PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.4.649eng

UDC: 636.5:575.2

Acknowledgements:
Supported financial by the Ministry of Science and Higher Education of the Russian Federation, topic No. FGGN-2024-0015

 

GENOME-WIDE ASSOCIATION STUDY OF TESTES DEVELOPMENT INDICATORS IN ROOSTERS (Gallus gallus L.)

N.A. Volkova, T.O. Kotova, A.N. Vetokh, P.V. Larionova, L.A. Volkova, M.N. Romanov, N.A. Zinovieva

Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail natavolkova@inbox.ru (✉ corresponding author), igelin@list.ru, anastezuya@mail.ru, volpolina@mail.ru, ludavolkova@inbox.ru, m.romanov@kent.ac.uk, n_zinovieva@mail.ru

ORCID:
Volkova N.A. orcid.org/0000-0001-7191-3550
Kotova T.O. orcid.org/0000-0003-4560-7810
Vetokh A.N. orcid.org/0000-0002-2865-5960
Volkova L.A. orcid.org/0000-0002-9407-3686
Romanov M.N. orcid.org/0000-0003-3584-4644
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Larionova P.V. orcid.org/0000-0001-5047-1888
Petrov S.N. orcid.org/0000-0001-5130-677X

Final revision received March 14, 2024
Accepted April 22, 2024

 

Reproductive ability is one of the main indicators of the male breeding value that depends primarily on the functional state of testes cells. Male fertility is defined by complex physiological processes affecting the formation of mature germ cells, i.e., spermatozoa in the process of spermatogenesis. The forming and accumulation of germ cells occur in the seminiferous tubules of the testes, therefore the gonad development can serve as an indicator characterizing spermatogenesis and the reproductive potential of males. A number of studies on farm animals, including poultry, have shown the genetic determinacy of this trait, with identification of respective single nucleotide polymorphisms (SNPs) and genes determining the male gonad growth and development. In the present investigation, a genome-wide association study (GWAS) of the testes development parameters in roosters (Gallus gallus L.) of the F2 resource population were conducted. For the first time, new significant SNPs and candidate genes (р < 1.05×10-4) determining gonad growth and development in roosters were identified. The aim of the research was to seek SNPs and identify genes associated with testes growth parameters in roosters. The object of the study were F2 roosters from a model resource population (n = 115) that was obtained by interbreeding two breeds, Russian White and White Cornish. DNA was extracted from feather pulp using a commercial kit DNK Extran-2 (OOO NPF Sintol, Russia) in accordance with the manufacturer’s protocol. Genotyping was carried out using the medium-density Illumina Chicken 60K SNP iSelect BeadChip chip. At the age of 63 days, the experimental birds were slaughtered and the mass and morphometric indices of testes (length and thickness) were examined. Based on the obtained genotypic and phenotypic data, the GWAS analysis was performed in F2 resource population roosters using PLINK 1.9 software. The examined population was characterized by a high coefficient of variation in the measured indices, 96.1 % for the testes mass and 39.1 % for the linear measurements. The mass and linear measurements of the left testis were 5-14 % higher (р ≤0.05) compared to the right testis. The GWAS analysis revealed 36 significant SNPs (р < 1.05×10-4) associated with testes growth and development parameters in 63-day-old cockerels, in particular with the mass, length and thickness of the testes, 3, 26 and 7 SNPs, respectively. SNPs were localized on chromosomes GGA1, GGA3, GGA6, GGA7, GGA12, GGA15, and GGA18. A total of 156 genes were identified in the regions of the detected SNPs, including 16 genes that coincided with the positions of these SNPs. In particular, the latter were one gene (WNT7A) associated with the testis mass, 13 genes (LHFPL1, GALNT3, TMEM198, CACNA2D3, CCDC66, CACNA1D, DENND6A, CELSR3, WNT7A, IP6K2, ERC2, ABHD6, and DEPDC5) associated with the testis length, and three genes (ESR1, POLE, and RNFT2) associated with the testis thickness. These data can be used in genomic selection of roosters aimed at increasing their reproductive potential.

Keywords: Gallus gallus, roosters, GWAS, SNPs, candidate genes, testes, reproductive potential.

