PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.4.587eng

UDC: 636.38:636.082:577.21

Acknowledgements:
Funded by the Russian Science Foundation, grant No. 24-46-02012, https://rscf.ru/project/24-46-02012/.

 

GENOMIC STUDIES IN DOMESTIC GOATS (Capra hircus L.): CURRENT ADVANCES AND PROSPECTS (review)

O.A. Koshkina1, Т.Е. Deniskova1, 2 , M.N. Romanov1, 3, 4,
N.А. Zinovieva1

1Ernst Federal Research Center for Animal Husbandry,60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail olechka1808@list.ru, horarka@yandex.ru (✉ corresponding author), m.romanov@kent.ac.uk, n_zinovieva@mail.ru;
2Basic Department of Genetic Technologies in livestock Farming, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, ul. Akademika Skryabina, Moscow, 109472 Russia;
3School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NZ, UK;
4Animal Genomics and Bioresource Research Unit, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

ORCID:
Koshkina O.A. orcid.org/0000-0003-4830-6626
Romanov M.N. orcid.org/0000-0003-3584-4644
Deniskova T.E. orcid.org/0000-0002-5809-1262
Zinovieva N.A. orcid.org/0000-0003-4017-6863

Final revision received October 5, 2023  
Accepted November 3, 2023

 

The domestic goat (Capra hircus) is a versatile small ruminant species spread on all continents, whose genomic features are becoming the subject of study by research teams from all over the world (A.M.A.M. Zonaed Siddiki et al., 2020; M.I. Selionova et al., 2021). The goal of this review is to elucidate the results of recent genomic studies on domestic goats using DNA chips and whole genome sequencing (WGS) analysis, and to compile a list of WGS-identified candidate genes associated with economically significant and adaption traits. This review summarizes and analyzes the results of WGS studies from 2020 to 2024. A list of candidate genes identified using WGS and associated with economically important and adaptive traits in goats is presented. An analysis of the methodological and bioinformatic approaches used to study WGS of domestic goats is executed. Using DNA chips, genetic relationships between different goat breeds and populations were established (T.E. Deniskova et al., 2021; V. Mukhina et al., 2022; A. Manunza et al., 2023), their genetic diversity was assessed (B.A. Vlaic et al., 2024; G. Chessari et al., 2024), and introgression from wild species of the genus Capra was studied (H. Asadollahpour Nanaei et al., 2023; N. Pogorevc et al., 2024). The decline in the WGS costs (B. Gu et al., 2022) has boosted an increase in the number of WGSs generated in goats (S. Belay et al., 2024). Genes under convergent selection pressure in sheep and goats have been identified, including DGKB, FAM155A, GRM5 (J. Yang et al., 2024) and CHST11 (L. Tao et al., 2021). An increase in the copy number of the GBP1 gene has been shown to be associated with immune resistance and prolificacy (R.Q. Zhang et al., 2019; R. Di Gerlando et al., 2020; M. Arslan, 2023). A large group of genes has been identified that affect milk productivity — ANPEP (J. Ni et al., 2024), ERBB4 (Z. Liu et al., 2024), NCAM2 (Z. Amiri Ghanatsaman et al., 2023) and GLYCAM1 (J. Xiong et al., 2023; H.B. Gebreselase et al., 2024), carcass quality — ACOX1, PGM1 (Z.X. An et al., 2024), ZNF385B and MYOT (H.B. Gebreselase et al., 2024), growth — HMGA2 and GJA3 (C. Li et al., 2024), live weight — STIM1 and ADM (R. Saif et al., 2021), and wool performance — CCNA2 (Y. Rong et al., 2024) and FGF5 (Q. Zhao et al., 2024). The TSHR and STC1 genes associated with domestication were discovered in Swiss breeds (H. Signer-Hasler et al., 2022). Genes involved in the formation of protective responses of the body to diseases and unfavorable climatic factors have been identified, including PIGR, TNFAIP2 (Q. Chen et al., 2021, 2022), KHDRBS2 (X. Sun et al., 2022), PPP2R3C (R. HuangFu et al., 2024), GNG2 (Z.X. An et al., 2024), HOXC12 and MAPK8IP2 (O. Sheriff et al., 2024). Genome-wide association studies (GWAS) based on WGS identified candidate genes associated with body size, including FNTB, CHURC1 (R. Yang et al., 2024), PSTPIP2 and SIPA1L (B. Gu et al., 2022), and milk production (H. Wu et al., 2023). To date, candidate genes have been identified on 21 of the 29 autosomes, with the largest number on CHI5 (9 genes), CHI18 (8 genes), CHI1, CHI3, CHI57 and CHI23 (7 genes on each chromosome). Thus, the compiled list of target candidate genes may be used in marker-assisted selection programs.

