PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.4.721eng

UDC: 636.4:636.082

 

BOAR SPERM: FEATURES AND STORAGE METHODS (review)

M.A. Maksimova, K.V. Plemyashov, E.A. Korochkina

St. Petersburg State University of Veterinary Medicine, 5, ul. Chernigovskaya, St. Petersburg, 196084 Russia, e-mail mariaandreevna72@gmail.com, kirill060674@mail.ru, e.kora@mail.ru (✉ corresponding author)

ORCID:
Maksimova M.A. orcid.org/0009-0006-6710-3065
Korochkina E.A. orcid.org/0000-0002-7011-4594
Plemyashov K.V. orcid.org/0000-0002-3658-5886

Final revision received April 25, 2024

Accepted May 18, 2024

 

Pig farming is a major and continuously evolving agricultural sector due to the high fecundity, meat productivity, early maturity, and omnivorous nature of the animals. The development of swine husbandry is facilitated in part by artificial insemination which constitutes up to 90 % in most countries (D. Waberski et al., 2019). Artificial insemination contributes to the improvement of fertility, genetic pool and productivity of animals (R.V. Knox, 2016). Therefore, the use of boars with high fertility and cryoresistance of sperm is pertinent. Boar sperm possesses several species-specific characteristics. The average ejaculate volume in boars is 100-150 ml which is due to more developed accessory sex glands compared to other animals (S.G. Smolin, 2023). Ejaculate volume depends on breed, age of the animals, and season. Additionally, there is a relationship between ejaculate volume and sperm morphology. Spermatozoa in smaller ejaculates have longer and wider heads (K. Górski et al., 2017). A significant feature of boar sperm affecting storage is its low resistance to freezing. The low cryoresistance of boar sperm is attributed to high phospholipid concentration and low cholesterol concentration in the sperm plasma membrane (Y. Wang et al., 2021). During cryopreservation, spermatozoa undergo osmotic stress and dehydration, accumulating reactive oxygen and nitrogen species, leading to a sharp decrease in motility and viability after thawing. Therefore, boar sperm is optimally stored at a temperature of 17 to 25 °C for no more than 120 hours (H. Henning et al., 2022). When choosing a protocol (with or without semen fraction), it is necessary to take into account the composition of the semen, as well as the centrifugation and freezing mode. Sperm centrifuged at 2400 rpm for 3 minutes is damaged to a lesser extent that increased its cold resistance (K. Wasilewska et al., 2017). The use of extenders such as Androhep (Minitube, Germany) or Cryoguard (Minitube, Germany) improves the preservation of spermatozoa during cryopreservation (A. Dziekońska et al., 2015; De A. Andrade et al., 2022). To increase sperm viability, pentaisomaltose (O. Simonik et al., 2022), trehalose (R. Athurupana et al., 2015), apegenin (Y. Pei et al., 2018), resveratrol are added (K. Kaeoket et al., 2023). The cooling time before cryopreservation ensures better sperm preservation. The established protocols of sperm cooling before freezing are 2-4 hours at 5 °C (J. Shäfer et al., 2017) and 24 hours at 17 °C (M.A. Torres et al., 2019). The success of cryopreservation is largely determined by the freezing mode which can be manual or automated. The optimal protocols for manual freezing are to place sperm straws horizontally 4 cm above the liquid nitrogen level for 20 minutes (V. Khophloiklang et al., 2023), followed by immersion in liquid nitrogen, or at 2 and 5 cm for 15 and 20 minutes, respectively (S. Bang et al., 2022; S.L. Soares et al., 2020). The use of automatic sperm freezing reduces the level of free radicals and lipid peroxidation, which leads to a better preservation of cell motility after thawing. The optimal protocol for automatic sperm freezing, according to research, is to lower the temperature from 5 to -5 °C, and then -39.80 °С·min-1 for 113 seconds. The sperm is then held at -80 °C for 30 seconds and then frozen at -60 °C for 70 seconds to eventually drop to -150 °C. Current protocols for thawing boar semen are as follows: 60 °C for 8 s (Z. Zhu et al., 2022), 70 °C for 8 s (R.A. Gonzales-Castro et al., 2022), 37.5 °C for 25 s (R. Osman et al., 2023). To reduce levels of apoptosis and reactive oxygen species, it is recommended to store thawed spermatozoa at 17 °C (J. Li et al., 2023). Thus, given the species characteristics of boar sperm, strict adherence to protocols for pre-preparation and deep freezing of sperm is necessary. A proper protocol of thawing, followed by a short-term storage will also increase the effectiveness of artificial insemination with cryopreserved sperm.

