doi: 10.15389/agrobiology.2024.4.587eng
UDC: 636.38:636.082:577.21
Acknowledgements:
Funded by the Russian Science Foundation, grant No. 24-46-02012, https://rscf.ru/project/24-46-02012/.
GENOMIC STUDIES IN DOMESTIC GOATS (Capra hircus L.): CURRENT ADVANCES AND PROSPECTS (review)
O.A. Koshkina1, Т.Е. Deniskova1, 2 ✉, M.N. Romanov1, 3, 4,
N.А. Zinovieva1
1Ernst Federal Research Center for Animal Husbandry,60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail olechka1808@list.ru, horarka@yandex.ru (✉ corresponding author), m.romanov@kent.ac.uk, n_zinovieva@mail.ru;
2Basic Department of Genetic Technologies in livestock Farming, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, ul. Akademika Skryabina, Moscow, 109472 Russia;
3School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NZ, UK;
4Animal Genomics and Bioresource Research Unit, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
ORCID:
Koshkina O.A. orcid.org/0000-0003-4830-6626
Romanov M.N. orcid.org/0000-0003-3584-4644
Deniskova T.E. orcid.org/0000-0002-5809-1262
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Final revision received October 5, 2023
Accepted November 3, 2023
The domestic goat (Capra hircus) is a versatile small ruminant species spread on all continents, whose genomic features are becoming the subject of study by research teams from all over the world (A.M.A.M. Zonaed Siddiki et al., 2020; M.I. Selionova et al., 2021). The goal of this review is to elucidate the results of recent genomic studies on domestic goats using DNA chips and whole genome sequencing (WGS) analysis, and to compile a list of WGS-identified candidate genes associated with economically significant and adaption traits. This review summarizes and analyzes the results of WGS studies from 2020 to 2024. A list of candidate genes identified using WGS and associated with economically important and adaptive traits in goats is presented. An analysis of the methodological and bioinformatic approaches used to study WGS of domestic goats is executed. Using DNA chips, genetic relationships between different goat breeds and populations were established (T.E. Deniskova et al., 2021; V. Mukhina et al., 2022; A. Manunza et al., 2023), their genetic diversity was assessed (B.A. Vlaic et al., 2024; G. Chessari et al., 2024), and introgression from wild species of the genus Capra was studied (H. Asadollahpour Nanaei et al., 2023; N. Pogorevc et al., 2024). The decline in the WGS costs (B. Gu et al., 2022) has boosted an increase in the number of WGSs generated in goats (S. Belay et al., 2024). Genes under convergent selection pressure in sheep and goats have been identified, including DGKB, FAM155A, GRM5 (J. Yang et al., 2024) and CHST11 (L. Tao et al., 2021). An increase in the copy number of the GBP1 gene has been shown to be associated with immune resistance and prolificacy (R.Q. Zhang et al., 2019; R. Di Gerlando et al., 2020; M. Arslan, 2023). A large group of genes has been identified that affect milk productivity — ANPEP (J. Ni et al., 2024), ERBB4 (Z. Liu et al., 2024), NCAM2 (Z. Amiri Ghanatsaman et al., 2023) and GLYCAM1 (J. Xiong et al., 2023; H.B. Gebreselase et al., 2024), carcass quality — ACOX1, PGM1 (Z.X. An et al., 2024), ZNF385B and MYOT (H.B. Gebreselase et al., 2024), growth — HMGA2 and GJA3 (C. Li et al., 2024), live weight — STIM1 and ADM (R. Saif et al., 2021), and wool performance — CCNA2 (Y. Rong et al., 2024) and FGF5 (Q. Zhao et al., 2024). The TSHR and STC1 genes associated with domestication were discovered in Swiss breeds (H. Signer-Hasler et al., 2022). Genes involved in the formation of protective responses of the body to diseases and unfavorable climatic factors have been identified, including PIGR, TNFAIP2 (Q. Chen et al., 2021, 2022), KHDRBS2 (X. Sun et al., 2022), PPP2R3C (R. HuangFu et al., 2024), GNG2 (Z.X. An et al., 2024), HOXC12 and MAPK8IP2 (O. Sheriff et al., 2024). Genome-wide association studies (GWAS) based on WGS identified candidate genes associated with body size, including FNTB, CHURC1 (R. Yang et al., 2024), PSTPIP2 and SIPA1L (B. Gu et al., 2022), and milk production (H. Wu et al., 2023). To date, candidate genes have been identified on 21 of the 29 autosomes, with the largest number on CHI5 (9 genes), CHI18 (8 genes), CHI1, CHI3, CHI57 and CHI23 (7 genes on each chromosome). Thus, the compiled list of target candidate genes may be used in marker-assisted selection programs.