 

REFERENCES

  1. Coulter G.H., Foote R.H. Bovine testicular measurements as indicators of reproductive performance and their relationship to productive traits in cattle: a review. Theriogenology, 1979, 11(4): 297-311 CrossRef
  2. Thundathil J.C., Dance A.L., Kastelic J.P. Fertility management of bulls to improve beef cattle productivity. Theriogenology, 2016, 86(1): 397-405 CrossRef
  3. Guo S., Liu Y., Xu Y., Gai K., Cong B., Xing K., Qi X., Wang X., Xiao L., Long C., Guo Y., Chen L., Sheng X. Identification of key genes affecting sperm motility in chicken based on whole-transcriptome sequencing. Poultry Science, 2023, 102(12): 103135 CrossRef
  4. Zhang G., Liu P., Liang R., Ying F., Liu D., Su M., Chen L., Zhang Q., Liu Y., Liu S., Zhao G., Li Q. Transcriptome analysis reveals the genes involved in spermatogenesis in white feather broilers. Poultry Science, 2024, 103(4): 103468 CrossRef
  5. Dunn I.C., Miao Y.-W., Morris A., Romanov M.N., Wilson P.W., Sharp P.J. The detection and assay of polymorphism in candidate reproductive gene loci in a commercial broiler breeder population for association studies. Proc. of the Poultry Genetics Symposium. Working Group 3 of WPSA, Lohmann Tierzucht, Cuxhaven, Germany, 1999: 113.
  6. Dunn I.C., Miao Y.-W., Morris A., Romanov M.N., Wilson P.W., Waddington D., Sharp P.J. Candidate genes and reproductive traits in a commercial broiler breeder population, an association study. Journal of Animal Science, 2001, 79(Suppl 1): 43.
  7. Byrne C.J., Fair S., English A.M., Urh C., Sauerwein H., Crowe M.A., Lonergan P., Kenny D.A. Effect of breed, plane of nutrition and age on growth, scrotal development, metabolite concentrations and on systemic gonadotropin and testosterone concentrations following a GnRH challenge in young dairy bulls. Theriogenology, 2017, 96: 58-68 CrossRef
  8. Brito L.F.C., Barth A.D., Wilde R.E., Kastelic J.P. Effect of growth rate from 6 to 16 months of age on sexual development and reproductive function in beef bulls. Theriogenology, 2012, 77(7): 1398-1405 CrossRef
  9. Gaviley O.V., Tereshchenko O.V., Artemenko O.B., Ogurtsova N.S. Fertilizing capacity of spermatozoa of roosters in experimental T-2 toxicosis. Ptakhivnytstvo, 2009, 63: 156-160.
  10. Mamontova T.V., Selionova M.I., Aybazov A.-M.M. Sexual activity and sperm production of charolais and ile-de-france rams in different seasons of the year. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(4): 752-762 CrossRef
  11. Abilov A.I., Kombarova N.A., Amerkhanov Kh.A., Shemetyuk S.A., Shamshidin A.S., Mymrin S.V., Pyzhova E.A., Bogolyubova N.V., Gudilina A.A., Abilova S.F., Kombarov P.G., Mityashova O.S. Metabolic profiles and sperm production in imported holstein bull sires under different climatic and geochemical conditions of Russia and Kazakhstan. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(4): 730-751 CrossRef
  12. Sakhatskiy N.I., Tereshchenko A.V., Artemenko A.B. Ekspress-metod otsenki oplodotvoryayushchey sposobnosti zamorozhenno-ottayannoy spermy sel’skokhozyaystvennoy ptitsy. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 1987, 12: 77-80 (in Russ.).
  13. Atroshchenko M.M., Engalycheva M.G., Shitikova A.M. The level of sperm plasma protein oxidative modification assessed in stallions (Equus ferus caballus L.) of different ages. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(4): 660-668 CrossRef
  14. Estermann M.A., Major A.T., Smith C.A. Genetic regulation of avian testis development. Genes, 2021, 12(9): 1459 CrossRef
  15. Beloglazova E.V., Kotova T.O., Volkova N.A., Volkova L.A., Zinovieva N.A., Ernst L.K. Age dynamics of spermatogenesis in cocks in connection with optimization of bioengineering manipulation time. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 6: 60-64 (in Russ.).
  16. Kirby J.D., Froman D.P. Reproduction in male birds. In: Sturkie's avian physiology (fifth edition). G. Causey Whittow (ed.). Academic Press, New York, 2000: 597-615 CrossRef
  17. Jacyno E., Kawęcka M., Pietruszka A., Sosnowska A. Phenotypic correlations of testes size with semen traits and the productive traits of young boars. Reproduction in Domestic Animals, 2015, 50(6): 926-930 CrossRef
  18. Terakado A.P.N., Boligon A.A., Baldi F., Silva J.A., Albuquerque L.G. Genetic associations between scrotal circumference and female reproductive traits in Nelore cattle. Journal of Animal Science, 2015, 93(6): 2706-2713 CrossRef
