PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.4.666eng

UDC: 639.3:597.4/.5:575.174:575.22

Acknowledgements:
Сarried out using the equipment of the Center for Collective Use “Bioresources and Bioengineering of Agricultural Animals”, the Ernst Federal Research Center for Animal Husbandry. Sterlet samples of several populations were provided by the USI “Bioresource Collection of water biological resources”, Russian Federal Research Institute of Fisheries and Oceanography (VNIRO).
The authors express their gratitude to OOO RTF Diana and the Union of Sturgeon Breeders for providing samples for research.
Supported financially by the Russian Science Foundation (grant No. 21-66-00007)

 

CHARACTERIZATION OF THE GENETIC STRUCTURE IN AQUACULTURE AND WILD STERLET (Acipenser ruthenus Linnaeus, 1758) POPULATIONS BASED ON MICROSATELLITE ANALYSIS

V.R. Kharzinova1 , V.V. Volkova1, V.I. Nikipelov1, A.V. Dotsev1,
A.E. Barmintseva2, N.V. Bardukov1, A.K. Nikipelova1,
A.S. Abdelmanova1, N.S. Myuge2, N.A. Zinovieva1

1Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail veronika0784@mail.ru (✉ corresponding author), moonlit_elf@mail.ru, vladnikipelovvij@mail.ru, asnd@mail.ru, bardukv-nikolajj@mail.ru, nikipelova_aminavij@mail.ru, abdelmanova@vij.ru,
n_zinovieva@mail.ru;
2Russian Federal Research Institute of Fisheries and Oceanography,19, Okruzhnoi proezd, Moscow,105187 Russia, e-mail bae69@mail.ru, mugue@mail.ru

ORCID:
Kharzinova V.R. orcid.org/0000-0002-8067-0404
Bardukov N.V. orcid.org/0000-0002-5497-2409
Volkova V.V. orcid.org/0000-0002-2080-0182
Nikipelova A.K. orcid.org/0009-0002-8248-7555
Nikipelov V.I. orcid.org/0009-0008-6411-2454
Abdelmanova A.S. orcid.org/0000-0003-4752-0727
Dotsev A.V. orcid.org/0000-0003-3418-25111
Myuge N.S. orcid.org/0000-0001-8957-1931
Barmintseva A.E. orcid.org/0009-0005-5870-5454
Zinovieva N.A. orcid.org/0000-0003-4017-6863

Final revision received June 14, 2024

Accepted July 22, 2024

 

Sterlet (Acipenser ruthenus L. 1758) is one of the smallest and short-cycle species among fish of the Acipenseridae family, with the widest distribution area. For conservation and proper use of this species which was commercially important in the recent past but now is in a depressed state, information on genetic diversity in its populations is crucial. In this work, based on the analysis of polymorphism of 12 microsatellite loci, we assessed the genetic variability of several hatchery and natural populations of sterlet from the basins of the White, Caspian, Kara, Azov and Black seas. The research was carried out in 2023-2024. Fragments of pectoral fins (n = 191) of aquaculture and wild individuals were used to isolate DNA. The origin of the aquaculture fish was as follows: the Oka (OK, n = 50, Mozhaisk production and experimental fish hatchery, Goretovo village, Mozhaisk Urban District, Moscow Province), Nizhnevolzhsky (NV, n = 34, ASTU aqua complex, Astrakhan, Astrakhan Province) and Sukhonovsky (SX, n = 35, RTF Diana, Kaduy river, Kaduysky District, Vologda Province). The wild fish samples represented five populations, the Kuibyshevskaya (KV, n = 16, Volga River, Republic of Tatarstan), Saratovskaya (SV, n = 16, Volga River, Saratov Province), Don (DN, n = 14, Don River, Rostov Province), Vyatskaya (VT, n = 16, Vyatka River, Republic of Tatarstan) and Yeniseiskaya (EN, n = 10 Yenisei River, Krasnoyarsk Territory). Polymorphism of 12 STR microsatellites, the Aru13, Spl-163, An20, LS-68, AoxD161, AfuG 41, Afu 68 b, AfuG 51, LS-39, AfuG 63, AfuG 112, Aru18 was determined using genetic analyzers (an ABI3130xl, Applied Biosystems, USA and NANOFOR 05, NPK Synthol, Russia). To assess genetic diversity, allelic diversity (AR) adjusted for sample size, observed (HO) heterozygosity, unbiased expected (UHE) heterozygosity and coefficient of inbreeding (UFIS) based on unbiased expected heterozygosity were calculated. To assess the origin, dispersion and relatedness, and to characterize the genetic structure and genetic relationships between the studied samples of sterlet, we used Principal Component Analysis (PCA) and calculated the values of the pairwise matrix genetic distances FST and Jost’s D, followed by construction of dendrograms “network of neighbors” in the SplitsTree 4.14.5 program. According to the results of genetic analysis, the group of aquaculture samples from ASTU (NV) had the lowest values of HO (0.566±0.098) and UHE(0.573±0.089). In all other seven sterlet populations, HO varied from 0.569 in SX to 0.708 in EN, and the UHE values were higher than 0.6. In the seven studied sterlet groups, low positive values of the inbreeding coefficient (FIS) were noted, the confidence interval (CI 95 %) of which overlapped the zero value, indicating unreliable deviations of the number of heterozygotes from that theoretically expected in these samples. The exception was the Yenisei sterlet population with negative values of the inbreeding coefficient, indicating an excess of heterozygotes (UFIS(EN) = -0.1).The use of several statistical approaches revealed that the Yenisei population is the most isolated in genetic structure. Vice versa, similarity in the frequency of common alleles, common genetic structure and a low level of genetic differentiation were identified between groups of fish belonging to the Volga-Caspian (Oka, Upper Volga, Middle Volga and Vyatka origin) and Azov-Black Sea (Don population) basins. The data obtained in our work on the genetic diversity, genetic similarities and differences between individual hatchery herds of sterlet, as well as wild populations of the Caspian, Kara, Azov-Black Sea basins can be used to plan the broodstocks management and the conservation of the unique gene pool of the species A. ruthenus. To expand our understanding of the genetic structure of the Russian sterlet gene pool, these studies will be continued on larger samples and a wider range of samples from other aquaculture stocks and natural populations.

