PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.4.620eng

UDC: 636.39:575.174

Acknowledgements:
The equipment of the Center for Biological Resources and Bioengineering of Agricultural Animals (Ernst Federal Research Center for Animal Husbandry) was used.
Funded by the Ministry of Science and Higher Education of the Russian Federation (No. FGGN-2024-0015)

 

SEARCH FOR SIGNATURES OF SELECTION IN THE GENOMES OF DOMESTIC GOATS (Capra hircus L.) RAISED IN RUSSIA USING DETECTION OF ROH ISLANDS

Т.Е. Deniskova1 , А.V. Dotsev1, M.I. Selionova2, A.-M.M. Aibazov3,
N.А. Zinovieva1

1Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail horarka@yandex.ru (✉ corresponding author), asnd@mail.ru, n_zinovieva@mail.ru;
2Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127434 Russia, e-mail: selionova@rgau-msha.ru;
3All-Russian Research Institute of Sheep and Goat Breeding — Branch of the North Caucasian Agrarian Center, 15, Stavropol, 355017 Russia, e-mail velikii-1@yandex.ru

ORCID:
Deniskova T.E. orcid.org/0000-0002-5809-1262
Aibazov A.-M.M. orcid.org/0000-0002-3704-3210
Dotsev A.V. orcid.org/0000-0003-3418-2511
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Selionova M.I. orcid.org/0000-0002-9501-8080

Final revision received April 04, 2024

Accepted May 15, 2024

 

The genomes of modern populations of farm animals were shaped by long-term selection, signatures of which can be detected using bioinformatics approaches. Thus, runs of homozygosity (ROH) are used to analyze inbreeding in farm animal populations. Moreover, ROH are suitable for identifying signatures of selection through ROH islands. We have previously studied the distribution of runs of homozygosity in the genomes of goat groups bred in Russia. However, no information of signatures of selection in the genome of these goat groups is available. In this work, we performed the first search for signatures of selection in the genomes of goat breeds and populations raised in Russia. Genes within the ROH islands were identified at CHI12, CHI18, CHI25. Among the genes, we found functional candidates associated with wool (IFT88, CUX1) and milk (LATS2) productivity, regulating metabolism (LCAT, PLA2G15, SMPD3), growth (SLC12A4, SH2B2), reproductive (MRPL57, MICU2, SAP18) and immune-adaptive functions (DDX28, IL17D). The research aim is to search for the genes, which underlay selection pressure in the genomes of domestic goats bred in Russia based on identification of ROH islands. The sample of goats (Capra hircus L,) included the following breeds: Altai White Down (n = 20), Altai Mountain (n = 33), Dagestan Downy (n = 34), Dagestan Wool (n = 20), Orenburg (n = 32) and Soviet Mohair (n = 29), as well as a population of Karachaev local goats (n = 36). We conducted earlier genomic studies of Saanen breed populations raised in Russia. Therefore, in this work, SNP profiles of the Saanen breed (n = 33) were used as a comparison group. DNA was extracted from ear notches using the DNA-Extran-2 kit (NPF Sintol LLC, Russia). SNP profiles were generated using the Illumina Goat SNP50 BeadChip DNA chip (Illumina, Inc., USA) in our previous study. The work was carried out at the Ernst Federal Science Center for Animal Husbandry in 2021-2024. The individual Neighbor Net graph was constructed in SplitsTree 4.14.5. A consecutive runs method implemented in the R package “detectRUNS” was used to estimate ROH. The overlapping ROH with the minimal ROH length of 0.3 Mb shared by more than 50 % of the individuals within the group were selected as an indicator of possible ROH islands in the genome. Search for candidate genes located within ROH islands was performed using Genome Data Viewer (NCBI) according to domestic goat genome assembly CHIR_1.0 (GCF_000317765.1). The gene ontology was analyzed using the online resource DAVID (Database for Annotation, Visualization and Integrated Discovery). ROH islands were found on the twelfth chromosome (CHI12) in the Altai Mountain, Soviet Mohair, and Dagestan Downy breeds, and on the eighteenth (CHI18) and twenty-fifth chromosomes (CHI25) in the Altai Mountain and Altai White Downy breeds. Genes were identified and annotated in all ROH islands. The ROH island on CHI12 included thirteen genes, which were common for four breeds, among which the most significant were the genes LATS2 (activation of lactogenesis and potential impact on reproduction), IL17D (immune function), IFT88 (association with cashmere fiber fineness), MRPL57 (regulation of the follicular phase of the estrous cycle), MICU2 and SAP18 (ovarian and embryonic development, spermatogenesis). Sixteen genes regulating lipid metabolism (LCAT, PLA2G15, and SMPD3), involved in the response to hypoxia (DDX28), and associated with muscle fiber development (SLC12A4) were localized within the ROH island on CHI18. The genomic region at CHI25 included the genes PRKRIP, SH2B2, CUX1 and POLR2J. Among them the most promising genes were CUX1, which regulates the development of hair follicles, and SH2B2, which is associated with body size and growth. Thus, our study expands the understanding of the genomic architecture of local goat breeds and populations raised in Russia.