Keywords: boars, sperm, cryopreservation, sperm storage.

 

REFERENCES

  1. Maes D.G.D., Dewulf J., Piñeiro C., Edwards S.A., Kyriazakis I. A critical reflection on intensive pork production with an emphasis on animal health and welfare. Journal of Animal Science, 2019, 98(Suppl_1): S15-S26 CrossRef
  2. Polkovnikova V.I. Svinovodstvo. [Pig breeding.]. Perm’, 2022 (in Russ.).
  3. Li P.-H., Ma X., Zhang Y.-Q., Zhang Q., Huang R.-H. Progress in the physiological and genetic mechanisms underlying the high prolificacy of the Erhualian pig. Yi Chuan, 2017, 39(11): 1016-1024 CrossRef
  4. Bazhov G.M. Intensivnoe svinovodstvo [Intensive pig farming]. St. Petersburg, 2022 (in Russ.).
  5. Brunberg E.I., Rodenburg T.B., Rydhmer L., Kjaer J.B., Jensen P., Keeling L.J. Omnivores going astray: a review and new synthesis of abnormal behavior in pigs and laying hens. Frontiers in Veterinary Science, 2016, 3: 57 CrossRef
  6. Komlatskiy V.I., Velichko L.F. Selektsiya sviney [Pig breeding: tutorial]. Krasnodar, 2019 (in Russ.).
  7. Paixão G., Esteves A., Carolino N., Dos Anjos Pires M., Payan-Carreira R. Evaluation of gonadal macroscopic and microscopic morphometry reveals precocious puberty in Bísaro pig. Reproduction in Domestic Animals, 2020, 55(12): 1706-1713 CrossRef
  8. Jang A., Kim H.-J., Kim D., Kim J., Lee S.-K. Effects of doneness on the microbial, nutritional, and quality properties of pork steak of different thicknesses. Food Science of Animal Resources, 2019, 39(5): 756-787 CrossRef
  9. Nikitina E.S., Kozlova E.I. Sbornik nauchnykh trudov 6-y Mezhdunarodnoy molodezhnoy nauchnoy konferentsii «Yunost’ i znanie – garantiya uspekha-2019» [Proc. 6 Int. Youth Scientific Conference «Youth and Knowledge – a Guarantee of Success-2019»]. Kursk, 2019, vyp. 4: 200-207 (in Russ.).
  10. Kuz’mina T.N., Kuz’min V.N. Tekhnika i tekhnologii v zhivotnovodstve, 2022, 3(47): 53-58 (in Russ.).
  11. Plaksin I.E., Plaksin S.I., Trifanov A.V. AgroEkoInzheneriya, 2022, 1(110): 155-168 (in Russ.).
  12. Waberski D., Riesenbeck A., Schulze M., Weitze K.F., Johnson L. Application of preserved boar semen for artificial insemination: past, present and future challenges. Theriogenology, 2019, 137: 2-7 CrossRef
  13. Borodulina I.V. Sel’skokhozyaystvennyy zhurnal, 2016, 9 (in Russ.).
  14. Nekrasova L.V., Velichko V.A. Sbornik statey po materialam 78-y nauchno-prakticheskoy konferentsii «Nauchnoe obespechenie agropromyshlennogo kompleksa» [Proc. 78 Conf. «Scientific support for the agro-industrial complex»]. Krasnodar, 2023: 822-824 (in Russ.).