Keywords: Capra hircus, SNPs, DNA chips, whole genome sequences, candidate genes, GWAS, signatures of selection, copy number variation (CNV).
REFERENCES
- Amiri Ghanatsaman Z., Ayatolahi Mehrgardi A., Asadollahpour Nanaei H., Esmailizadeh A. Comparative genomic analysis uncovers candidate genes related with milk production and adaptive traits in goat breeds. Scientific Reports, 2023, 13(1): 8722 CrossRef
- Tarasova E.I., Frolov A.N., Lebedev S.V., Romanov M.N. Mat. 3-y Mezhd. nauch.-prakt. konf. «Molekulyarno-geneticheskie tekhnologii analiza ekspressii genov produktivnosti i ustoychivosti k zabolevaniyam zhivotnykh» [Proc. 3 Int. Conf. «Molecular genetic technologies for analyzing the expression of genes for productivity and resistance to animal diseases»]. Moscow, 2021: 450-454 (in Russ.).
- Selionova M.I., Trukhachev V.I., Aybazov A-M.M., Stolpovsky Yu.A., Zinovieva N.A. Genetic markers of goats (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(6): 1031-1048 CrossRef
- Zonaed Siddiki A.M.A.M., Miah G., Islam M.S., Kumkum M., Rumi M.H., Baten A., Hossain M.A. Goat genomic resources: the search for genes associated with its economic traits. International Journal of Genomics, 2020, 2020: 5940205 CrossRef
- International Goat Genome Consortium (IGGC). Goat Genome 2013. Available: http://www.goatgenome.org. No date.
- Tosser-Klopp G., Bardou P., Bouchez O., Cabau C., Crooijmans R., Dong Y., Donnadieu-Tonon C., Eggen A., Heuven H.C., Jamli S., Jiken A.J., Klopp C., Lawley C.T., McEwan J., Martin P., Moreno C.R., Mulsant P., Nabihoudine I., Pailhoux E., Palhière I., Rupp R., Sarry J., Sayre B.L., Tircazes A., Jun W., Wang W., Zhang W., International Goat Genome Consortium. Design and characterization of a 52K SNP chip for goats. PLoS ONE, 2014, 9(1): e86227 CrossRef
- Manunza A., Ramirez-Diaz J., Cozzi P., Lazzari B., Tosser-Klopp G., Servin B., Johansson A.M., Grøva L., Berg P., Våge D.I., Stella A. Genetic diversity and historical demography of underutilised goat breeds in North-Western Europe. Scientific Reports, 2023, 13(1): 20728 CrossRef
- Mukhina V., Svishcheva G., Voronkova V., Stolpovsky Y., Piskunov A. Genetic diversity, population structure and phylogeny of indigenous goats of Mongolia revealed by SNP genotyping. Animals (Basel), 2022, 12(3): 221 CrossRef
- Deniskova T.E., Dotsev A.V., Selionova M.I., Reyer H., Sölkner J., Fornara M.S., Aybazov A.M., Wimmers K., Brem G., Zinovieva N.A. SNP-based genotyping provides insight into the West Asian origin of Russian local goats. Frontiers in Genetics, 2021, 12: 708740 CrossRef
- Senczuk G., Macrì M., Di Civita M., Mastrangelo S., Del Rosario Fresno M., Capote J., Pilla F., Delgado J.V., Amills M., Martinez A. The demographic history and adaptation of Canarian goat breeds to environmental conditions through the use of genome-wide SNP data. Genetics, Selection, Evolution: GSE, 2024, 56(1): 2 CrossRef
- Monau P.I., Visser C., Muchadeyi F.C., Okpeku M., Nsoso S.J., Van Marle-Köster E. Population structure of indigenous southern African goats based on the Illumina Goat50K SNP panel. Tropical Animal Health and Production, 2020, 52(4): 1795-1802 CrossRef