Keywords: SNP, ROH islands, homozygosity, candidate genes, domestic goats, selection signatures, local breeds.

 

REFERENCES

  1. Novopashina S.I., Sannikov M.Yu., Khatataev S.A., Kuz’mina T.N., Khmelevskaya G.N., Stepanova N.G., Tikhomirov A.I., Marinchenko T.E. Sostoyanie i perspektivnye napravleniya uluchsheniya geneticheskogo potentsiala melkogo rogatogo skota. Nauchnyy analiticheskiy obzor [Status and prospective improvement of genetic potential in small ruminants. Analytical review]. Moscow, 2019 (in Russ.).
  2. Ezhegodnik po plemennoy rabote v ovtsevodstve i kozovodstve v khozyaystvakh Rossiyskoy Federatsii (2022 god) /Pod redaktsiey G.I. Shichkin, G.F. Safina, Kh.A. Amerkhanov, V.V. Chernov, L.N. Grigoryan, G.N. Khmelevskaya, A.V. Ravicheva, N.G. Stepanov [Yearbook on breeding work in sheep and goat breeding in farms of the Russian Federation (2022). G.I. Shichkin, G.F. Safina, Kh.A. Amerkhanov, V.V. Chernov, L.N. Grigoryan, G.N. Khmelevskaya, A.V. Ravicheva, N.G. Stepanov (eds.)]. Moscow, 2023 (in Russ.).
  3. Selionova M.I., Trukhachev V.I., Aybazov A-M.M., Stolpovsky Yu.A., Zinovieva N.A. Genetic markers of goats (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(6): 1031-1048 CrossRef
  4. Dadousis C., Cecchi F., Ablondi M., Fabbri M.C., Stella A., Bozzi R. Keep Garfagnina alive. An integrated study on patterns of homozygosity, genomic inbreeding, admixture and breed traceability of the Italian Garfagnina goat breed. PLoS ONE, 2021, 16(1): e0232436 CrossRef
  5. Gorssen W., Meyermans R., Janssens S., Buys N. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species. Genetics, Selection, Evolution, 2021, 53(1): 2 CrossRef
  6. Bertolini F., Cardoso T.F., Marras G., Nicolazzi E.L., Rothschild M.F., Amills M., AdaptMap consortium. Genome-wide patterns of homozygosity provide clues about the population history and adaptation of goats. Genetics, Selection, Evolution, 2018, 50(1): 59 CrossRef
  7. Zinovieva N.A., Dotsev A.V., Sermyagin A.A., Deniskova T.E., Abdelmanova A.S., Kharzinova V.R., Sölkner J., Reyer H., Wimmers K., Brem G. Selection signatures in two oldest Russian native cattle breeds revealed using high-density single nucleotide polymorphism analysis. PLoS ONE, 2020, 15(11): e0242200 CrossRef
  8. Addo S., Jung L. An insight into the runs of homozygosity distribution and breed differentiation in Mangalitsa pigs. Frontiers in Genetics, 2022, 13: 909986 CrossRef
  9. Mészárosová M., Mészáros G., Moravčíková N., Pavlík I., Margetín M., Kasarda R. Within- and between-breed selection signatures in the original and improved Valachian sheep. Animals, 2022, 12(11): 1346 CrossRef
  10. Szmatoła T., Gurgul A., Jasielczuk I., Oclon E., Ropka-Molik K., Stefaniuk-Szmukier M., Polak G., Tomczyk-Wrona I., Bugno-Poniewierska M. Assessment and distribution of runs of homozygosity in horse breeds representing different utility types. Animals, 2022, 12(23): 3293 CrossRef
  11. Ballan M., Schiavo G., Bovo S., Schiavitto M., Negrini R., Frabetti A., Fornasini D., Fontanesi L. Comparative analysis of genomic inbreeding parameters and runs of homozygosity islands in several fancy and meat rabbit breeds. Animal Genetics, 2022, 53(6): 849-862 CrossRef
  12. Fedorova E.S., Dementieva N.V., Shcherbakov Y.S., Stanishevskaya O.I. Identification of key candidate genes in runs of homozygosity of the genome of two chicken breeds, associated with cold adaptation. Biology, 2022, 11(4): 547 CrossRef