  15. Knox R.V. Artificial insemination in pigs today. Theriogenology, 2016, 85(1): 83-93 CrossRef
  16. Mellagi A.P.G., Will K.J., Quirino M., Bustamante-Filho I.C., da R. Ulguim R., Bortolozzo F.P. Update on artificial insemination: semen, techniques, and sow fertility. Molecular Reproduction and Development, 2023, 90(7): 601-611 CrossRef
  17. Yánez-Ortiz I., Catalán J., Rodríguez-Gil J.E., Miró J., Yeste M. Advances in sperm cryopreservation in farm animals: cattle, horse, pig and sheep. Animal Reproduction Science, 2022, 246: 106904 CrossRef
  18. Jochems R., Gaustad A.H., Zak L.J., Grindflek E., Zeremichael T.T., Oskam I.C., Myromslien F.D., Kommisrud E., Krogenæs A.K. Effect of two ‘progressively motile sperm-oocyte’ ratios on porcine in vitro fertilization and embryo development. Zygote, 2022, 30(4): 543-549 CrossRef
  19. Jin H., Choi W., Matsumura K., Hyon S.H., Gen Y., Hayashi M., Kawabata T., Ijiri M., Miyoshi K. Cryopreservation of pig spermatozoa using carboxylated poly-L-lysine as cryoprotectant. Journal of Reproduction and Development, 2022, 68(5): 312-317 CrossRef
  20. Fraser L., Zasiadczyk Ł., Strzeżek J., Strzeżek R., Karpiesiuk K. Freezability and fertility of frozen-thawed boar semen supplemented with ostrich egg yolk lipoproteins. Polish Journal of Veterinary Sciences, 21(2): 255-263 CrossRef
  21. Kalwar Q., Chu M., Korejo R.A., Soomro H., Yan P. Cryopreservation of yak semen: a comprehensive review. Animals, 2022, 12(24): 3451 CrossRef
  22. Park Y.-J., Kwon K.-J., Song W.-H., Pang W.-K., Ryu D.-Y., Saidur Rahman M., Pang M.-G. New technique of sex preselection for increasing female ratio in boar sperm model. Reproduction in Domestic Animals, 2021, 56(2): 333-341 CrossRef
  23. Park Y.-J., Shin D.-H., Pang W.-K., Ryu D.-Y., Rahman M.S., Adegoke E.O., Pang M.-G. Short-term storage of semen samples in acidic extender increases the proportion of females in pigs. BMC Veterinary Research, 2021, 17(1): 362 CrossRef
  24. Staub C., Johnson L. Review: Spermatogenesis in the bull. Animal, 2018, 12(Suppl. 1): 27-35 CrossRef
  25. Polyantsev N.I., Afanas’ev A.I. Akusherstvo, ginekologiya i biotekhnika razmnozheniya zhivotnykh [Obstetrics, gynecology and biotechnics of animal reproduction]. St. Petersburg, 2022 (in Russ.).
  26. Barrachina F., Battistone M.A., Castillo J., Mallofré C., Jodar M., Breton S., Oliva R. Sperm acquire epididymis-derived proteins through epididymosomes. Human Reproduction, 2022, 37(4): 651-668 CrossRef
  27. Sullivan R. Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian Journal of Andrology, 2015, 17(5): 726-729 CrossRef
  28. Dyul’ger G.P. Fiziologiya i biotekhnika razmnozheniya zhivotnykh [Physiology and biotechnics of animal reproduction]. St. Petersburg, 2023 (in Russ.).
  29. Skripkin V.S., Pisarenko N.A., Belugin N.V., Kvochko A.N., Medvedeva E.P. Anatomo-fiziologicheskie osobennosti reproduktivnykh organov zhivotnykh [Anatomical and physiological features of the reproductive organs of animals]. Stavropol’, 2023 (in Russ.).
  30. Smolin S.G. Fiziologiya i etologiya zhivotnykh  [Animal physiology and ethology]. St. Petersburg, 2023 (in Russ.).
  31. Zasiadczyk L., Fraser L., Kordan W., Wasilewska K. Individual and seasonal variations in the quality of fractionated boar ejaculates. Theriogenology, 2015, 83(8): 1287-1303 CrossRef
  32. Fraser L., Strzeżek J., Filipowicz K., Mogielnicka-Brzozowska M., Zasiadczyk L. Age and seasonal-dependent variations in the biochemical composition of boar semen. Theriogenology, 2016, 86(3): 806-816 CrossRef
  33. Guseva T.Yu., Kazakov D.S. Biotekhnologiya v zhivotnovodstve [Biotechnology in animal husbandry]. Karavaevo, 2021 (in Russ.).