Keywords: Acipenser ruthenus, sterlet, aquaculture, wild populations, genetic diversity, genetic structure, STR.

 

REFERENCES

  1. Makeeva A.P., Pavlov D.S., Pavlov D.A. Atlas molodi presnovodnykh ryb Rossii [Atlas of young freshwater fish of Russia]. Moscow, 2011 (in Russ.).
  2. Volosnikov G.I. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta, 2017, 2(64): 67-72 (in Russ.).
  3. Ruban G.I., Khodorevskaya R.P., Koshelev V.N. O sostoyanii osetrovykh v Rossii. Astrakhanskiy vestnik ekologicheskogo obrazovaniya, 2015, 1(31): 42-50 (in Russ.).
  4. Niu X., Wang X., Zhang Y., Zhao Z., Fan E. Integration and application of sturgeon identification methods. Biodiversity Science, 2022, 30(6): 22034 CrossRef
  5. IUCN Biodiversity Assessment & Knowledge Team: Red List Unit. The IUCN Red List of Threatened Species. Available: https://www.iucnredlist.org/search?query=Sturgeon&searchType=species. Accessed: 05/01/2024.
  6. Bykov A.D., Brazhnik S.Yu. Voprosy rybolovstva, 2022, 23(3): 5-30 CrossRef (in Russ.).
  7. Chebanov M.S., Galich E.V. Rukovodstvo po iskusstvennomu vosproizvodstvu osetrovykh ryb. Tekhnicheskie doklady FAO po rybnomu khozyaystvu i akvakul’ture. № 558 [Guidelines for the artificial propagation of sturgeons. FAO Fisheries and Aquaculture Technical Reports No. 558]. Ankara, 2013 (in Russ.).
  8. FGBU «Glavrybvod». Deyatel’nost’ [Activity]. Available: https://glavrybvod.ru/. Accessed: 05/01/2024 (in Russ.).
  9. Bugaev L.A., Nebesikhina N.A., Alimova A.Sh., Gaydamachenko V.N. Materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, Vladivostok, 26-27 oktyabrya 2023 goda [Proc. Int. Conf., Vladivostok, October 26-27, 2023]. Vladivostok, 2023: 140-146 (in Russ.).
  10. Shcherbakova V.D., Barmintseva A.E., Safronov A.S. Materialy XI Mezhdunarodnoy nauchno-prakticheskoy konferentsii molodykh uchenykh i spetsialistov, St. Petersburg, 25-26 sentyabrya 2023 goda [Proc. XI Int. Conf. young scientists and specialists, St. Petersburg, September 25-26, 2023]. Moscow, 2023: 243-245 (in Russ.).
  11. Sudakova N.V., El’khetavi A., Vasil’eva L.M., Anokhina A.Z. Tekhnologii pishchevoy i pererabatyvayushchey promyshlennosti APK — produkty zdorovogo pitaniya, 2019, 2(28): 40-45 (in Russ.).
  12. GK «Agrikonsalt». Rynok osetrovykh: sostoyanie i perspektivy [Sturgeon market: status and prospects]. Available: https://agricons.ru/publikatsii/nashi-publikatsii/rynok-osetrovykh-sostoyanie-i-perspektivy/. Accessed: 05/02/2024 (in Russ.).
  13. Pavlyuk A.A., Gorbenko E.V. Sbornik tezisov dokladov uchastnikov pula nauchno-prakticheskikh konferentsiy, Sochi, 23-27 yanvarya 2020 goda [Collection of abstracts of reports of participants of the pool of scientific and practical conferences, Sochi, January 23-27, 2020]. Kerch’, 2020: 220-222 (in Russ.).
  14. Vasil’eva L.M. Sbornik statey Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Akvakul’tura osetrovykh ryb: problemy i perspektivy», Astrakhan’, 10-12 oktyabrya 2017 goda [Proc. Int. Conf. «Aquaculture of sturgeon fish: problems and prospects», Astrakhan, October 10-12, 2017]. Astrakhan’, 2017: 7-10 (in Russ.).
  15. Wenne R. Microsatellites as molecular markers with applications in exploitation and conservation of aquatic animal populations. Genes (Basel), 2023, 14(4): 808 CrossRef
  16. Hauser L., Baird M., Hilborn R., Seeb L.W., Seeb J.E. An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population. Mol. Ecol. Resour., 2011, 11: 150-161 CrossRef