- Vlaic B.A., Vlaic A., Russo I.R., Colli L., Bruford M.W., Odagiu A., Orozco-terWengel P., Climgen Consortium. Analysis of genetic diversity in Romanian Carpatina goats using SNP genotyping data. Animals (Basel), 2024, 14(4): 560 CrossRef
- Chessari G., Criscione A., Marletta D., Crepaldi P., Portolano B., Manunza A., Cesarani A., Biscarini F., Mastrangelo S. Characterization of heterozygosity-rich regions in Italian and worldwide goat breeds. Scientific Reports, 2024, 14(1): 3 CrossRef
- Pogorevc N., Dotsev A., Upadhyay M., Sandoval-Castellanos E., Hannemann E., Simčič M., Antoniou A., Papachristou D., Koutsouli P., Rahmatalla S., Brockmann G, Sölkner J., Burger P., Lymberakis P., Poulakakis N., Bizelis I., Zinovieva N., Horvat S., Medugorac I. Whole-genome SNP genotyping unveils ancestral and recent introgression in wild and domestic goats. Molecular Ecology, 2024, 33(1): e17190 CrossRef
- Somenzi E., Senczuk G., Ciampolini R., Cortellari M., Vajana E., Tosser-Klopp G., Pilla F., Ajmone-Marsan P., Crepaldi P., Colli L. The SNP-based profiling of Montecristo feral goat populations reveals a history of isolation, bottlenecks, and the effects of management. Genes (Basel), 2022, 3(2): 213 CrossRef
- Rodionov A., Deniskova T., Dotsev A., Volkova V., Petrov S., Kharzinova V., Koshkina O., Abdelmanova A., Solovieva A., Shakhin A., Bardukov N., Zinovieva N. Combination of multiple microsatellite analysis and genome-wide SNP genotyping helps to solve wildlife crime: a case study of poaching of a Caucasian tur (Capra caucasica) in Russian mountain national park. Animals (Basel), 2021, 11(12): 3416 CrossRef
- Kaushik R., Arya A., Kumar D., Goel A., Rout P.K. Genetic studies of heat stress regulation in goat during hot climatic condition. Journal of Thermal Biology, 2023, 113: 103528 CrossRef
- Waineina R.W., Okeno T.O., Ilatsia E.D., Ngeno K. Selection signature analyses revealed genes associated with adaptation, production, and reproduction in selected goat breeds in Kenya. Frontiers in Genetics, 2022, 13: 858923 CrossRef
- Sallam A.M., Reyer H., Wimmers K., Bertolini F., Aboul-Naga A., Braz C.U., Rabee A.E. Genome-wide landscape of runs of homozygosity and differentiation across Egyptian goat breeds. BMC Genomics, 2023, 24(1): 573 CrossRef
- Asadollahpour Nanaei H., Cai Y., Alshawi A., Wen J., Hussain T., Fu W.W., Xu N.Y., Essa A., Lenstra J.A., Wang X., Jiang Y. Genomic analysis of indigenous goats in Southwest Asia reveals evidence of ancient adaptive introgression related to desert climate. Zoological Research, 2023, 44(1): 20-29 CrossRef
- Serranito B., Cavalazzi M., Vidal P., Taurisson-Mouret D., Ciani E., Bal M., Rouvellac E., Servin B., Moreno-Romieux C., Tosser-Klopp G., Hall S.J.G., Lenstra J.A., Pompanon F., Benjelloun B., Da Silva A. Local adaptations of Mediterranean sheep and goats through an integrative approach. Scientific Reports, 2021, 11(1): 21363 CrossRef
- Manunza A., Diaz J.R., Sayre B.L., Cozzi P., Bobbo T., Deniskova T., Dotsev A., Zinovieva N., Stella A. Discovering novel clues of natural selection on four worldwide goat breeds. Scientific Reports, 2023, 13(1): 2110 CrossRef