  34. Górski K., Kondracki S., Wysokińska A. Ejaculate traits and sperm morphology depending on ejaculate volume in Duroc boars. Journal of Veterinary Research, 2017, 61(1): 121-125 CrossRef
  35. Barquero V., Roldan E.R.S., Soler C., Yániz J.L., Camacho M., Valverde A. Predictive capacity of boar sperm morphometry and morphometric sub-populations on reproductive success after artificial insemination. Animals, 2021, 11(4): 920 CrossRef
  36. Czubaszek M., Andraszek K., Banaszewska D., Walczak-Jędrzejowska R. The effect of the staining technique on morphological and morphometric parameters of boar sperm. PLoS ONE, 2019, 14(3): e0214243 CrossRef
  37. Szablicka D., Wysokińska A., Pawlak A., Roman K. Morphometry of boar spermatozoa in semen stored at 17 °C—the influence of the staining technique. Animals, 2022, 12(15): 1888 CrossRef
  38. Kondracki S.T., Wysokińska A., Kania M., Górski K. Application of two staining methods for sperm morphometric evaluation in domestic pigs. Journal of Veterinary Research, 2017, 61(3): 345-349 CrossRef
  39. Farias L.B., da Cunha Barreto-Vianna A.R., de Mello M.D., Dos Santos A.L., da Fonte Ramos C., Fontoura P. Comparison of diff-quick and spermac staining methods for sperm morphology evaluation. Journal of Reproduction & Infertility, 2023, 24(3): 166-170 CrossRef
  40. Iglesias-Reyes A., Guevara-González J., López-Díaz O., Guerra-Liera J., Huerta-Crispín R., Sánchez-Sánchez R., Córdova-Izquierdo A. Evaluation of the modified Giemsa staining technique in the acrosomal evaluation of mammalian sperm. Abanicoveterinario, 2019, 9 CrossRef
  41. Górski K., Kondracki S., Iwanina M., Kordan W., Fraser L. Effects of breed and ejaculate volume on sperm morphology and semen parameters of boars. Animal Science Journal, 2021, 92(1): e13629 CrossRef
  42. Zaychenko N., Dubalar’ A., Fedorov N. Materialy konferentsii «Integratsiya cherez issledovaniya i innovatsii» [Proc. Conf. «Integration through research and innovation»]. Moldova, 2017: 107-111 (in Russ.).
  43. Wang Y., Zhou Y., Ali M.A., Zhang J., Wang W., Huang Y., Luo B., Zhang H., Qin Z., Zhang Y., Zhang M., Zhou G., Zeng C. Comparative analysis of piRNA profiles helps to elucidate cryoinjury between giant panda and boar sperm during cryopreservation. Frontiers in Veterinary Science, 2021, 8: 635013 CrossRef
  44. Sieme H., Oldenhof H., Wolkers W.F. Sperm membrane behaviour during cooling and cryopreservation. Reproduction in Domestic Animals,2015, 50(S3): 20-26 CrossRef
  45. Ezzati M., Shanehbandi D., Hamdi K., Rahbar S., Pashaiasl M. Influence of cryopreservation on structure and function of mammalian spermatozoa: an overview. Cell and Tissue Banking, 2020, 21(1): 1-15 CrossRef
  46. Pezo F., Yeste M., Zambrano F., Uribe P., Risopatrón J., Sánchez R. Antioxidants and their effect on the oxidative/nitrosative stress of frozen-thawed boar sperm. Cryobiology, 2021, 98: 5-11 CrossRef
  47. Peris-Frau P., Soler A.J., Iniesta-Cuerda M., Martín-Maestro A., Sánchez-Ajofrín I., Medina-Chávez D.A., Fernández-Santos M.R., García-Álvarez O., Maroto-Morales A., Montoro V., Garde J.J. Sperm cryodamage in ruminants: understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. Int. J. Mol. Sci., 2020, 21(8): 2781 CrossRef
  48. He B., Guo H., Gong Y., Zhao R. Lipopolysaccharide-induced mitochondrial dysfunction in boar sperm is mediated by activation of oxidative phosphorylation. Theriogenology, 2017, 87: 1-8 CrossRef
  49. Li R., Wu X., Zhu Z., Lv Y., Zheng Y., Lu H., Zhou K., Wu D., Zeng W., Dong W., Zhang T. Polyamines protect boar sperm from oxidative stress in vitro. Journal of Animal Science, 2022, 100(4): skac069 CrossRef
  50. Li J., Wang H., Guo M., Li T., Zhang H., Zhang Q., Wang Q., Song Y., Feng H., Wei G. Exogenous spermidine effectively improves the quality of cryopreserved boar sperm. Animal Science Journal, 2023, 94(1): e13859 CrossRef
  51. Kombarova N.A., Eskin G.V., Abilov A.I., Kornienko-Zhilyaev Yu.A., Vinogradov V.N., Galankina A.A. Optimal mode to thaw cryopreserved sperm of Holstein bull sires. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(6): 1219-1229 CrossRef