Keywords: Capra hircus, SNPs, DNA chips, whole genome sequences, candidate genes, GWAS, signatures of selection, copy number variation (CNV).

 

REFERENCES

  1. Amiri Ghanatsaman Z., Ayatolahi Mehrgardi A., Asadollahpour Nanaei H., Esmailizadeh A. Comparative genomic analysis uncovers candidate genes related with milk production and adaptive traits in goat breeds. Scientific Reports, 2023, 13(1): 8722 CrossRef
  2. Tarasova E.I., Frolov A.N., Lebedev S.V., Romanov M.N. Mat. 3-y Mezhd. nauch.-prakt. konf. «Molekulyarno-geneticheskie tekhnologii analiza ekspressii genov produktivnosti i ustoychivosti k zabolevaniyam zhivotnykh» [Proc. 3 Int. Conf. «Molecular genetic technologies for analyzing the expression of genes for productivity and resistance to animal diseases»]. Moscow, 2021: 450-454 (in Russ.).
  3. Selionova M.I., Trukhachev V.I., Aybazov A-M.M., Stolpovsky Yu.A., Zinovieva N.A. Genetic markers of goats (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(6): 1031-1048 CrossRef
  4. Zonaed Siddiki A.M.A.M., Miah G., Islam M.S., Kumkum M., Rumi M.H., Baten A., Hossain M.A. Goat genomic resources: the search for genes associated with its economic traits. International Journal of Genomics, 2020, 2020: 5940205 CrossRef
  5. International Goat Genome Consortium (IGGC). Goat Genome 2013. Available: http://www.goatgenome.org. No date.
  6. Tosser-Klopp G., Bardou P., Bouchez O., Cabau C., Crooijmans R., Dong Y., Donnadieu-Tonon C., Eggen A., Heuven H.C., Jamli S., Jiken A.J., Klopp C., Lawley C.T., McEwan J., Martin P., Moreno C.R., Mulsant P., Nabihoudine I., Pailhoux E., Palhière I., Rupp R., Sarry J., Sayre B.L., Tircazes A., Jun W., Wang W., Zhang W., International Goat Genome Consortium. Design and characterization of a 52K SNP chip for goats. PLoS ONE, 2014, 9(1): e86227 CrossRef
  7. Manunza A., Ramirez-Diaz J., Cozzi P., Lazzari B., Tosser-Klopp G., Servin B., Johansson A.M., Grøva L., Berg P., Våge D.I., Stella A. Genetic diversity and historical demography of underutilised goat breeds in North-Western Europe. Scientific Reports, 2023, 13(1): 20728 CrossRef
  8. Mukhina V., Svishcheva G., Voronkova V., Stolpovsky Y., Piskunov A. Genetic diversity, population structure and phylogeny of indigenous goats of Mongolia revealed by SNP genotyping. Animals (Basel), 2022, 12(3): 221 CrossRef
  9. Deniskova T.E., Dotsev A.V., Selionova M.I., Reyer H., Sölkner J., Fornara M.S., Aybazov A.M., Wimmers K., Brem G., Zinovieva N.A. SNP-based genotyping provides insight into the West Asian origin of Russian local goats. Frontiers in Genetics, 2021, 12: 708740 CrossRef
  10. Senczuk G., Macrì M., Di Civita M., Mastrangelo S., Del Rosario Fresno M., Capote J., Pilla F., Delgado J.V., Amills M., Martinez A. The demographic history and adaptation of Canarian goat breeds to environmental conditions through the use of genome-wide SNP data. Genetics, Selection, Evolution: GSE, 2024, 56(1): 2 CrossRef
  11. Monau P.I., Visser C., Muchadeyi F.C., Okpeku M., Nsoso S.J., Van Marle-Köster E. Population structure of indigenous southern African goats based on the Illumina Goat50K SNP panel. Tropical Animal Health and Production, 2020, 52(4): 1795-1802 CrossRef