- Peng W., Zhang Y., Gao L., Shi W., Liu Z., Guo X., Zhang Y., Li B., Li G., Cao J., Yang M. Selection signatures and landscape genomics analysis to reveal climate adaptation of goat breeds. BMC Genomics, 2024, 25(1): 420 CrossRef
- Zhang L., Wang F., Gao G., Yan X., Liu H., Liu Z., Wang Z., He L., Lv Q., Wang Z., Wang R., Zhang Y., Li J., Su R. Genome-wide association study of body weight traits in Inner Mongolia Cashmere goats. Frontiers in Veterinary Science, 2021, 8: 752746 CrossRef
- Easa A.A., Selionova M., Aibazov M., Mamontova T., Sermyagin A., Belous A., Abdelmanova A., Deniskova T., Zinovieva N. Identification of genomic regions and candidate genes associated with body weight and body conformation traits in Karachai goats. Genes (Basel), 2022, 13(10): 1773 CrossRef
- Moaeen-Ud-Din M., Danish Muner R., Khan M.S. Genome wide association study identifies novel candidate genes for growth and body conformation traits in goats. Scientific Reports, 2022, 12(1): 9891 CrossRef
- Massender E., Oliveira H.R., Brito L.F., Maignel L., Jafarikia M., Baes C.F., Sullivan B., Schenkel F.S. Genome-wide association study for milk production and conformation traits in Canadian Alpine and Saanen dairy goats. Journal of Dairy Science, 2023, 106(2): 1168-1189 CrossRef
- Islam R., Liu X., Gebreselassie G., Abied A., Ma Q., Ma Y. Genome-wide association analysis reveals the genetic locus for high reproduction trait in Chinese Arbas Cashmere goat. Genes & Genomics, 2020, 42(8): 893 -899 CrossRef
- Qiao X., Su R., Wang Y., Wang R., Yang T., Li X., Chen W., He S., Jiang Y., Xu Q., Wan W., Zhang Y., Zhang W., Chen J., Liu B., Liu X., Fan Y., Chen D., Jiang H., Fang D., Liu Z., Wang X., Zhang Y., Mao D., Wang Z., Di R., Zhao Q., Zhong T., Yang H., Wang J., Wang W., Dong Y., Chen X., Xu X., Li J. Genome-wide target enrichment-aided chip design: a 66 K SNP chip for Cashmere goat. Scientific Reports,2017, 7(1): 8621 CrossRef
- Guan S., Li W., Jin H., Zhang L., Liu G. Development and validation of a 54K genome-wide liquid SNP chip panel by target sequencing for dairy goat. Genes (Basel), 2023, 14(5): 1122 CrossRef
- Vijh R.K., Sharma U., Kapoor P., Raheja M., Arora R., Ahlawat S., Dureja V. Design and validation of high-density SNP array of goats and population stratification of Indian goat breeds. Gene, 2023, 885: 147691 CrossRef
- Fitak R.R., Mohandesan E., Corander J., Yadamsuren A., Chuluunbat B., Abdelhadi O., Raziq A., Nagy P., Walzer C., Faye B., Burger P.A. Genomic signatures of domestication in Old World camels. Communications Biology, 2020, 3(1): 316 CrossRef
- Wang C., Wu D.D., Yuan Y.H., Yao M.C., Han J.L., Wu Y.J., Shan F., Li W.P., Zhai J.Q., Huang M., Peng S.M., Cai Q.H., Yu J.Y., Liu Q.X., Liu Z.Y., Li L.X., Teng M.S., Huang W., Zhou J.Y., Zhang C., Chen W., Tu X.L. Population genomic analysis provides evidence of the past success and future potential of South China tiger captive conservation. BMC Biology, 2023, 21(1): 64 CrossRef
- Ryder O., Miller W., Ralls K., Ballou J.D., Steiner C.C., Mitelberg A., Romanov M., Chemnick L.G., Mace M., Schuster S. Whole genome sequencing of California condors is now utilized for guiding genetic management. In: International Plant and Animal Genome XXIV Conference. San Diego, CA, 2016: 8-13.