  19. Ugwu S.O.C., Onyimonyi A.E., Foleng H. Testicular development and relationship between body weight, testis size and sperm output in tropical boars. African Journal of Biotechnology, 2009, 8: 1165-1169.
  20. Romanov M.N., Miao Y.W., Wilson P.W., Morris A., Sharp P.J., Dunn I.C. Detection and assay of polymorphism in reproductive gene loci in a commercial broiler breeder population for use in association studies. Proc. Conf. «From Jay Lush to Genomics: Visions for Animal Breeding and Genetics». J.C.M. Dekkers, S.J. Lamont, M.F. Rothschild (eds.). Iowa State University, Department of Animal Science, Ames, IA, USA, 1999.
  21. Dunn I.C., Miao Y.-W., Morris A., Romanov M.N., Waddington D., Wilson P.W., Sharp P.J. Association between candidate genes and reproductive traits in a commercial broiler breeder population. British Poultry Science, 2001, 42(Suppl 1): S113-S114 CrossRef
  22. Dementieva N.V., Dysin A.P., Shcherbakov Y.S., Nikitkina E.V., Musidray A.A., Petrova A.V., Mitrofanova O.V., Plemyashov K.V., Azovtseva A.I., Griffin D.K., Romanov M.N. Risk of sperm disorders and impaired fertility in frozen-thawed bull semen: a genome-wide association study. Animals, 2024, 14(2): 251 CrossRef
  23. Nikitkina E.V., Dementieva N.V., Shcherbakov Y.S., Atroshchenko M.M., Kudinov A.A., Samoylov O.I., Pozovnikova M.V., Dysin A.P., Krutikova A.A., Musidray A.A., Mitrofanova O.V., Plemyashov K.V., Griffin D.K., Romanov, M.N. Genome-wide association study for frozen-thawed sperm motility in stallions across various horse breeds. Animal Bioscience, 2022, 35(12): 1827-1838 CrossRef
  24. Dementeva N.V., Kudinov A.A., Mitrofanova O.V., Stanishevskaya O.I., Fedorova E.S., Romanov M.N. Genome-wide association study of reproductive traits in a gene pool breed of the Russian White chickens. Reproduction in Domestic Animals, 2018, 53(S2): 123-124 CrossRef
  25. Zhao Y., Zhang L., Wang L., Zhang J., Shen W., Ma Y., Ding C., Wu G. Identification and analysis of genes related to testicular size in 14-day-old piglets. Animals, 2024, 14(1): 172 CrossRef
  26. Große-Brinkhaus C., Storck L.C., Frieden L., Neuhoff C., Schellander K., Looft C., Tholen E. Genome-wide association analyses for boar taint components and testicular traits revealed regions having pleiotropic effects. BMCGenetics, 2015, 16: 36 CrossRef
  27. Bai M., Sun L., Zhao J., Xiang L., Cheng X., Li J., Jia C., Jiang H. Histological analysis and identification of spermatogenesis-related genes in 2-, 6-, and 12-month-old sheep testes. The Science of Nature, 2017, 104: 84 CrossRef
  28. Xu H., Sun W., Pei S., Li W., Li F., Yue X. Identification of key genes related to postnatal testicular development based on transcriptomic data of testis in Hu sheep. Frontiers in Genetics, 2021, 12: 773695 CrossRef
  29. Zou Y., Chen X., Tian X., Guo W., Ruan Y., Tang W., Fu K., Ji T. Transcriptomic analysis of the developing testis and spermatogenesis in Qianbei Ma goats. Genes, 2023, 14(7): 1334 CrossRef
  30. Zhang H., Na W., Zhang H.-L., Wang N., Du Z.-Q., Wang S.-Z., Wang Z.-P., Zhang Z., Li H. TCF21 is related to testis growth and development in broiler chickens. Genetics Selection Evolution,2017, 49(1): 25 CrossRef
  31. Ding J., Tang D., Zhang Y., Gao X., Du C., Shen W., Jin S., Zhu J. Transcriptomes of testes at different developmental stages in the Opsariichthys bidens predict key genes for testis development and spermatogenesis. Marine Biotechnology, 2023, 25: 123-139 CrossRef
  32. German N.Yu., Volkova N.A., Larionova P.V., Vetokh A.N., Volkova L.A., Sermyagin A.A., Shakhin A.V., Anshakov D.V., Fisinin V.I., Zinovieva N.A. Genome-wide association studies of growth dynamics in quails Coturnix coturnix.Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2022, 57(6): 1136-1146 CrossRef
  33. Volkova N.A., German N.Yu., Larionova P.V., Vetokh A.N., Romanov M.N., Zinovieva N.A. Identification of SNPs and candidate genes associated with abdominal fat deposition in quails (Coturnix japonica). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(6): 1079-1087 CrossRef
  34. Abdelmanova A.S., Dotsev A.V., Romanov M.N., Stanishevskaya O.I., Gladyr E.A., Rodionov A.N., Vetokh A.N., Volkova N.A., Fedorova E.S., Gusev I.V., Griffin D.K., Brem G., Zinovieva N.A. Unveiling comparative genomic trajectories of selection and key candidate genes in egg-type Russian White and meat-type White Cornish chickens. Biology, 2021, 10(9): 876 CrossRef