  12. Vlaic B.A., Vlaic A., Russo I.R., Colli L., Bruford M.W., Odagiu A., Orozco-terWengel P., Climgen Consortium. Analysis of genetic diversity in Romanian Carpatina goats using SNP genotyping data. Animals (Basel), 2024, 14(4): 560 CrossRef
  13. Chessari G., Criscione A., Marletta D., Crepaldi P., Portolano B., Manunza A., Cesarani A., Biscarini F., Mastrangelo S. Characterization of heterozygosity-rich regions in Italian and worldwide goat breeds. Scientific Reports, 2024, 14(1): 3 CrossRef
  14. Pogorevc N., Dotsev A., Upadhyay M., Sandoval-Castellanos E., Hannemann E., Simčič M., Antoniou A., Papachristou D., Koutsouli P., Rahmatalla S., Brockmann G, Sölkner J., Burger P., Lymberakis P., Poulakakis N., Bizelis I., Zinovieva N., Horvat S., Medugorac I. Whole-genome SNP genotyping unveils ancestral and recent introgression in wild and domestic goats. Molecular Ecology, 2024, 33(1): e17190 CrossRef
  15. Somenzi E., Senczuk G., Ciampolini R., Cortellari M., Vajana E., Tosser-Klopp G., Pilla F., Ajmone-Marsan P., Crepaldi P., Colli L. The SNP-based profiling of Montecristo feral goat populations reveals a history of isolation, bottlenecks, and the effects of management. Genes (Basel), 2022, 3(2): 213 CrossRef
  16. Rodionov A., Deniskova T., Dotsev A., Volkova V., Petrov S., Kharzinova V., Koshkina O., Abdelmanova A., Solovieva A., Shakhin A., Bardukov N., Zinovieva N. Combination of multiple microsatellite analysis and genome-wide SNP genotyping helps to solve wildlife crime: a case study of poaching of a Caucasian tur (Capra caucasica) in Russian mountain national park. Animals (Basel), 2021, 11(12): 3416 CrossRef
  17. Kaushik R., Arya A., Kumar D., Goel A., Rout P.K. Genetic studies of heat stress regulation in goat during hot climatic condition. Journal of Thermal Biology, 2023, 113: 103528 CrossRef
  18. Waineina R.W., Okeno T.O., Ilatsia E.D., Ngeno K. Selection signature analyses revealed genes associated with adaptation, production, and reproduction in selected goat breeds in Kenya. Frontiers in Genetics, 2022, 13: 858923 CrossRef
  19. Sallam A.M., Reyer H., Wimmers K., Bertolini F., Aboul-Naga A., Braz C.U., Rabee A.E. Genome-wide landscape of runs of homozygosity and differentiation across Egyptian goat breeds. BMC Genomics, 2023, 24(1): 573 CrossRef
  20. Asadollahpour Nanaei H., Cai Y., Alshawi A., Wen J., Hussain T., Fu W.W., Xu N.Y., Essa A., Lenstra J.A., Wang X., Jiang Y. Genomic analysis of indigenous goats in Southwest Asia reveals evidence of ancient adaptive introgression related to desert climate. Zoological Research, 2023, 44(1): 20-29 CrossRef
  21. Serranito B., Cavalazzi M., Vidal P., Taurisson-Mouret D., Ciani E., Bal M., Rouvellac E., Servin B., Moreno-Romieux C., Tosser-Klopp G., Hall S.J.G., Lenstra J.A., Pompanon F., Benjelloun B., Da Silva A. Local adaptations of Mediterranean sheep and goats through an integrative approach. Scientific Reports, 2021, 11(1): 21363 CrossRef
  22. Manunza A., Diaz J.R., Sayre B.L., Cozzi P., Bobbo T., Deniskova T., Dotsev A., Zinovieva N., Stella A. Discovering novel clues of natural selection on four worldwide goat breeds. Scientific Reports, 2023, 13(1): 2110 CrossRef