- Volkova N.A., Romanov M.N., Abdelmanova A.S., Larionova P.V., German N.Y., Vetokh A.N., Shakhin A.V., Volkova L.A., Anshakov D.V., Fisinin V.I., Narushin V.G., Griffin D.K., Sölkner J., Brem G., McEwan J.C., Brauning R., Zinovieva N.A. Genotyping-by-sequencing strategy for integrating genomic structure, diversity and performance of various Japanese quail (Coturnix japonica) breeds. Animals (Basel), 2023, 13(22): 3439 CrossRef
- Volkova N.A., German N.Yu., Larionova P.V., Vetokh A.N., Romanov M.N., Zinovieva N.A. Identification of SNPs and candidate genes associated with abdominal fat deposition in quails (Coturnix japonica). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2023, 58(6): 1079-1087 CrossRef
- Volkova N.A., Romanov M.N., Abdelmanova A.S., Larionova P.V., German N.Y., Vetokh A.N., Shakhin A.V., Volkova L.A., Sermyagin A.A., Anshakov D.V., Fisinin V.I., Griffin D.K., Sölkner J., Brem G., McEwan J.C., Brauning R., Zinovieva N.A. Genome-wide association study revealed putative SNPs and candidate genes associated with growth and meat traits in Japanese quail. Genes (Basel), 2024, 15(3): 294 CrossRef
- Romanov M.N., Shakhin A.V., Abdelmanova A.S., Volkova N.A., Efimov D.N., Fisinin V.I., Korshunova L.G., Anshakov D.V., Dotsev A.V., Griffin D.K., Zinovieva N.A. Dissecting selective signatures and candidate genes in grandparent lines subject to high selection pressure for broiler production and in a local Russian chicken breed of Ushanka. Genes (Basel), 2024, 15(4): 524 CrossRef
- Gu B., Sun R., Fang X., Zhang J., Zhao Z., Huang D., Zhao Y., Zhao Y. Genome-wide association study of body conformation traits by whole genome sequencing in Dazu black goats. Animals (Basel), 2022, 12(5): 548 CrossRef
- Sanchez M.P., Guatteo R., Davergne A., Saout J., Grohs C., Deloche M.C., Taussat S., Fritz S., Boussaha M., Blanquefort P., Delafosse A., Joly A., Schibler L., Fourichon C., Boichard D. Identification of the ABCC4, IER3, and CBFA2T2 candidate genes for resistance to paratuberculosis from sequence-based GWAS in Holstein and Normande dairy cattle. Genetics, Selection, Evolution: GSE, 2020, 52(1): 14 CrossRef
- Tribout T., Croiseau P., Lefebvre R., Barbat A., Boussaha M., Fritz S., Boichard D., Hoze C., Sanchez M.P. Confirmed effects of candidate variants for milk production, udder health, and udder morphology in dairy cattle. Genetics, Selection, Evolution: GSE, 2020, 52(1): 55 CrossRef
- Wu P., Wang K., Zhou J., Chen D., Yang Q., Yang X., Liu Y., Feng B., Jiang A., Shen L., Xiao W., Jiang Y., Zhu L., Zeng Y., Xu X., Li X., Tang G. GWAS on imputed whole-genome resequencing from genotyping-by-sequencing data for farrowing interval of different parities in pigs. Frontiers in Genetics, 2019, 10: 1012 CrossRef
- van den Berg S., Vandenplas J., van Eeuwijk F.A., Bouwman A.C., Lopes M.S., Veerkamp R.F. Imputation to whole-genome sequence using multiple pig populations and its use in genome-wide association studies. Genetics, Selection, Evolution: GSE, 2019, 51(1): 2 CrossRef
- Talouarn E., Bardou P., Palhière I., Oget C., Clément V., VarGoats Consortium, Tosser-Klopp G., Rupp R., Robert-Granié C. Genome wide association analysis on semen volume and milk yield using different strategies of imputation to whole genome sequence in French dairy goats. BMC Genetics, 2020, 21(1): 19 CrossRef
- VarGoats: Identification of Variations in Goat genomes related to domestication and adaptation (2013). Available: https://www.goatgenome.org/vargoats.html. No date.