  52. Tkachev A.V. Veterinariya i kormlenie, 2019, 4: 25-26 (in Russ.).
  53. Li J., Parrilla I., Ortega M.D., Martinez E.A., Rodriguez-Martinez H., Roca J. Post-thaw boar sperm motility is affected by prolonged storage of sperm in liquid nitrogen. A retrospective study. Cryobiology, 2018, 80: 119-125 CrossRef
  54. Chrenek P., Spaleková E., Olexikova L., Makarevich A., Kubovicova E. Quality of Pinzgau bull spermatozoa following different periods of cryostorage. Zygote, 2017, 25(2): 215-221 CrossRef
  55. Zhang Y., Yuan W., Liu Y., Liu Y., Liang H., Xu Q., Liu Z., Weng X. Plasma membrane lipid composition and metabolomics analysis of Yorkshire boar sperms with high and low resistance to cryopreservation. Theriogenology, 2023, 206: 28-39 CrossRef
  56. Shan S., Xu F., Hirschfeld M., Brenig B. Sperm lipid markers of male fertility in mammals. International Journal of Molecular Sciences, 2021, 22(16): 8767 CrossRef
  57. Gautier C., Aurich C. “Fine feathers make fine birds” — The mammalian sperm plasma membrane lipid composition and effects on assisted reproduction. Animal Reproduction Science, 2022, 246: 106884 CrossRef
  58. de las Mercedes Carro M., Peñalva D.A., Antollini S.S., Hozbor F.A., Buschiazzo J. Cholesterol and desmosterol incorporation into ram sperm membrane before cryopreservation: effects on membrane biophysical properties and sperm quality. Biochimica et Biophysica Acta (BBA) — Biomembranes, 2020, 1862(9): 183357 CrossRef
  59. Guimarães D.B., Barros T.B., van Tilburg M.F., Martins J.A.M., Moura A.A., Moreno F.B., Monteiro-Moreira A.C., Moreira R.A., Toniolli R. Sperm membrane proteins associated with the boar semen cryopreservation. Animal Reproduction Science, 2017, 183: 27-38 CrossRef
  60. Henning H., Nguyen Q.T, Wallner U., Waberski D. Temperature limits for storage of extended boar semen from the perspective of the sperm's energy status. Frontiers in Veterinary Science, 2022, 9: 953021 CrossRef
  61. Yeste M. Recent advances in boar sperm cryopreservation: state of the art and current perspectives. Reproduction in Domestic Animals, 2015, 50(S2): 71-79 CrossRef
  62. Ibănescu I., Leiding C., Bollwein H. Cluster analysis reveals seasonal variation of sperm subpopulations in extended boar semen. Journal of Reproduction and Development, 2018, 64(1): 33-39 CrossRef
  63. Martín-Hidalgo D., Macías-García B., García-Marín L.J., Bragado M.J., González-Fernández L. Boar spermatozoa proteomic profile varies in sperm collected during the summer and winter. Animal Reproduction Science, 2020, 219: 106513 CrossRef
  64. Parrilla I., Perez-Patiño C., Li J., Barranco I., Padilla L., Rodriguez-Martinez H., Martinez E.A., Roca J. Boar semen proteomics and sperm preservation. Theriogenology, 2019, 137: 23-29 CrossRef
  65. Shiomi H.H., Pinho R.O., Lima D., Siqueira J.B., Santos M., Costa E.V., Lopes P.S., Guimarães S., Guimarães J.D. Cryopreservation of Piau-breed wild boar sperm: assessment of cooling curves and centrifugation regimes. Reproduction in Domestic Animals, 2015, 50(4): 545-553 CrossRef
  66. Chakravarty H., Sinha S., Borpujari D., Deka B.C., Biswas R.K., Dutta M., Borah B. Effect of centrifugation regime on cryopreservation of Beetal buck semen. Indian Journal of Animal Research, 2023, 57(2): 178-183 CrossRef