  23. Peng W., Zhang Y., Gao L., Shi W., Liu Z., Guo X., Zhang Y., Li B., Li G., Cao J., Yang M. Selection signatures and landscape genomics analysis to reveal climate adaptation of goat breeds. BMC Genomics, 2024, 25(1): 420 CrossRef
  24. Zhang L., Wang F., Gao G., Yan X., Liu H., Liu Z., Wang Z., He L., Lv Q., Wang Z., Wang R., Zhang Y., Li J., Su R. Genome-wide association study of body weight traits in Inner Mongolia Cashmere goats. Frontiers in Veterinary Science, 2021, 8: 752746 CrossRef
  25. Easa A.A., Selionova M., Aibazov M., Mamontova T., Sermyagin A., Belous A., Abdelmanova A., Deniskova T., Zinovieva N. Identification of genomic regions and candidate genes associated with body weight and body conformation traits in Karachai goats. Genes (Basel), 2022, 13(10): 1773 CrossRef
  26. Moaeen-Ud-Din M., Danish Muner R., Khan M.S. Genome wide association study identifies novel candidate genes for growth and body conformation traits in goats. Scientific Reports, 2022, 12(1): 9891 CrossRef
  27. Massender E., Oliveira H.R., Brito L.F., Maignel L., Jafarikia M., Baes C.F., Sullivan B., Schenkel F.S. Genome-wide association study for milk production and conformation traits in Canadian Alpine and Saanen dairy goats. Journal of Dairy Science, 2023, 106(2): 1168-1189 CrossRef
  28. Islam R., Liu X., Gebreselassie G., Abied A., Ma Q., Ma Y. Genome-wide association analysis reveals the genetic locus for high reproduction trait in Chinese Arbas Cashmere goat. Genes & Genomics, 2020, 42(8): 893 -899 CrossRef
  29. Qiao X., Su R., Wang Y., Wang R., Yang T., Li X., Chen W., He S., Jiang Y., Xu Q., Wan W., Zhang Y., Zhang W., Chen J., Liu B., Liu X., Fan Y., Chen D., Jiang H., Fang D., Liu Z., Wang X., Zhang Y., Mao D., Wang Z., Di R., Zhao Q., Zhong T., Yang H., Wang J., Wang W., Dong Y., Chen X., Xu X., Li J. Genome-wide target enrichment-aided chip design: a 66 K SNP chip for Cashmere goat. Scientific Reports,2017, 7(1): 8621 CrossRef
  30. Guan S., Li W., Jin H., Zhang L., Liu G. Development and validation of a 54K genome-wide liquid SNP chip panel by target sequencing for dairy goat. Genes (Basel), 2023, 14(5): 1122 CrossRef
  31. Vijh R.K., Sharma U., Kapoor P., Raheja M., Arora R., Ahlawat S., Dureja V. Design and validation of high-density SNP array of goats and population stratification of Indian goat breeds. Gene, 2023, 885: 147691 CrossRef
  32. Fitak R.R., Mohandesan E., Corander J., Yadamsuren A., Chuluunbat B., Abdelhadi O., Raziq A., Nagy P., Walzer C., Faye B., Burger P.A. Genomic signatures of domestication in Old World camels. Communications Biology, 2020, 3(1): 316 CrossRef
  33. Wang C., Wu D.D., Yuan Y.H., Yao M.C., Han J.L., Wu Y.J., Shan F., Li W.P., Zhai J.Q., Huang M., Peng S.M., Cai Q.H., Yu J.Y., Liu Q.X., Liu Z.Y., Li L.X., Teng M.S., Huang W., Zhou J.Y., Zhang C., Chen W., Tu X.L. Population genomic analysis provides evidence of the past success and future potential of South China tiger captive conservation. BMC Biology, 2023, 21(1): 64 CrossRef
  34. Ryder O., Miller W., Ralls K., Ballou J.D., Steiner C.C., Mitelberg A., Romanov M., Chemnick L.G., Mace M., Schuster S. Whole genome sequencing of California condors is now utilized for guiding genetic management. In: International Plant and Animal Genome XXIV Conference. San Diego, CA, 2016: 8-13.