- Denoyelle L., Talouarn E., Bardou P., Colli L., Alberti A., Danchin C., Del Corvo M., Engelen S., Orvain C., Palhière I., Rupp R., Sarry J., Salavati M., Amills M., Clark E., Crepaldi P., Faraut T., Masiga C.W., Pompanon F., Rosen B.D., Stella A., Van Tassell C.P., Tosser-Klopp G., VarGoats Consortium. VarGoats project: a dataset of 1159 whole-genome sequences to dissect Capra hircus global diversity. Genetics, Selection, Evolution: GSE, 2021, 53(1): 86 CrossRef
- Belay S., Belay G., Nigussie H., Jian-Lin H., Tijjani A., Ahbara A. M., Tarekegn G. M., Woldekiros H.S., Mor S., Dobney K., Lebrasseur O., Hanotte O., Mwacharo J. M. Whole-genome resource sequences of 57 indigenous Ethiopian goats. Scientific Data, 2024, 11(1): 139 CrossRef
- Yang J., Wang D.F., Huang J.H., Zhu Q.H., Luo L.Y., Lu R., Xie X.L., Salehian-Dehkordi H., Esmailizadeh A., Liu G.E., Li M.H. Structural variant landscapes reveal convergent signatures of evolution in sheep and goats. Genome Biology, 2024, 25(1): 148 CrossRef
- Mulsant P., Lecerf F., Fabre S., Schibler L., Monget P., Lanneluc I., Pisselet C., Riquet J., Monniaux D., Callebaut I., Cribiu E., Thimonier J., Teyssier J., Bodin L., Cognié Y., Chitour N., Elsen J.M. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(9): 5104-5109 CrossRef
- Tao L., He X., Jiang Y., Liu Y., Ouyang Y., Shen Y., Hong Q., Chu M. Genome-wide analyses reveal genetic convergence of prolificacy between goats and sheep. Genes (Basel), 2021, 12(4): 480 CrossRef
- Zheng Z., Wang X., Li M., Li Y., Yang Z., Wang X., Pan X., Gong M., Zhang Y., Guo Y., Wang Y., Liu J., Cai Y., Chen Q., Okpeku M., Colli L., Cai D., Wang K., Huang S., Sonstegard T.S., Esmailizadeh A., Zhang W., Zhang T., Xu Y., Xu N., Yang Y., Han J., Chen L., Lesur J., Daly K.G., Bradley D.G., Heller R., Zhang G., Wang W., Chen Y., Jiang Y. The origin of domestication genes in goats. Science Advances, 2020, 6(21): eaaz5216 CrossRef
- Li C., Wu Y., Chen B., Cai Y., Guo J., Leonard A.S., Kalds P., Zhou S., Zhang J., Zhou P., Gan S., Jia T., Pu T., Suo L., Li Y., Zhang K., Li L., Purevdorj M., Wang X., Li M., Wang Y., Liu Y., Huang S., Sonstegard T., Wang M.S., Kemp S., Pausch H., Chen Y., Han J.L., Jiang Y., Wang X. Markhor-derived introgression of a genomic region encompassing PAPSS2 confers high-altitude adaptability in Tibetan goats. Molecular Biology and Evolution, 2022, 39(12): msac253 CrossRef
- Arslan M. Whole-genome sequencing and genomic analysis of Norduz goat (Capra hircus). Mammalian Genome, 2023, 34(3): 437-448 CrossRef
- Di Gerlando R., Mastrangelo S., Moscarelli A., Tolone M., Sutera A.M., Portolano B., Sardina M.T. Genomic structural diversity in local goats: analysis of copy-number variations. Animals (Basel), 2020, 10(6): 1040 CrossRef
- Zhang R.Q., Wang J.J., Zhang T., Zhai H.L., Shen W. Copy-number variation in goat genome equence: a comparative analysis of the different litter size trait groups. Gene, 2019, 696: 40-46 CrossRef
- Zhou A., Ding Y., Zhang X., Zhou Y., Liu Y., Li T., Xiao L. Whole-genome resequencing reveals new mutations in candidate genes for Beichuan-white goat prolificacya. Animal Biotechnology, 2024, 35(1): 2258166 CrossRef
- Tarasova E.I., Frolov A.N., Lebedev S.V., Romanov M.N. Landmark native breed of the Orenburg goats: progress in its breeding and genetics and future prospects. Animal Biotechnology, 2023, 34(9): 5139-5154 CrossRef