  67. Nongbua T., Johannisson A., Edman A., Morrell J.M. Effects of single layer centrifugation (SLC) on bull spermatozoa prior to freezing on post-thaw semen characteristics. Reproduction in Domestic Animals, 2017, 52(4): 596-602 CrossRef
  68. Andrade A.F.C., Knox R.V., Torres M.A., Pavaneli A.P.P. What is the relevance of seminal plasma from a functional and preservation perspective? Animal Reproduction Science, 2022, 246: 106946 CrossRef
  69. Fraser L., Wasilewska-Sakowska K., Zasiadczyk Ł., Piątkowska E., Karpiesiuk K. Fractionated seminal plasma of boar ejaculates analyzed by LC-MS/MS: its effects on post-thaw semen quality. Genes, 2021, 12(10): 1574 CrossRef
  70. Luongo C., Llamas-López P.J., Hernández-Caravaca I., Matás C., García-Vázquez F.A. Should all fractions of the boar ejaculate be prepared for insemination rather than using the sperm rich only? Biology, 2022, 11(2): 210 CrossRef
  71. Pavaneli A.P.P., Passarelli M.D.S., de Freitas F.V., Ravagnani G.M., Torres M.A., Martins S.M.M.K., Yeste M., de Andrade A.F.C. Removal of seminal plasma prior to liquid storage of boar spermatozoa: A practice that can improve their fertilizing ability. Theriogenology, 2019, 125: 79-86 CrossRef
  72. Li J., Roca J., Pérez-Patiño C., Barranco I., Martinez E.A., Rodriguez-Martinez H., Parrilla I. Is boar sperm freezability more intrinsically linked to spermatozoa than to the surrounding seminal plasma? Animal Reproduction Science, 2018, 195: 30-37 CrossRef
  73. Li J., Barranco I., Tvarijonaviciute A., Molina M.F., Martinez E.A., Rodriguez-Martinez H., Parrilla I., Roca J. Seminal plasma antioxidants are directly involved in boar sperm cryotolerance. Theriogenology, 2018, 107: 27-35 CrossRef
  74. Wasilewska-Sakowska K., Zasiadczyk Ł., Fraser L., Strzeżek J., Karpiesiuk K. Effect of post-thaw supplementation of fractionated seminal plasma on survival of boar spermatozoa. Polish Journal of Veterinary Sciences, 2019, 22(3): 617-625 CrossRef
  75. Wasilewska K., Fraser L. Boar variability in sperm cryo-tolerance after cooling of semen in different long-term extenders at various temperatures. Animal Reproduction Science, 2017, 185: 161-173 CrossRef
  76. Avdeenko V.S., Fedotov S.V. Veterinarnaya andrologiya [Veterinary andrology: a textbook]. St. Petersburg, 2022 (in Russ.).
  77. Bogdanovich D.M. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Perspektivy ustoychivogo razvitiya agrarno-pishchevykh sistem na osnove ratsional’nogo ispol’zovaniya regional’nykh geneticheskikh i syr’evykh resursov» [Proc. Int. Conf. «Prospects for sustainable development of agro-food systems based on rational use of regional genetic and raw material resources»]. Volgograd, 2023: 14-19 (in Russ.).
  78. Subbot O.I. Zootekhnicheskaya nauka Belarusi, 2021, 56(1): 88-94 (in Russ.).
  79. Bogdanovich D.M., Glivanskaya O.I. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Aktual’nye napravleniya innovatsionnogo razvitiya zhivotnovodstva i sovremennykh tekhnologiy produktov pitaniya, meditsiny i tekhniki» [Proc. Int. Conf. «Current trends in innovative development of animal husbandry and modern technologies of food products, medicine and technology»]. Pos. Persianovskiy, 2017: 6-11 (in Russ.).