  13. Signer-Hasler H., Henkel J., Bangerter E., Bulut Z., VarGoats Consortium, Drögemüller C., Leeb T., Flury C. Runs of homozygosity in Swiss goats reveal genetic changes associated with domestication and modern selection. Genetics, Selection, Evolution, 2022, 54(1): 6 CrossRef
  14. Sun X., Guo J., Li L., Zhong T., Wang L., Zhan S., Lu J., Wang D., Dai D., Liu G.E., Zhang H. Genetic diversity and selection signatures in Jianchang Black goats revealed by whole-genome sequencing data. Animals, 2022, 12(18): 2365 CrossRef
  15. Senczuk G., Macrì M., Di Civita M., Mastrangelo S., Del Rosario Fresno M., Capote J., Pilla F., Delgado J.V., Amills M., Martínez A. The demographic history and adaptation of Canarian goat breeds to environmental conditions through the use of genome-wide SNP data. Genetics, Selection, Evolution, 2024, 56(1): 2 CrossRef
  16. Ziegler T.E., Molina A., Ramón M., Sanchez M., Muñoz-Mejías E., Antonini A., Demyda-Peyrás S. Analysis of the genomic landscape of inbreeding in two divergent groups of Spanish Florida goats. Journal of Animal Breeding and Genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie, 2023, 140(3): 316-329 CrossRef
  17. Deniskova T.E., Dotsev A.V., Selionova M.I., Reyer H., Sölkner J., Fornara M.S., Aybazov A.M., Wimmers K., Brem G., Zinovieva N.A. SNP-based genotyping provides insight into the west Asian origin of Russian local goats. Frontiers in Genetics, 2021, 12: 708740 CrossRef
  18. Deniskova T.E., Dotsev A.V., Fornara M.S., Sermyagin A.A., Reyer H., Wimmers K., Brem G., Zinovieva N.A. The genomic architecture of the Russian population of Saanen goats in comparison with worldwide Saanen gene pool from five countries. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(2): 285-294 CrossRef
  19. International Goat Genome Consortium (IGGC). Goat Genome2013. Available: http://www.goatgenome.org. No date.
  20. Tosser-Klopp G., Bardou P., Bouchez O., Cabau C., Crooijmans R., Dong Y., Donnadieu-Tonon C., Eggen A., Heuven H.C., Jamli S., Jiken A.J., Klopp C., Lawley C.T., McEwan J., Martin P., Moreno C.R., Mulsant P., Nabihoudine I., Pailhoux E., Palhière I., Rupp R., Sarry J., Sayre B.L., Tircazes A., Jun W., Wang W., Zhang W., International Goat Genome Consortium. Design and characterization of a 52K SNP chip for goats. PLoS ONE, 2014, 9(1): e86227 CrossRef
  21. Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 2006, 23(2): 254-267 CrossRef
  22. Marras G., Gaspa G., Sorbolini S., Dimauro C., Ajmone-Marsan P., Valentini A., Williams J.L., Macciotta N.P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, 2015, 46(2): 110-121 CrossRef
  23. detectRUNS: Detect Runs of Homozygosity and Runs of Heterozygosity in Diploid Genomes. R package version 0.9.5. Available: https://cran.r-project.org/web/packages/detectRUNS/vignettes/detectRUNS.vignette.html. No date.
  24. Huang D., Sherman B., Lempicki R. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2009, 4(1): 44-57 CrossRef
  25. Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research, 2022, 50(W1): W216-W221 CrossRef
  26. Kargachakova T.B., Chikalev A.I. Ovtsy, kozy, sherstyanoe delo, 2016, 2: 9-10 (in Russ.).
  27. Musalaev Kh.Kh., Palaganova G.A., Abdullabekov R.A. Ovtsy, kozy, sherstyanoe delo, 2016, 2: 10-11 (in Russ.).