- Xiong J., Bao J., Hu W., Shang M., Zhang L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Frontiers in Genetics, 2023, 13: 1044017 CrossRef
- Saif R., Henkel J., Mahmood T., Ejaz A., Ahmad F., Zia S. Detection of whole genome selection signatures of Pakistani Teddy goat. Molecular Biology Reports, 2021, 48(11): 7273-7280 CrossRef
- Sheriff O., Ahbara A.M., Haile A., Alemayehu K., Han J.L., Mwacharo J.M. Whole-genome resequencing reveals genomic variation and dynamics in Ethiopian indigenous goats. Frontiers in Genetics, 2024, 15: 1353026 CrossRef
- Gebreselase H.B., Nigussie H., Wang C., Luo C. Genetic diversity, population structure and selection signature in Begait goats revealed by whole-genome sequencing. Animals (Basel), 2024, 14(2): 307 CrossRef
- Li C., Wang X., Li H., Ahmed Z., Luo Y., Qin M., Yang Q., Long Z., Lei C., Yi K. Whole-genome resequencing reveals diversity and selective signals in the Wuxue goat. Animal Genetics, 2024, 55(4): 575-587 CrossRef
- Liu Z., Li H., Luo Y., Li J., Sun A., Ahmed Z., Zhang B., Lei C., Yi K. Comprehensive whole-genome resequencing unveils genetic diversity and selective signatures of the Xiangdong black goat. Frontiers in Genetics, 2024, 15: 1326828 CrossRef
- Ni J., Xian M., Ren Y., Yang L., Li Y., Guo S., Ran B., Hu J. Whole-genome resequencing reveals candidate genes associated with milk production trait in Guanzhong dairy goats. Animal Genetics, 2024, 55(1): 168-172 CrossRef
- An Z.X., Shi L.G., Hou G.Y., Zhou H.L., Xun W.J. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Animal, 2024, 18(6): 101147 CrossRef
- HuangFu R., Li H., Luo Y., He F., Huan C., Ahmed Z., Zhang B., Lei C., Yi K. Illuminating genetic diversity and selection signatures in Matou goats through whole-genome sequencing analysis. Genes (Basel), 2024, 15(7): 909 CrossRef
- Chen Q., Huang Y., Wang Z., Teng S., Hanif Q., Lei C., Sun J. Whole-genome resequencing reveals diversity and selective signals in Longlin goat. Gene, 2021, 771: 145371 CrossRef
- Chen Q., Chai Y., Zhang W., Cheng Y., Zhang Z., An Q., Chen S., Man C., Du L., Zhang W., Wang F. Whole-genome sequencing reveals the genomic characteristics and selection signatures of Hainan black goat. Genes (Basel), 2022, 13(9): 1539 CrossRef
- Sun X., Guo J., Li L., Zhong T., Wang L., Zhan S., Lu J., Wang D., Dai D., Liu G.E., Zhang H. Genetic diversity and selection signatures in Jianchang Black goats revealed by whole-genome sequencing data. Animals (Basel), 2022, 12(18): 2365 CrossRef
- Wu C., Ma S., Zhao B., Qin C., Wu Y., Di J., Suo L., Fu X. Drivers of plateau adaptability in cashmere goats revealed by genomic and transcriptomic analyses. BMC Genomics, 2023, 24(1): 428 CrossRef
- Rong Y., Wang X., Na Q., Ao X., Xia Q., Guo F., Han M., Ma R., Shang F., Liu Y., Lv Q., Wang Z., Su R., Zhang Y., Wang R. Genome-wide association study for cashmere traits in Inner Mongolia cashmere goat population reveals new candidate genes and haplotypes. BMC Genomics,2024, 25(1): 658 CrossRef
- Zhao Q., Huang C., Chen Q., Su Y., Zhang Y., Wang R., Su R., Xu H., Liu S., Ma Y., Zhao Q., Ye S. Genomic inbreeding and runs of homozygosity analysis of Cashmere goat. Animals (Basel), 2024, 14(8): 1246 CrossRef
- E G.X., Zhao Y.J., Huang Y.F. Selection signatures of litter size in Dazu black goats based on a whole genome sequencing mixed pools strategy. Molecular Biology Reports, 2019, 46(5): 5517-5523 CrossRef