  35. Volkova N.A., Romanov M.N., Abdelmanova A.S., Larionova P.V., German N.Y., Vetokh A.N., Shakhin A.V., Volkova L.A., Anshakov D.V., Fisinin V.I., Narushin V.G., Griffin D.K., Sölkner J., Brem G., McEwan J.C., Brauning R., Zinovieva N.A. Genotyping-by-sequencing strategy for integrating genomic structure, diversity and performance of various Japanese quail (Coturnix japonica) breeds. Animals (Basel), 2023, 13(22): 3439 CrossRef
  36. Volkova N.A., German N.Yu., Larionova P.V., Vetokh A.N., Romanov M.N., Zinovieva N.A. Identification of SNPs and candidate genes associated with abdominal fat deposition in quails (Coturnix japonica). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2023, 58(6): 1079-1087 CrossRef
  37. Volkova N.A., Romanov M.N., Abdelmanova A.S., Larionova P.V., German N.Y., Vetokh A.N., Shakhin A.V., Volkova L.A., Sermyagin A.A., Anshakov D.V., Fisinin V.I., Griffin D.K., Sölkner J., Brem G., McEwan J.C., Brauning R., Zinovieva N.A. Genome-wide association study revealed putative SNPs and candidate genes associated with growth and meat traits in Japanese quail. Genes (Basel), 2024, 15(3): 294 CrossRef
  38. Romanov M.N., Shakhin A.V., Abdelmanova A.S., Volkova N.A., Efimov D.N., Fisinin V.I., Korshunova L.G., Anshakov D.V., Dotsev A.V., Griffin D.K., Zinovieva N.A. Dissecting selective signatures and candidate genes in grandparent lines subject to high selection pressure for broiler production and in a local Russian chicken breed of Ushanka. Genes (Basel), 2024, 15(4): 524 CrossRef
  39. Gu B., Sun R., Fang X., Zhang J., Zhao Z., Huang D., Zhao Y., Zhao Y. Genome-wide association study of body conformation traits by whole genome sequencing in Dazu black goats. Animals (Basel), 2022, 12(5): 548 CrossRef
  40. Sanchez M.P., Guatteo R., Davergne A., Saout J., Grohs C., Deloche M.C., Taussat S., Fritz S., Boussaha M., Blanquefort P., Delafosse A., Joly A., Schibler L., Fourichon C., Boichard D. Identification of the ABCC4, IER3, and CBFA2T2 candidate genes for resistance to paratuberculosis from sequence-based GWAS in Holstein and Normande dairy cattle. Genetics, Selection, Evolution: GSE, 2020, 52(1): 14 CrossRef
  41. Tribout T., Croiseau P., Lefebvre R., Barbat A., Boussaha M., Fritz S., Boichard D., Hoze C., Sanchez M.P. Confirmed effects of candidate variants for milk production, udder health, and udder morphology in dairy cattle. Genetics, Selection, Evolution: GSE, 2020, 52(1): 55 CrossRef
  42. Wu P., Wang K., Zhou J., Chen D., Yang Q., Yang X., Liu Y., Feng B., Jiang A., Shen L., Xiao W., Jiang Y., Zhu L., Zeng Y., Xu X., Li X., Tang G. GWAS on imputed whole-genome resequencing from genotyping-by-sequencing data for farrowing interval of different parities in pigs. Frontiers in Genetics, 2019, 10: 1012 CrossRef
  43. van den Berg S., Vandenplas J., van Eeuwijk F.A., Bouwman A.C., Lopes M.S., Veerkamp R.F. Imputation to whole-genome sequence using multiple pig populations and its use in genome-wide association studies. Genetics, Selection, Evolution: GSE, 2019, 51(1): 2 CrossRef
  44. Talouarn E., Bardou P., Palhière I., Oget C., Clément V., VarGoats Consortium, Tosser-Klopp G., Rupp R., Robert-Granié C. Genome wide association analysis on semen volume and milk yield using different strategies of imputation to whole genome sequence in French dairy goats. BMC Genetics, 2020, 21(1): 19 CrossRef
  45. VarGoats: Identification of Variations in Goat genomes related to domestication and adaptation (2013). Available: https://www.goatgenome.org/vargoats.html. No date.
