PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.4.658eng

UDC: 636.5:575.2

Acknowledgements:
Supported by the Ministry of Science and Higher Education of the Russian Federation, topic No. FGGN-2024-0015

 

SEARCH FOR GENES ASSOCIATED WITH THE AGE AT FIRST EGG IN LAYING HENS (Gallus gallus L.)

A.Yu. Dzhagaev , N.A. Volkova, N.A. Zinovieva

Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail alan_dz@inbox.ru (✉ corresponding author), natavolkova@inbox.ru, n_zinovieva@mail.ru

ORCID:
Dzhagaev A.Yu. orcid.org/0000-0001-7818-0142
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Volkova N.A. orcid.org/0000-0001-7191-3550

Final revision received April 08, 2024

Accepted May 20, 2024

 

The age of onset egg laying is an important selection trait that is considered when breeding poultry, especially when obtaining highly productive egg crosses. The homogeneity in this parameter of commercial laying hen populations becomes relevant due to synchronization of hens’ productive use and an increase in the overall egg production of the herd. The beginning of egg laying depends on several factors and primarily on the onset of females’ puberty. In poultry, a number of studies, including genome-wide analysis have shown the genetic determination of this trait and identified genetic markers for the time of puberty and the onset of egg production in laying hens. However, this issue still requires further elucidation with regard to peculiarities of species, breeds. crosses, and populations. The aim of the research was to search for single nucleotide polymorphisms (SNPs) and to identify genes associated with the onset of egg production in laying hens (Gallus gallus L.). The studies were conducted on F2 model resource population (n = 95) created by crossing two breeds, the Russian White and White Cornish contrasting in egg productivity (Ernst Federal Research Center for Animal Husbandry, 2023-2024). The poultry of F2 resource population were genotyped using medium density chips Illumina Chicken 60K SNP iSelect BeadChip (Illumina, Inc., USA). To estimate the age of laying onset, the 12-week-old birds were transferred to individual cages to record the laying of the first full-fledged egg. Based on the obtained genotypic and phenotypic data, a GWAS analysis was carried out using PLINK 1.9 software (https://www.cog-genomics.org/plink/). It was found that the laying hens of the resource population were highly variable in the age ar egg laying initiation, the intrapopulation differences reached 58.2 %. Based on the GWAS analysis, eight significant (р < 1,05×10-4) SNPs associated with the trait and located on chromosome GGA3 and 60 genes in the regions of the detected SNPs were identified, including four genes, the AIDA, NKAIN2, LIN9, and MAP4K3 which coincide with the positions of the revealed SNPs. Our findings can be used in genomic selection for increasing egg productive potential.

Keywords: Gallus gallus, chicken, GWAS, SNPs, candidate genes, egg productivity, age at first egg.

 