- Song Y., Han J., Cao F., Ma H., Cao B., An X. Endometrial genome-wide DNA methylation patterns of Guanzhong dairy goats at days 5 and 15 of the gestation period. Animal Reproduction Science, 2019, 208: 106124 CrossRef
- Xin D., Bai Y., Bi Y., He L., Kang Y., Pan C., Zhu H., Chen H., Qu L., Lan X. Insertion/deletion variants within the IGF2BP2 gene identified in reported genome-wide selective sweep analysis reveal a correlation with goat litter size. Journal of Zhejiang University. Science. B, 2021, 22(9): 757-766 CrossRef
- Zhang T., Wang Z., Li Y., Zhou B., Liu Y., Li J., Wang R., Lv Q., Li C., Zhang Y., Su R. Genetic diversity and population structure in five Inner Mongolia Cashmere goat populations using whole-genome genotyping. Animal Bioscience, 2024, 37(7), 1168-1176 CrossRef
- Wang K., Liu X., Qi T., Hui Y., Yan H., Qu L., Lan X., Pan C. Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra hircus). Genomics, 2021, 113(1 Pt 1): 142-150 CrossRef
- Signer-Hasler H., Henkel J., Bangerter E., Bulut Z., VarGoats Consortium; Drögemüller C., Leeb T., Flury C. Runs of homozygosity in Swiss goats reveal genetic changes associated with domestication and modern selection. Genetics, Selection, Evolution: GSE, 2022, 54(1): 6 CrossRef
- Song C.F.L.Y., Zhang D.X., Jiao L., Wang G.M., Liu X.J. Anatomical observation of reproductive organs in intersex goats. Heilongjiang Animal Science and Veterinary Medicine, 2015, 16: 81 (in Chinese">CrossRef
- E G.X., Zhou D.K., Zheng Z.Q., Yang B.G., Li X.L., Li L.H., Zhou R.Y., Nai W.H., Jiang X.P., Zhang J.H., Hong Q.H., Ma Y.H., Chu M.X., Gao H.J., Zhao Y.J., Duan X.H., He Y.M., Na R.S., Han Y.G., Zeng Y., Jiang Y., Huang Y.F. Identification of a goat intersexuality-associated novel variant through genome-wide resequencing and hi-C. Frontiers in Genetics, 2021, 11: 616743 CrossRef
- Simon R., Lischer H.E.L., Pieńkowska-Schelling A., Keller I., Häfliger I.M., Letko A., Schelling C., Lühken G., Drögemüller C. New genomic features of the polled intersex syndrome variant in goats unraveled by long-read whole-genome sequencing. Animal Genetics, 2020, 51(3): 439-448 CrossRef
- Guo J., Jiang R., Mao A., Liu G.E., Zhan S., Li L., Zhong T., Wang L., Cao J., Chen Y., Zhang G., Zhang H. Genome-wide association study reveals 14 new SNPs and confirms two structural variants highly associated with the horned/polled phenotype in goats. BMC Genomics, 2021, 22(1): 769 CrossRef
- Thanatsis N., Kaponis A., Koika V., Georgopoulos N.A., Decavalas G.O. Reduced Foxo3a, FoxL2, and p27 mRNA expression in human ovarian tissue in premature ovarian insufficiency. Hormones (Athens, Greece), 2019, 18(4): 409-415 CrossRef
- Yang R., Zhou D., Tan X., Zhao, Z., Lv Y., Tian X., Ren L., Wang Y., LiJ., Zhao, Y., Zhang J. Genome-wide association study of body conformation traits in Tashi goats (Capra hircus). Animals (Basel), 2024, 14(8): 1145 CrossRef
- Wu H., Yi Q., Ma W., Yan L., Guan S., Wang L., Yang G., Tan X., Ji P., Liu G. Genome-wide analysis for the melatonin trait associated genes and SNPs in dairy goat (Capra hircus) as the molecular breeding markers. Frontiers in Genetics, 2023, 14: 1118367 CrossRef
- Saleh A.A., Xue L., Zhao Y. Screening Indels from the whole genome to identify the candidates and their association with economic traits in several goat breeds. Functional & Integrative Genomics, 2023, 23(1): 58 CrossRef