  46. Denoyelle L., Talouarn E., Bardou P., Colli L., Alberti A., Danchin C., Del Corvo M., Engelen S., Orvain C., Palhière I., Rupp R., Sarry J., Salavati M., Amills M., Clark E., Crepaldi P., Faraut T., Masiga C.W., Pompanon F., Rosen B.D., Stella A., Van Tassell C.P., Tosser-Klopp G., VarGoats Consortium. VarGoats project: a dataset of 1159 whole-genome sequences to dissect Capra hircus global diversity. Genetics, Selection, Evolution: GSE, 2021, 53(1): 86 CrossRef
  47. Belay S., Belay G., Nigussie H., Jian-Lin H., Tijjani A., Ahbara A. M., Tarekegn G. M., Woldekiros H.S., Mor S., Dobney K., Lebrasseur O., Hanotte O., Mwacharo J. M. Whole-genome resource sequences of 57 indigenous Ethiopian goats. Scientific Data, 2024, 11(1): 139 CrossRef
  48. Yang J., Wang D.F., Huang J.H., Zhu Q.H., Luo L.Y., Lu R., Xie X.L., Salehian-Dehkordi H., Esmailizadeh A., Liu G.E., Li M.H. Structural variant landscapes reveal convergent signatures of evolution in sheep and goats. Genome Biology, 2024, 25(1): 148 CrossRef
  49. Mulsant P., Lecerf F., Fabre S., Schibler L., Monget P., Lanneluc I., Pisselet C., Riquet J., Monniaux D., Callebaut I., Cribiu E., Thimonier J., Teyssier J., Bodin L., Cognié Y., Chitour N., Elsen J.M. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(9): 5104-5109 CrossRef
  50. Tao L., He X., Jiang Y., Liu Y., Ouyang Y., Shen Y., Hong Q., Chu M. Genome-wide analyses reveal genetic convergence of prolificacy between goats and sheep. Genes (Basel), 2021, 12(4): 480 CrossRef
  51. Zheng Z., Wang X., Li M., Li Y., Yang Z., Wang X., Pan X., Gong M., Zhang Y., Guo Y., Wang Y., Liu J., Cai Y., Chen Q., Okpeku M., Colli L., Cai D., Wang K., Huang S., Sonstegard T.S., Esmailizadeh A., Zhang W., Zhang T., Xu Y., Xu N., Yang Y., Han J., Chen L., Lesur J., Daly K.G., Bradley D.G., Heller R., Zhang G., Wang W., Chen Y., Jiang Y. The origin of domestication genes in goats. Science Advances, 2020, 6(21): eaaz5216 CrossRef
  52. Li C., Wu Y., Chen B., Cai Y., Guo J., Leonard A.S., Kalds P., Zhou S., Zhang J., Zhou P., Gan S., Jia T., Pu T., Suo L., Li Y., Zhang K., Li L., Purevdorj M., Wang X., Li M., Wang Y., Liu Y., Huang S., Sonstegard T., Wang M.S., Kemp S., Pausch H., Chen Y., Han J.L., Jiang Y., Wang X. Markhor-derived introgression of a genomic region encompassing PAPSS2 confers high-altitude adaptability in Tibetan goats. Molecular Biology and Evolution, 2022, 39(12): msac253 CrossRef
  53. Arslan M. Whole-genome sequencing and genomic analysis of Norduz goat (Capra hircus). Mammalian Genome, 2023, 34(3): 437-448 CrossRef
  54. Di Gerlando R., Mastrangelo S., Moscarelli A., Tolone M., Sutera A.M., Portolano B., Sardina M.T. Genomic structural diversity in local goats: analysis of copy-number variations. Animals (Basel), 2020, 10(6): 1040 CrossRef
  55. Zhang R.Q., Wang J.J., Zhang T., Zhai H.L., Shen W. Copy-number variation in goat genome equence: a comparative analysis of the different litter size trait groups. Gene, 2019, 696: 40-46 CrossRef
  56. Zhou A., Ding Y., Zhang X., Zhou Y., Liu Y., Li T., Xiao L. Whole-genome resequencing reveals new mutations in candidate genes for Beichuan-white goat prolificacya. Animal Biotechnology, 2024, 35(1): 2258166 CrossRef
  57. Tarasova E.I., Frolov A.N., Lebedev S.V., Romanov M.N. Landmark native breed of the Orenburg goats: progress in its breeding and genetics and future prospects. Animal Biotechnology, 2023, 34(9): 5139-5154 CrossRef