  35. Romanov M.N., Shakhin A.V., Abdelmanova A.S., Volkova N.A., Efimov D.N., Fisinin V.I., Korshunova L.G., Anshakov D.V., Dotsev A.V., Griffin D.K., Zinovieva N.A. Dissecting selective signatures and candidate genes in grandparent lines subject to high selection pressure for broiler production and in a local Russian chicken breed of Ushanka. Genes, 2024, 15(4): 524 CrossRef
  36. Luo W., Huang X., Li J., Gu L. Investigating the genetic determination of duration-of-fertility trait in breeding hens. Scientific Reports, 2024, 14: 14819 CrossRef
  37. Rostamzadeh Mahdabi E., Esmailizadeh A., Ayatollahi Mehrgardi A., Asadi Fozi M. A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes. Genetics Selection Evolution, 2021, 53: 72 CrossRef
  38. Chu J., Ma Y., Song H., Zhao Q., Wei X., Yan Y., Fan S., Zhou B., Li S., Mou C. The genomic characteristics affect phenotypic diversity from the perspective of genetic improvement of economic traits. iScience, 2023, 26(4): 106426 CrossRef
  39. Niu X., Tyasi T.L., Qin N., Liu D., Zhu H., Chen X., Zhang F., Yuan S., Xu R. Sequence variations in estrogen receptor 1 and 2 genes and their association with egg production traits in Chinese Dagu chickens. The Journal of Veterinary Medical Science, 2017, 79: 927-934 CrossRef
  40. Zhang Q., Zhu F., Liu L., Zheng C.W., De Wang H., Hou Z.C., Ning Z.H. Integrating transcriptome and genome re-sequencing data to identify key genes and mutations affecting chicken eggshell qualities. PLoS ONE, 2015, 10: e0125890 CrossRef
  41. Wang X.G., Shen M.M., Lu J., Dou T.C., Ma M., Guo J., Wang K.H., Qu L. Genome-wide association analysis of eggshell color of an F2 generation population reveals candidate genes in chickens. Animal, 2024, 18(6): 101167 CrossRef
  42. Wang J., Liu Z., Cao D., Liu J., Li F., Han H., Han H., Lei Q., Liu W., Li D., Wang J., Zhou Y. Elucidation of the genetic determination of clutch traits in Chinese local chickens of the Laiwu Black breed. BMC Genomics, 2023, 24(1): 686 CrossRef
  43. Zhang T., Chen L., Han K., Zhang X., Zhang G., Dai G., Wang J., Xie K. Transcriptome analysis of ovary in relatively greater and lesser egg producing Jinghai Yellow Chicken. Animal Reproduction Science, 2019, 208: 106114 CrossRef
  44. Shah T.M., Patel N.V., Patel A.B., Upadhyay M.R., Mohapatra A., Singh K.M., Deshpande S.D., Joshi C.G. A genome-wide approach to screen for genetic variants in broilers (Gallus gallus) with divergent feed conversion ratio. Molecular Genetics and Genomics, 2016, 291: 1715-1725 CrossRef
  45. Tarekegn G.M., Strandberg E., Andonov S., Båge R., Ask-Gullstrand P., Rius-Vilarrasa E., Christensen J.M, Berglund B. Single-step genome-wide association study uncovers known and novel candidate genomic regions for endocrine and classical fertility traits in Swedish Red and Holstein dairy cows. Livestock Science, 2021, 253: 104731 CrossRef
  46. Suwannasing R., Duangjinda M., Boonkum W., Taharnklaew R., Tuangsithtanon K. The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study. Asian-Australasian Journal of Animal Sciences, 2018, 31(12): 1852-1862 CrossRef
  47. Wu Y., Pan A.L., Pi J.S., Pu Y.J., Du J.P., Liang Z.H., Shen J. SNP analysis reveals estrogen receptor 1 (ESR1) gene variants associated with laying traits in quails. Archives Animal Breeding, 2015, 58(2): 441-444 CrossRef
  48. Ouyang Q., Xie H., Hu S., Lan C., Ran M., Hu J., He H., Li L., Liu H., Qu H., Wang J. Comparative genomics study between high and low laying goose breeds reveals the important role of ESR1 in laying ability. Journal of Integrative Agriculture, 2023 CrossRef
  49. Lázaro S.F., Tonhati H., Oliveira H.R., Silva A.A., Nascimento A.V., Santos D.J.A., Stefani G., Brito L.F. Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models. Journal of Dairy Science, 2021, 104(5): 5768-5793 CrossRef
  50. Venturini G.C., Cardoso D.F., Baldi F., Freitas A.C., Aspilcuetaborquis R.R., Santos D.J., Camargo G.M., Stafuzza N.B., Albuquerque L.G., Tonhati H. Association between single-nucleotide polymorphisms and milk production traits in buffalo. Genetics and Molecular Research, 2014, 13: 10256-10268 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)