  80. De Andrade A., Grossfeld R., Knox R.V. In vitro effects of two different commercial freezing and thawing extenders on boar sperm quality. Animal Reproduction Science, 2022, 236: 106906 CrossRef
  81. Dziekońska A., Zasiadczyk Ł., Lecewicz M., Strzeżek R., Koziorowska-Gilun M., Fraser L., Mogielnicka-Brzozowska M., Kordan W. Effects of storage in different semen extenders on the pre-freezing and post-thawing quality of boar spermatozoa. Polish Journal of Veterinary Sciences, 2015, 18(4): 733-740 CrossRef
  82. Dong R., Luo L., Liu X., Yu G. Effects of riboflavin on boar sperm motility, sperm quality, enzyme activity and antioxidant status during cryopreservation. Veterinary Medicine and Science, 2022, 8(4): 1509-1518 CrossRef
  83. Simonik O., Bubenickova F., Tumova L., Frolikova M., Sur V.P., Beran J., Havlikova K., Hackerova L., Spevakova D., Komrskova K., Postlerova P. Boar sperm cryopreservation improvement using semen extender modification by dextran and pentaisomaltose. Animals, 2022, 12(7): 868 CrossRef
  84. Athurupana R., Takahashi D., Ioki S., Funahashi H. Trehalose in glycerol-free freezing extender enhances post-thaw survival of boar spermatozoa. Journal of Reproduction and Development, 2015, 61(3): 205-210 CrossRef
  85. Pei Y., Yang L., Wu L., He H., Geng G., Xu D., Chen H., Li Q. Combined effect of apigenin and ferulic acid on frozen-thawed boar sperm quality. Animal Science Journal, 2018, 89(7): 956-965 CrossRef
  86. Namula Z., Tanihara F., Wittayarat M., Hirata M., Nguyen N.T., Hirano T., Le Q.A., Nii M., Otoi T. Effects of Tris (hydroxymethyl) aminomethane on the quality of frozen-thawed boar spermatozoa. Acta Veterinaria Hungarica, 2019, 67(1): 106-114 CrossRef
  87. Kaeoket K., Chanapiwat P. The beneficial effect of resveratrol on the quality of frozen-thawed boar sperm. Animals, 2023, 13(18): 2829 CrossRef
  88. Wasilewska K., Zasiadczyk Ł., Fraser L., Mogielnicka-Brzozowska M., Kordan W. The benefits of cooling boar semen in long-term extenders prior to cryopreservation on sperm quality characteristics. Reproduction in Domestic Animals, 2016, 51(5): 781-788 CrossRef
  89. Torres M.A., Monteiro M.S., Passarelli M.S., Papa F.O., Dell'Aqua J.A. Jr., Alvarenga M.A., Martins S.M.M.K., de Andrade A.F.C. The ideal holding time for boar semen is 24 h at 17 °C prior to short-cryopreservation protocols. Cryobiology, 2019, 86: 58-64 CrossRef
  90. Schäfer J., Waberski D., Jung M., Schulze M. Impact of holding and equilibration time on post-thaw quality of shipped boar semen. Animal Reproduction Science, 2017, 187: 109-115 CrossRef
  91. da Silva Passarelli M., Pinoti Pavaneli A.P., Mouro Ravagnani G., Pasini Martins M., Pedrosa A.C., Massami Kitamura Martins S.M., de Alcântra Rocha N.R., Bittar Rigo V.H., Yasui G., Yeste M., de Andrade A.F.C. Effects of different equilibration times at 5 °C on boar sperm cryotolerance. Animal Reproduction Science, 2020, 219: 106547 CrossRef
  92. Khophloiklang V., Chanapiwat P., Aunpad R., Kaeoket K. Palm kernel meal protein hydrolysates enhance post-thawed boar sperm quality. Animals, 2023, 13(19): 3040 CrossRef
  93. Bang S., Tanga B.M., Fang X., Seong G., Saadeldin I.M., Qamar A.Y., Lee S., Kim K.J., Park Y.J., Nabeel A.H.T., Yu I.J., Cooray A., Lee K.P., Cho J. Cryopreservation of pig semen using a quercetin-supplemented freezing extender. Life, 2022, 12(8): 1155 CrossRef
  94. Soares S.L., Anciuti A.N., Dias L., Corcini C.D., Varela A.S. Jr., Komninou E.R., Tebaldi M.L., Marques M.G., Fonseca F.N., Lucia T. Jr. Safety assessment of poly(N-vinylcaprolactam) as a potential drug carrier in extenders for boar sperm cryopreservation. Toxicology in Vitro, 65: 104766 CrossRef