  58. Xiong J., Bao J., Hu W., Shang M., Zhang L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Frontiers in Genetics, 2023, 13: 1044017 CrossRef
  59. Saif R., Henkel J., Mahmood T., Ejaz A., Ahmad F., Zia S. Detection of whole genome selection signatures of Pakistani Teddy goat. Molecular Biology Reports, 2021, 48(11): 7273-7280 CrossRef
  60. Sheriff O., Ahbara A.M., Haile A., Alemayehu K., Han J.L., Mwacharo J.M. Whole-genome resequencing reveals genomic variation and dynamics in Ethiopian indigenous goats. Frontiers in Genetics, 2024, 15: 1353026 CrossRef
  61. Gebreselase H.B., Nigussie H., Wang C., Luo C. Genetic diversity, population structure and selection signature in Begait goats revealed by whole-genome sequencing. Animals (Basel), 2024, 14(2): 307 CrossRef
  62. Li C., Wang X., Li H., Ahmed Z., Luo Y., Qin M., Yang Q., Long Z., Lei C., Yi K. Whole-genome resequencing reveals diversity and selective signals in the Wuxue goat. Animal Genetics, 2024, 55(4): 575-587 CrossRef
  63. Liu Z., Li H., Luo Y., Li J., Sun A., Ahmed Z., Zhang B., Lei C., Yi K. Comprehensive whole-genome resequencing unveils genetic diversity and selective signatures of the Xiangdong black goat. Frontiers in Genetics, 2024, 15: 1326828 CrossRef
  64. Ni J., Xian M., Ren Y., Yang L., Li Y., Guo S., Ran B., Hu J. Whole-genome resequencing reveals candidate genes associated with milk production trait in Guanzhong dairy goats. Animal Genetics, 2024, 55(1): 168-172 CrossRef
  65. An Z.X., Shi L.G., Hou G.Y., Zhou H.L., Xun W.J. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Animal, 2024, 18(6): 101147 CrossRef
  66. HuangFu R., Li H., Luo Y., He F., Huan C., Ahmed Z., Zhang B., Lei C., Yi K. Illuminating genetic diversity and selection signatures in Matou goats through whole-genome sequencing analysis. Genes (Basel), 2024, 15(7): 909 CrossRef
  67. Chen Q., Huang Y., Wang Z., Teng S., Hanif Q., Lei C., Sun J. Whole-genome resequencing reveals diversity and selective signals in Longlin goat. Gene, 2021, 771: 145371 CrossRef
  68. Chen Q., Chai Y., Zhang W., Cheng Y., Zhang Z., An Q., Chen S., Man C., Du L., Zhang W., Wang F. Whole-genome sequencing reveals the genomic characteristics and selection signatures of Hainan black goat. Genes (Basel), 2022, 13(9): 1539 CrossRef
  69. Sun X., Guo J., Li L., Zhong T., Wang L., Zhan S., Lu J., Wang D., Dai D., Liu G.E., Zhang H. Genetic diversity and selection signatures in Jianchang Black goats revealed by whole-genome sequencing data. Animals (Basel), 2022, 12(18): 2365 CrossRef
  70. Wu C., Ma S., Zhao B., Qin C., Wu Y., Di J., Suo L., Fu X. Drivers of plateau adaptability in cashmere goats revealed by genomic and transcriptomic analyses. BMC Genomics, 2023, 24(1): 428 CrossRef
  71. Rong Y., Wang X., Na Q., Ao X., Xia Q., Guo F., Han M., Ma R., Shang F., Liu Y., Lv Q., Wang Z., Su R., Zhang Y., Wang R. Genome-wide association study for cashmere traits in Inner Mongolia cashmere goat population reveals new candidate genes and haplotypes. BMC Genomics,2024, 25(1): 658 CrossRef
  72. Zhao Q., Huang C., Chen Q., Su Y., Zhang Y., Wang R., Su R., Xu H., Liu S., Ma Y., Zhao Q., Ye S. Genomic inbreeding and runs of homozygosity analysis of Cashmere goat. Animals (Basel), 2024, 14(8): 1246 CrossRef
  73. E G.X., Zhao Y.J., Huang Y.F. Selection signatures of litter size in Dazu black goats based on a whole genome sequencing mixed pools strategy. Molecular Biology Reports, 2019, 46(5): 5517-5523 CrossRef