  28. Musalaev Kh.Kh. Rezul’taty skreshchivaniya grubosherstnykh koz s kozlami sovetskoy sherstnoy porody v usloviyakh vnutrigornogo Dagestana. Avtoreferat kandidatskoy dissertatsii[Results of crossing coarse-wooled goats with Soviet wool breed goats in the conditions of mountainous Dagestan.PhD Thesis]. Ordzhonikidze, 1972 (in Russ.).
  29. Kim E.S., Elbeltagy A.R., Aboul-Naga A.M., Rischkowsky B., Sayre B., Mwacharo J.M., Rothschild M.F. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity, 2016, 116(3): 255-264 CrossRef
  30. Bertolini F., Servin B., Talenti A., Rochat E., Kim E.S., Oget C., Palhière I., Crisà A., Catillo G., Steri R., Amills M., Colli L., Marras G., Milanesi M., Nicolazzi E, Rosen B.D., Van Tassell C.P., Guldbrandtsen B., Sonstegard T.S., Tosser-Klopp G., Stella A., Rothschild M.F., Joost S., Crepaldi P., AdaptMap consortium. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genetics, Selection, Evolution, 2018, 50(1): 57 CrossRef
  31. Lamartine J., Munhoz Essenfelder G., Kibar Z., Lanneluc I., Callouet E., Laoudj D., Lemaître G., Hand C., Hayflick S.J., Zonana J., Antonarakis S., Radhakrishna U., Kelsell D.P., Christianson A.L., Pitaval A., Der Kaloustian V., Fraser C., Blanchet-Bardon C., Rouleau G.A., Waksman G. Mutations in GJB6 cause hidrotic ectodermal dysplasia. Nature Genetics, 2000, 26(2): 142-144 CrossRef
  32. Ortolano S., Di Pasquale G., Crispino G., Anselmi F., Mammano F., Chiorini J.A. Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear. Proceedings of the National Academy of Sciences, 2008, 105(48): 18776-18781 CrossRef
  33. Deniskova T.E., Dotsev A.V., Zinov’eva N.A. Dostizheniya nauki i tekhniki APK, 2023, 37(9): 80-86 (in Russ.).
  34. Li Y., Chen Z., Fang Y., Cao C., Zhang Z., Pan Y., Wang Q. Runs of homozygosity revealed reproductive traits of Hu sheep. Genes, 2022, 13(10): 1848 CrossRef
  35. Wang W., Chen S., Qiao L., Zhang S., Liu Q., Yang K., Pan Y., Liu J., Liu W. Four markers useful for the distinction of intrauterine growth restriction in sheep. Animals, 2023, 13(21): 3305 CrossRef
  36. Fu X., Zhao B., Tian K., Wu Y., Suo L., Ba G., Ciren D., De J., Awang C., Gun S., Yang B. Integrated analysis of lncRNA and mRNA reveals novel insights into cashmere fineness in Tibetan cashmere goats. PeerJ, 2020, 8: e10217 CrossRef
  37. San Agustin J.T., Pazour G.J., Witman G.B. Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Molecular Biology of the Cell, 2015, 26(24): 4358-4372 CrossRef
  38. Yurchenko A.A., Deniskova T.E., Yudin N.S., Dotsev A.V., Khamiruev T.N., Selionova M.I., Egorov S.V., Reyer H., Wimmers K., Brem G., Zinovieva N.A., Larkin D.M. High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genomics, 2019, 20(Suppl 3): 294 CrossRef
  39. Elder L.A., Hinnant H.R., Mandella C.M., Claus-Walker R.A., Parrish L.M., Slanzon G.S., McConnel C.S. Differential gene expression in peripheral leukocytes of pre-weaned Holstein heifer calves with respiratory disease. PLoS ONE, 2023, 18(5): e0285876 CrossRef
  40. Zhang J., Raza S.H.A., Wei D., Yaping S., Chao J., Jin W., Almohaimeed H.M., Batarfi M.A., Assiri R., Aggad W.S., Ghalib S.H., Ageeli A.A. Roles of MEF2A and MyoG in the transcriptional regulation of bovine LATS2 gene. Research in Veterinary Science, 2022, 152: 417-426 CrossRef
  41. Chen Z., Luo J., Zhang C., Ma Y., Sun S., Zhang T., Loor J.J. Mechanism of prolactin inhibition of miR-135b via methylation in goat mammary epithelial cells. Journal of Cellular Physiology, 2018, 233(1): 651-662 CrossRef