  95. Philippe M.G., Quirino M., Schuch M., Schultz C., Vieira A.D., Mondadori R.G., Lucia T.Jr., Moreira F., Peripolli V., Marques M.G., Bianchi I. Use of a one-step freezing protocol for boar sperm with distinct cryoprotectants. Animal Reproduction, 2024, 54(1) CrossRef
  96. Albal M.S., Aquilina M.C., Zak L.J., Ellis P.J., Griffin D.K. Successful recovery of motile and viable boar sperm after vitrification with different methods (pearls and mini straws) using sucrose as a cryoprotectant. Cryobiology, 2023, 113: 104583 CrossRef
  97. Pezo F., Zambrano F., Uribe P., de Andrade A.F.C., Sánchez R. Slow freezing of preserved boar sperm: comparison of conventional and automated techniques on post-thaw functional quality by a new combination of sperm function tests. Animals, 2023, 13(18): 2826 CrossRef
  98. Rocha L.G.P., Zangeronimo M.G., Murgas L.D.S., Oberlender G., Pereira L.J., Pereira B.A., Chaves B.R., Silva D.M. Evaluation of two different boar semen freezing protocols and their effects on semen quality after thawing. Animal Reproduction, 2015, 12(4): 871-875.
  99. Caamaño J.N., Tamargo C., Parrilla I., Martínez-Pastor F., Padilla L., Salman A., Fueyo C., Fernández Á., Merino M.J., Iglesias T., Merino M.J., Iglesias T., Hidalgo C.O. Post-thaw sperm quality and functionality in the autochthonous pig breed Gochu Asturcelta. Animals, 2021, 11(7): 1885 CrossRef
  100. Knox R.V., Ringwelski J.M., McNamara K.A., Aardsma M., Bojko M. The effect of extender, method of thawing, and duration of storage on in vitro fertility measures of frozen-thawed boar sperm. Theriogenology, 2015, 84(3): 407-412 CrossRef
  101. Thema M.A., Mphaphathi M.L., Ledwaba M.R., Nedambale T.L. Sperm cryopreservation in Windsnyer boars; principles, technique, and updated outcomes. Animal Reproduction, 2023, 20(3): e20220100 CrossRef
  102. Tomás-Almenar C., de Mercado E. Optimization of the thawing protocol for Iberian boar sperm. Animals, 2022, 12(19): 2600 CrossRef
  103. Zhu Z., Zhang W., Li R., Zeng W. Reducing the glucose level in pre-treatment solution improves post-thaw boar sperm quality. Frontiers in Veterinary Science, 2022, 9 CrossRef
  104. Gonzalez-Castro R.A., Peña F.J., Herickhoff L.A. Validation of a new multiparametric protocol to assess viability, acrosome integrity and mitochondrial activity in cooled and frozen thawed boar spermatozoa. Clinical Cytometry,102(5): 400-408 CrossRef
  105. Osman R., Lee S., Almubarak A., Han J.-I., Yu I.-J., Jeon Y. Antioxidant effects of myo-inositol improve the function and fertility of cryopreserved boar semen. Antioxidants, 2023, 12(9): 1673 CrossRef
  106. Ledwaba M.R., Mphaphathi M.L., Thema M.A., Pilane C.M., Nedambale T.L. Investigation of the efficacy of dithiothreitol and glutathione on in vitro fertilization of cryopreserved large white boar semen. Animals, 2022, 12(9): 1137 CrossRef
  107. Fernández-Gago R., Álvarez-Rodríguez M., Alonso M.E., González J.R., Alegre B., Domínguez J.C., Martínez-Pastor F. Thawing boar semen in the presence of seminal plasma improves motility, modifies subpopulation patterns and reduces chromatin alterations. Reproduction, Fertility and Development, 2017, 29(8): 1576-1584 CrossRef
  108. Li J., Li J., Wang S., Ju H., Chen S., Basioura A., Ferreira-Dias G., Liu Z., Zhu J. Post-thaw storage temperature influenced boar sperm quality and lifespan through apoptosis and lipid peroxidation. Animals, 2023, 14(1): 87 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)