  74. Song Y., Han J., Cao F., Ma H., Cao B., An X. Endometrial genome-wide DNA methylation patterns of Guanzhong dairy goats at days 5 and 15 of the gestation period. Animal Reproduction Science, 2019, 208: 106124 CrossRef
  75. Xin D., Bai Y., Bi Y., He L., Kang Y., Pan C., Zhu H., Chen H., Qu L., Lan X. Insertion/deletion variants within the IGF2BP2 gene identified in reported genome-wide selective sweep analysis reveal a correlation with goat litter size. Journal of Zhejiang University. Science. B, 2021, 22(9): 757-766 CrossRef
  76. Zhang T., Wang Z., Li Y., Zhou B., Liu Y., Li J., Wang R., Lv Q., Li C., Zhang Y., Su R. Genetic diversity and population structure in five Inner Mongolia Cashmere goat populations using whole-genome genotyping. Animal Bioscience, 2024, 37(7), 1168-1176 CrossRef
  77. Wang K., Liu X., Qi T., Hui Y., Yan H., Qu L., Lan X., Pan C. Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra hircus). Genomics, 2021, 113(1 Pt 1): 142-150 CrossRef
  78. Signer-Hasler H., Henkel J., Bangerter E., Bulut Z., VarGoats Consortium; Drögemüller C., Leeb T., Flury C. Runs of homozygosity in Swiss goats reveal genetic changes associated with domestication and modern selection. Genetics, Selection, Evolution: GSE, 2022, 54(1): 6 CrossRef
  79. Song C.F.L.Y., Zhang D.X., Jiao L., Wang G.M., Liu X.J. Anatomical observation of reproductive organs in intersex goats. Heilongjiang Animal Science and Veterinary Medicine, 2015, 16: 81 (in Chinese">CrossRef
  80. E G.X., Zhou D.K., Zheng Z.Q., Yang B.G., Li X.L., Li L.H., Zhou R.Y., Nai W.H., Jiang X.P., Zhang J.H., Hong Q.H., Ma Y.H., Chu M.X., Gao H.J., Zhao Y.J., Duan X.H., He Y.M., Na R.S., Han Y.G., Zeng Y., Jiang Y., Huang Y.F. Identification of a goat intersexuality-associated novel variant through genome-wide resequencing and hi-C. Frontiers in Genetics, 2021, 11: 616743 CrossRef
  81. Simon R., Lischer H.E.L., Pieńkowska-Schelling A., Keller I., Häfliger I.M., Letko A., Schelling C., Lühken G., Drögemüller C. New genomic features of the polled intersex syndrome variant in goats unraveled by long-read whole-genome sequencing. Animal Genetics, 2020, 51(3): 439-448 CrossRef
  82. Guo J., Jiang R., Mao A., Liu G.E., Zhan S., Li L., Zhong T., Wang L., Cao J., Chen Y., Zhang G., Zhang H. Genome-wide association study reveals 14 new SNPs and confirms two structural variants highly associated with the horned/polled phenotype in goats. BMC Genomics, 2021, 22(1): 769 CrossRef
  83. Thanatsis N., Kaponis A., Koika V., Georgopoulos N.A., Decavalas G.O. Reduced Foxo3a, FoxL2, and p27 mRNA expression in human ovarian tissue in premature ovarian insufficiency. Hormones (Athens, Greece), 2019, 18(4): 409-415 CrossRef
  84. Yang R., Zhou D., Tan X., Zhao, Z., Lv Y., Tian X., Ren L., Wang Y., LiJ., Zhao, Y., Zhang J. Genome-wide association study of body conformation traits in Tashi goats (Capra hircus). Animals (Basel), 2024, 14(8): 1145 CrossRef
  85. Wu H., Yi Q., Ma W., Yan L., Guan S., Wang L., Yang G., Tan X., Ji P., Liu G. Genome-wide analysis for the melatonin trait associated genes and SNPs in dairy goat (Capra hircus) as the molecular breeding markers. Frontiers in Genetics, 2023, 14: 1118367 CrossRef
  86. Saleh A.A., Xue L., Zhao Y. Screening Indels from the whole genome to identify the candidates and their association with economic traits in several goat breeds. Functional & Integrative Genomics, 2023, 23(1): 58 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)