  17. Wilson A.B., Ashe J., Padron M., Hamilton H. Comprehensive genus-wide screening of seahorse microsatellite loci identifies priority species for conservation assessment. Conserv. Genet. Resour.,2021, 13: 221-230. CrossRef
  18. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 1989, 17: 6463-6471 CrossRef
  19. Edwards A., Civitello A., Hammond H.A., Caskey C.T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. The American Journal of Human Genetics, 1991, 49(4): 746-775.
  20. Baron E.E., Mário L.M., Verneque R.S., Coutinho L.L. Parentage testing and effect of misidentification on the estimation of breeding value in Gir cattle. Genet. Mol Biol., 2002, 25(4): 389-394 CrossRef
  21. Kuleung C., Baenziger P.S., Dweikat I. Transferability of SSR markers among wheat, rye and triticale. Theor. Appl .Genet., 2004, 108(6) :1147-1150 CrossRef
  22. Yang W., Kang X., Yang Q., Lin Y., Fang M. Review on the development of genotyping methods for assessing farm animal diversity. Anim. Sci. Biotechnol., 2013, 4(1): 2 CrossRef
  23. Kozlova N., Bazelyuk N., Fayzulina D., Stonogina E. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Rybnoe khozyaystvo, 2013, 3: 113-117 (in Russ.).
  24. Barmintseva A.E., Myuge N.S. Genetika, 2013, 49(9): 1093 CrossRef (in Russ.).
  25. Ignashev A.A., Shcherbakova V.D., Borisov M.Ya., Barmintseva A.E., Dumnich N.V., Myuge N.S. Transformatsiya ekosistem, 2023, 6(4): 79-95 CrossRef (in Russ.). 
  26. Fazekas G., Kovács G., Sándor Z.J., Bogár K., Géczi A., Kovács B. Genetic characterization of endangered Sterlet (Acipenser ruthenus, Linnaeus 1758) Gene Bank Broodstock, natural and cultured populations in Hungary. Fishes, 2024, 9: 201 CrossRef
  27. Alimova A.Sh., Nebesikhina N.A., Abrosimova E.B. Materialy Vserossiyskoy (natsional’noy) nauchno-prakticheskoy konferentsii «Aktual’nye problemy nauki i tekhniki», Rostov-na-Donu, 16-18 marta 2022 goda [Proc. All-Russian (national) scientific and practical conference «Actual problems of science and technology», Rostov-on-Don, March 16-18, 2022]. Rostov-na-Donu, 2022: 133-134 (in Russ.).
  28. Hu Y., Liu X., Yang J., Xiao K., Wang B., Du H. Development and characterization of a duplex PCR assay in Chinese sturgeon (Acipenser sinensis) for genetic analysis. Sci. Rep., 2020, 10(1): 3451 CrossRef
  29. Becker R.A., Wilks A.R., Brownrigg R., Minka T.P., Deckmyn A. Draw geographical maps. R package version 3.3.0. 2018. Available: https://CRAN.R-project.org/package=maps. No date.
  30. Nikipelov V.I., Kharzinova V.R., Volkova V.V., Nikipelova A.K., Bardukov N.V., Grozesku Yu.N., Zinov’eva N.A. Izvestiya NV AUK, 2024. 3(75): 273-282 CrossRef (in Russ.).
  31. Kalinowski S.T., Taper M.L. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conservation Genetics, 2006, 7(6): 991-995 CrossRef
  32. Keenan J.D., Hotez P.J., Amza A., Stoller N.E., Gaynor B.D., Porco T.C., Lietman T.M. Elimination and eradication of neglected tropical diseases with mass drug administrations: a survey of experts. PLoS Neglected Tropical Diseases, 2013, 7(12): 2562 CrossRef
  33. Jombart T., Ahmed I. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 2011, 27(21): 3070-3071 CrossRef
  34. Wickham H. Ggplot2: elegant graphics for data analysis (use R!). Springer, New York, 2009.
  35. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38(6): 1358-1370 CrossRef
  36. Jost L. G(ST) and its relatives do not measure differentiation. Molecular Ecology, 2008, 17: 4015-4026 CrossRef