REFERENCES

  1. Fisinin V.I., Buyarov V.S., Buyarov A.V., Shumetov V.G. Agrarnaya nauka, 2018, 2: 30-38 (in Russ.).
  2. Chomchuen K., Tuntiyasawasdikul V., Chankitisakul V., Boonkum W. Genetic Evaluation of body weights and egg production traits using a multi-trait animal model and selection index in thai native synthetic chickens (Kaimook e-san2). Animals, 2022, 12(3): 335 CrossRef
  3. Buyarov V.S., Royter Ya.S., Kavtarashvili A.Sh., Chervonova I.V., Buyarov A.V. Vestnik agrarnoy nauki, 2019, 4(79): 46-55 CrossRef (in Russ.).
  4. Shtele A.L. Problem of egg productivity in hens and its early prediction. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2014, 6: 26-35 CrossRef
  5. Tan Y.G., Xu X.L., Cao H.Y., Zhou W., Yin Z.Z. Effect of age at first egg on reproduction performance and characterization of the hypothalamo-pituitary-gonadal axis in chickens. Poultry Science,2021, 100(9): 101325 CrossRef
  6. Xu H., Zeng H., Luo C., Zhang D., Wang Q., Sun L., Yang L., Zhou M., Nie Q., Zhang X. Genetic effects of polymorphisms in candidate genes and the QTL region on chicken age at first egg. BMC Genetics, 2011, 12: 33 CrossRef
  7. He Z., Ouyang Q., Chen Q., Song Y., Hu J., Hu S., He H., Li L., Liu H., Wang J. Molecular mechanisms of hypothalamic-pituitary-ovarian/thyroid axis regulating age at first egg in geese. Poultry Science,2024, 103(3): 103478 CrossRef
  8. Vargas D., Galínde R., Basilio V., Martinez G. Age at the first egg in Japanese quail (Coturnix coturnix japonica) under experimental conditions. Revista Cientifica de la Facultad de Ciencias Veterinarias de la Universidad del Zulia, 2009, 19: 181-186.
  9. Balcha K.A, Mengesha Y.T, Senbeta E.K., Zeleke N.A. Evaluation of different traits from day-old to age at first eggs of Fayoumi and White leghorn chickens and their reciprocal crossbreeds. Journal of Advanced Veterinary and Animal Research, 2021, 8(1): 1-6 CrossRef
  10. Mesele T.L. Reproduction and production performance of improved chickens, their production constraints, and opportunities under Ethiopian conditions. Tropical Animal Health and Production, 2023, 55(4): 245 CrossRef
  11. Akhmetova L.T., Efimov D.N., Alimov A.M., Sibgatullin Zh.Zh., Akhmetova R.T., Aliev M.Sh. Application of feed additive vinivet in poultry. II. Development of specific immunity and productivity in chickens. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2012, 6: 83-87 CrossRef (in Russ.).
  12. De Juan A.F., Scappaticcio R., Aguirre L., Mateos G.G., Camara L. Effects of the composition of the pre-peak diet fed from 18 to 29 wk of age on egg production, egg quality, and the development of the gastrointestinal tract of brown-egg laying hens from 18 to 61 wk. Journal of Applied Poultry Research, 2024, 33(2): 100415 CrossRef
  13. Ruichen B., Meixue Y., Xiangze L., Fangshen G., Zeqiong H., Jia H., Waseem A., Tiantian X., Wei L., Zhong W. Effects of chlorogenic acid on productive and reproductive performances, egg quality, antioxidant functions, and intestinal microenvironment in aged breeder laying hens. Poultry Science, 2024, 103(9): 104060 CrossRef
  14. Baxter M., Bédécarrats G.Y. Evaluation of the impact of light source on reproductive parameters in laying hens housed in individual cages. The Journal of Poultry Science, 2019, 56(2): 148-158 CrossRef
  15. Wang S.D., Jan D.F., Yeh L.T., Wu G.C., Chen L.R. Effect of exposure to long photoperiod during the rearing period on the age at first egg and the subsequent reproductive performance in geese. Animal Reproduction Science, 2002, 73(3-4): 227-234 CrossRef
  16. Kavtarashvili A.Sh., Fisinin V.I., Buyarov V.S., Kolokolnikova T.N. The effects of lighting regimes on the oviposition time and egg quality in laying hens (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(6): 1095-1109 CrossRef
  17. Siopes T.D. Initiation of egg production by turkey breeder hens: Sexual maturation and age at lighting. Poultry Science, 2010, 89(7): 1490-1496 CrossRef
  18. Liu Z., Yang N., Yan Y., Li G., Liu A., Wu G., Sun C. Genome-wide association analysis of egg production performance in chickens across the whole laying period. BMC Genetics, 2019, 20(1): 67 CrossRef
  19. Chen A., Zhao X., Wen J., Zhao X., Wang G., Zhang X., Ren X., Zhang Y., Cheng X., Yu X., Mei X., Wang H., Guo M., Jiang X., Wei G., Wang X., Jiang R., Guo X., Ning Z., Qu L. Genetic parameter estimation and molecular foundation of chicken egg-laying trait. Poultry Science, 2024, 103(6): 103627 CrossRef
  20. Junyan B., Xinle W., Jingyun L., Longwei W., Hongdeng F., Mengke Ch., Fanlin Z.g, Xiaoning L., Yuhan H.  Research Note: Association of IGF-1R gene polymorphism with egg quality and carcass traits of quail (Coturnix japonica). Poultry Science, 2023, 102(6): 102617 CrossRef
  21. Wu X., Yan M.J., Lian S.Y., Liu X.T., Li A. GH gene polymorphisms and expression associated with egg laying in muscovy ducks (Cairina moschata). Hereditas, 2014, 151(1): 14-19 CrossRef
  22. Kulibaba R.A. Polymorphism of growth hormone, growth hormone receptor, prolactin and prolactin receptor genes in connection with egg production in Poltava clay chicken. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 2: 198-207 CrossRef (in Engl.). 
