graminearum in wheat. Seed Science and Technology, 2014, 42(2): 132-149(18) CrossRef
  17. Zeng D., Luo X. Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Open Journal of Soil Science, 2012, 2(3): 282-288 CrossRef
  18. Pavlyushin V.A., Tyuterev S.L., Popova E.V., Novikova I.I., Boikova I.V., Bykova G.A. Materialy mezhdunaroinoi konferentsii «Sovremennye perspektivy v issledovanii khitina» [Proc. Int. Conf. «Chitin — current prospects and investigations»]. Murmansk, 2012: 398-404 (in Russ.). 
  19. Pavlyushin V.A., Tyuterev S.L., Popova E.V., Novikova I.I., Bykova G.A., Domnina N.S. Biotekhnologiya, 2010, 4: 69-80 (in Russ.). 
  20. Meleshkina E.P. Agrarnyi vestnik Yugo-Vostoka, 2009, 3: 4-7 (in Russ.). 
  21. Arkhipov M.V., Potrakhov N.N. Mikrofokusnaya rentgenografiya rastenii [Microfocus radiography of plants]. St. Petersburg, 2008 (in Russ.). 
  22. Musaev F.B., Kurbakova O.V., Kurbakov E.L., Arkhipov M.V., Velikanov L.P., Potrakhov N.N. Gavrish, 2011, 1: 44-46 (in Russ.). 
  23. van der Burg W.J., Jalink H., van Zwol R.A., Aartse J.W., Bino R.J. Non-destructive seed evaluation with impact measurements and X-ray analysis. Acta Horticulturae, 1995, 362: 149-157 CrossRef
  24. de Carvalho M.L.M., van Aelst A.C., van Eck J.W., Hoekstra F.A. Pre-harvest stress cracks in maize (Zea mays L.) kernels as characterized by visual, X-ray and low temperature scanning electron microscopical analysis: effect on kernel quality. Seed Science Research, 1999, 9: 227-236 CrossRef
  25. Gomes-Junior F.G., Yagushi J.T., Belini U.L., Cicero S.M., Tomazello-Filho M. X-ray densitometry to assess internal seed morphology and quality. Seed Science and Technology, 2012, 40(1): 102-107 CrossRef
  26. Silva V.N., Cicero S.M., Bennett M. Associations between X-ray visualised internal tomato seed morphology and germination. Seed Science and Technology, 2013, 41(2): 225-234 CrossRef
  27. Del Nobile M.A., Laverse J., Lampignano V., Cafarelli B., Spada A. Applications of tomography in food inspection. In: Industrial Tomography: Systems and applications. Woodhead Publishing, 2015: 693-712 CrossRef
  28. Arkhipov M.V., Priyatkin N.S., Gusakova L.P., Kulkov A.M. Visualization of internal structural defects of wheat seeds using microCT. MicroCT User Meeting. Abstract Book. Bruge, Belgium, 2015: 177-179.
  29. Lu M., Zhang Y., Sun J., Chen S., Li N., Zhao G., Shen J. Identification of maize seeds by terahertz scanning imaging. Chinese Optics Letters, 2005, 3(51): 239-241.
  30. Ge H., Jiang Y., Xu Z., Lian F., Zhang Y., Xia S. Identification of wheat quality using THz spectrum. Optics Express, 2014, 22(10): 12533-12544 CrossRef
  31. Jiang Y., Ge H., Lian F., Zhang Y., Xia S. Early detection of germinated wheat grains using terahertz image and chemometrics. Scientific Reports, 2016, 6: 21299 CrossRef
  32. Merezhko A.F., Udachin R.A., Zuev V.E., Filotenko A.A., Serbin A.A., Lyapunova O.A., Kosov V.Yu., Kurkiev U.K., Okhotnikova T.V., Navruzbekov N.A., Boguslavskii R.L., Abdullaeva A.K., Chikida N.N., Mitrofanova O.P., Potokina S.A. Popolnenie, sokhranenie v zhivom vide i izuchenie mirovoi kollektsii pshenitsy, egilopsa i triticale [Replenishment, living form preservation and study of the world collection of wheat, aegilops and triticale plants].St. Petersburg, 1999: 32-35 (in Russ.). 
  33. Popov Yu.V. Zashchita i karantin rastenii, 2011, 8: 45-47 (in Russ.). 
  34. Nasledov A.D. IBM SPSS Statistics 20 i AMOS: professional'nyi statisticheskii analiz dannykh [IBM SPSS Statistics 20 and AMOS: Professional statistical data analysis]. St. Petersburg, 2013 (in Russ.). 
  35. Kamilova F., Validov S., Lugtenberg B. Biological control of tomato foot and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas bacteria. Acta Horticulturae, 2009, 808: 317-320 CrossRef
  36. Sharifi Tehrani A., Ramezani M. Biological control of Fusarium oxysporum, the causal agent of onion wilt by antagonistic bacteria. Commun. Agric. Appl. Biol. Sci., 2003, 68(4 Pt B): 543-547.
  37. Schisler D.A., Slininger P.J., Behle R.W., Jackson M.A. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology, 2004, 94(11): 1267-1271 CrossRef
  38. Abdel-Kader M.M., El-Mougy N.S., Aly M.D.E., Lashin S.M., Abdel-Kareem F. Greenhouse biological approach for controlling foliar diseases of some vegetables. Advances in Life Sciences, 2012, 2(4): 98-103 CrossRef
  39. Badawy M.E.J., Rabea E.I. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogenes and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011: Article ID 460381 CrossRef
  40. El Hadrami A., Adam L.R., El Hadrami I., Daayf F. Chitosan in plant protection. Marine Drugs, 2010, 8(4): 968-987 CrossRef
  41. Iriti M., Faoro F. Chitosan as a MAMP, searching for a PRR. Plant Signaling & Behavior, 2009, 4(1): 66-68 CrossRef
  42. Rajkumar M., Lee K.J., Freitas H. Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper. South African Journal of Botany, 2008, 74(2): 268-273 CrossRef
  43. Abdel-Kader M.M., El-Mougy N.S., Aly M.D.E., Lashin S.M. Integration of biological and fungicidal alternatives for controlling foliar diseases of vegetables under greenhouse conditions. International Journal of Agriculture and Forestry, 2012, 2(2): 38-48 CrossRef
  44. Niranjan R.S., Deepak S.A., Basavaraju P., Shetty H.S., Reddy M.S., Kloepper J.W. Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Protection, 2003, 22(4): 579-588 CrossRef
  45. Algam S.A.E., Xie G., Li B., Yu S., Su T., Larsen J. Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. Journal of Plant Pathology, 2010, 92(3), 593-600.
  46. Abdel-Kader M.M., El-Mougy N.S., Lashin S.M. Biological and chemical resistance inducers approaches for controlling foliar diseases of some vegetables under protected cultivation system. J. Plant Pathol. Microb., 2013, 4: 200 CrossRef
  47. Cicek E., Tilki F. Seed size effects on germination, survival and seedling growth of Castanea sativa Mill. Journal of Biological Sciences, 2007, 7(2): 438-441 CrossRef
  48. Huang M., Wang Q.G., Zhu Q.B., Qin J.W., Huang G. Review of seed quality and safety tests using optical sensing technologies. Seed Science and Technology, 2015, 43(3): 337-366 CrossRef
  49. Abud H.F., Cicero S.M., Gomes Junior F.G. Radiographic images and relationship of the internal morphology and physiological potential of broccoli seeds. Acta Scientiarum. Agronomy, 2018, 40(1): e34950 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)