  37. Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 2006, 23(2): 254-267 CrossRef
  38. R Core Team. R: A language and environment for statistical computing. R Foundation for statistical computing. Vienna, Austria, 2012. Available: https://www.semanticscholar.org/paper/R%3A-A-language-and-environment-for-statistical-Team/659408b243cec55de8d0a3bc51b81173007aa89b. No date.
  39. Sharma R., Kishore A., Mukesh M., Ahlawat S., Maitra A., Pandey A.K., Tantia M.S. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers. BMC Genet., 2015, 16: 73 CrossRef
  40. Elhaik E. Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Sci. Rep., 2022, 12: 14683 CrossRef
  41. Boryakova E.E., Kochetkov I.B. Aktual’nye voprosy sovremennoy nauki,2009, 7-1: 6-11 (in Russ.).
  42. Garner B.A., Hoban S., Luikart G. IUCN Red List and the value of integrating genetics. Conservation Genetics, 2020, 21: 795-801 CrossRef
  43. Moghim M., Javanmard A., Pourkazemi M., Tan S., Panandam J., Kor D., Laloei F. Application of microsatellite markers for genetic conservation and management of Persian sturgeon (Acipenser persicus, Borodin, 1897) in the Caspian Sea. Journal of Applied Ichthyology, 2013, 29: 696-703 CrossRef
  44. Boscari E., Pujolar J.M., Dupanloup I., Corradin R., Congiu L. Captive breeding programs based on family groups in polyploid sturgeons. PLoS ONE, 2014, 9: e110951 CrossRef
  45. Song N., Nwafili S.A., Gao T.X. Genetic diversity and population structure of Chrysichthys nigrodigitatus from Niger Delta based on AFLP analysis. Biochemical Systematics and Ecology, 2011, 39(4-6): 320-327 CrossRef
  46. Abbas K., Zhou X., Li Y., Gao Z., Wang W. Microsatellite diversity and population genetic structure of yellowcheek, Elopichthys bambusa (Cyprinidae) in the Yangtze River. Biochemical Systematics and Ecology, 2010, 38(4): 806-812 CrossRef
  47. Cvijanović G., Adnadević T., Jarić I., Lenhardt M, Marić S. Genetic analysis of sterlet (Acipenser ruthenus L.) populations in the Middle and Lower Danube sections. North-Western Journal of Zoology, 2017, 13(1): 34-43.
  48. Pobedintseva M.A., Makunin A.I., Kichigin I.G., Kulemzina A.I., Serdyukova N.A., Romanenko S.A., Vorobieva N.V., Interesova E.A., Korentovich M.A., Zaytsev V.F., Mischenko A.V., Zadelenov V.A., Yurchenko A.A., Sherbakov D.Y., Graphodatsky A.S., Trifonov V.A. Population genetic structure and phylogeography of sterlet (Acipenser Ruthenus, Acipenseridae) in the Ob and Yenisei river basins. Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis. 2019, 30(1): 156-164 CrossRef
  49. Fopp-Bayat D., Kuzniar P., Kolman R., Liszewski T., Kucinski M. Genetic analysis of six sterlet (Acipenser ruthenus) populations —recommendations for the plan of restitution in the Dniester River. Iranian Journal of Fisheries Science, 2015, 14: 634-645.
  50. Barmintseva A.E., Myuge N.S. Genetika, 2018, 54(2): 216-223 CrossRef (in Russ.).
  51. Slyn’ko E.E., Slyn’ko Yu.V. Sbornik nauchnykh trudov po materialam Natsional’noy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem «Nauchno-prikladnye aspekty proizvodstva, pererabotki i veterinarno-sanitarnogo kontrolya sel’skokhozyaystvennoy produktsii», Yaroslavl’, 27-28 marta 2019 goda [Proc. National scientific and practical conference with international participation «Scientific and applied aspects of production, processing and veterinary and sanitary control of agricultural products», Yaroslavl, March 27-28, 2019]. Yaroslavl’, 2019: 150-154 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)