  23. Zhang G., Zhang L., Wei Y., Wang J., Ding F., Dai G., Xie K. Polymorphisms of the myostatin gene and its relationship with reproduction traits in the Bian chicken. Animal Biotechnology, 2012, 23(3): 184-193 CrossRef
  24. Ou J.T., Tang S.Q., Sun D.X., Zhang Y. Polymorphisms of three neuroendocrine-correlated genes associated with growth and reproductive traits in the chicken. Poultry Science, 2009, 88(4): 722-727 CrossRef
  25. Chen A., Wang Q., Zhao X., Wang G., Zhang X.,  Ren X.,  Zhang Ya., Cheng X., Yu X., Mei X., Wang H., Guo M., Jiang X., Wei G., Wang X., Jiang R., Guo X., Ning Z., Qu L. Molecular genetic foundation of a sex-linked tailless trait in Hongshan chicken by whole genome data analysis. Poultry Science, 2024, 103(6): 103685 CrossRef
  26. Ma X., Ying F., Li Z., Bai L., Wang M., Zhu D., Liu D., Wen J., Zhao G., Liu R. New insights into the genetic loci related to egg weight and age at first egg traits in broiler breeder. Poultry Science, 2024, 103(5): 103613 CrossRef
  27. Zhao Q., Chen J., Zhang X., Xu Z., Lin Z., Li H., Lin W., Xie Q. Genome-wide association analysis reveals key genes responsible for egg production of lion head goose. Frontiers in Genetics, 2020, 10: 1391 CrossRef
  28. Gao G., Gao D., Zhao X., Xu S., Zhang K., Wu R., Yin Ch., Li J., Xie Y., Hu S., Wang Q. Genome-wide association study-based identification of SNPs and haplotypes associated with goose reproductive performance and egg quality. Frontiers in Genetics, 2021, 12: 602583 CrossRef
  29. Haqani M.I., Nakano M., Nagano A.J., Nakamura Y., Tsudzuki M. Association analysis of production traits of Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Scientific Reports, 2023, 13: 21307 CrossRef
  30. Haqani M.I., Nomura S., Nakano M., Goto T., Nagano A.J., Takenouchi A., Nakamura Y., Ishikawa A., Tsudzuki M. Mapping of quantitative trait loci controlling egg-quality and -production traits in Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Genes, 2021, 12: 735 CrossRef
  31. Sun Y., Zhang Y., Wu Q., Lin R., Chen H., Zhang M., Lin J., Xu E., Li M., Cai Y., Deng F., Yue W., Pan H., Jiang X., Li Y. Whole-genome sequencing identifies potential candidate genes for egg production traits in laying ducks (Anas platyrhynchos). Scientific Reports, 2023, 13: 1821 CrossRef
  32. Tao Z., Song W., Zhu C., Xu W., Liu H., Zhang S., Huifang L. Comparative transcriptomic analysis of high and low egg-producing duck ovaries. Poultry Science, 2017, 96(12): 4378-4388 CrossRef
  33. Abdelmanova A.S., Dotsev A.V., Romanov M.N., Stanishevskaya O.I., Gladyr E.A., Rodionov A.N., Vetokh A.N., Volkova N.A., Fedorova E.S., Gusev I.V., Griffin D.K., Brem G., Zinovieva N.A. Unveiling comparative genomic trajectories of selection and key candidate genes in egg-type Russian White and meat-type White Cornish chickens. Biology, 2021, 10: 876 CrossRef
  34. Romanov M.N., Shakhin A.V., Abdelmanova A.S., Volkova N.A., Efimov D.N., Fisinin V.I., Korshunova L.G., Anshakov D.V., Dotsev A.V., Griffin D.K., Zinovieva N.A. Dissecting selective signatures and candidate genes in grandparent lines subject to high selection pressure for broiler production and in a local Russian chicken breed of Ushanka. Genes, 2024, 15(4): 524 CrossRef
  35. Yuan X., Cui H., Jin Y., Zhao W., Liu X., Wang Y., Ding J., Liu L., Wen J., Zhao G. Fatty acid metabolism-related genes are associated with flavor-presenting aldehydes in Chinese local chicken. Frontiers in Genetics, 2022, 13: 902180 CrossRef
  36. Kanlisi R.A., Amuzu-Aweh E.N., Naazie A., Otsyina H.R., Kelly T.R., Gallardo R.A., Lamont S.J., Zhou H., Dekkers J., Kayang B.B. Genetic architecture of body weight, carcass, and internal organs traits of Ghanaian local chickens. Frontiers in Genetics, 2024, 15: 1297034 CrossRef
  37. Vetokh A.N., Dzhagaev A.Yu., Belous A.A., Volkova N.A., Zinovieva N.A. Genome-wide association studies of chicken (Gallus gallus L.) breast meat color characteristics. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(6): 1068-1078 CrossRef
  38. Li Y., Zhai B., Yuan P., Fan S., Jin W., Li W., Sun G., Tian Y., Liu X., Kang X., Li G. MiR-29b-1-5p regulates the proliferation and differentiation of chicken primary myoblasts and analysis of its effective targets. Poultry Science, 2022, 101(2): 101557 CrossRef
  39. Ibelli A.M.G., Peixoto J.O., Zanella R., Gouveia J.J.S., Cantão M.E., Coutinho L.L., Marchesi J.A.P., Pizzol M.S.D., Marcelino D.E.P., Ledur M.C. Downregulation of growth plate genes involved with the onset of femoral head separation in young broilers. Frontiers in Physiology, 2022, 13: 941134 CrossRef
  40. Seong H.-S., Kim Y.-S., Sa S.-J., Jeong Y., Hong J.-K., Cho E.-S. Genetic parameter estimation and genome-wide association analysis of social genetic effects on average daily gain in purebreds and crossbreds. Animals, 2022, 12: 2300 CrossRef
  41. Zhang Y., Lai J., Wang X., Li M., Zhang Y., Ji C., Chen Q., Lu S. Genome-wide single nucleotide polymorphism (SNP) data reveal potential candidate genes for litter traits in a Yorkshire pig population. Archives Animal Breeding, 2023, 66(4): 357-368 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)