  42. Chen Z., Chu S., Liang Y., Xu T., Sun Y., Li M., Zhang H., Wang X., Mao Y., Loor J.J., Wu Y., Yang Z. miR-497 regulates fatty acid synthesis via LATS2 in bovine mammary epithelial cells. Food & Function, 2020, 11(10): 8625-8636 CrossRef
  43. Zhang G.-M., Zhang T.-T., An S.-Y., El-Samahy M.-A., Yang H., Wan Y.-J., Meng F.-X., Xiao S.-H., Wang F., Lei Z.-H. Expression of Hippo signaling pathway components in Hu sheep male reproductive tract and spermatozoa. Theriogenology, 2019, 126: 239-248 CrossRef
  44. Plewes M.R., Hou X., Zhang P., Liang A., Hua G., Wood J.R., Cupp A.S., Lv X., Wang C., Davis J.S. Yes-associated protein 1 is required for proliferation and function of bovine granulosa cells in vitro. Biology of Reproduction, 2019, 101(5): 1001-1017 CrossRef
  45. Lakhssassi K., Ureña I., Marín B., Sarto M.P., Lahoz B., Alabart J.L., Calvo J.H., Serrano M. Characterization of the pars tuberalis and hypothalamus transcriptome in female sheep under different reproductive stages. Animal Biotechnology, 2023, 34(8): 3461-3474 CrossRef
  46. Mota L.F.M., Santos S.W.B., Júnior G.A.F., Bresolin T., Mercadante M.E.Z., Silva J.A.V., Cyrillo J.N.S.G., Monteiro F.M., Carvalheiro R., Albuquerque L.G. Meta-analysis across Nellore cattle populations identifies common metabolic mechanisms that regulate feed efficiency-related traits. BMC Genomics, 2022, 23(1): 424 CrossRef
  47. Pena R.N., Noguera J.L., Casellas J., Díaz I., Fernández A.I., Folch J.M., Ibáñez-Escriche N. Transcriptional analysis of intramuscular fatty acid composition in the longissimus thoracis muscle of Iberian ½ Landrace back-crossed pigs. Animal Genetics,2013, 44(6): 648-660 CrossRef
  48. Yang C., Huang Z., Pan C., Wang S. Characterization of feed efficiency-related key signatures molecular in different cattle breeds. PLoS ONE, 2023, 18(9): e0289939 CrossRef
  49. Yu H., Raza S.H.A., Pan Y., Cheng G., Mei C., Zan L. Integrative analysis of blood transcriptomics and metabolomics reveals molecular regulation of backfat thickness in Qinchuan cattle. Animals, 2023, 13(6): 1060 CrossRef
  50. Fan X., Turdi S., Ford S.P., Hua Y., Nijland M.J., Zhu M., Nathanielsz P.W., Ren J. Influence of gestational overfeeding on cardiac morphometry and hypertrophic protein markers in fetal sheep. The Journal of Nutritional Biochemistry, 2011, 22(1): 30-37 CrossRef
  51. Song N., Wang X., Gui L., Raza S.H.A., Luoreng Z., Zan L. MicroRNA-214 regulates immunity-related genes in bovine mammary epithelial cells by targeting NFATc3 and TRAF3. Molecular and Cellular Probes, 2017, 35: 27-33 CrossRef
  52. Evagelou S.L., Bebenek O., Specker E.J., Uniacke J. DEAD box protein family member DDX28 is a negative regulator of hypoxia-inducible factor 2a- and eukaryotic initiation factor 4e2-directed hypoxic translation. Molecular and Cellular Biology, 2020, 40(6): e00610-19 CrossRef
  53. Li Y., Xu Z., Li H., Xiong Y., Zuo B. Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs. International Journal of Biological Sciences, 2010, 6(4): 350-360 CrossRef
  54. Raza S.H.A., Khan R., Gui L., Schreurs N.M., Wang X., Mei C., Yang X., Gong C., Zan L. Bioinformatics analysis and genetic polymorphisms in genomic region of the bovine SH2B2 gene and their associations with molecular breeding for body size traits in Qinchuan beef cattle. Bioscience Reports, 2020, 40(3): BSR20192113 CrossRef
  55. Yang M., Fu J., Lan X., Sun Y., Lei C., Zhang C., Chen H. Effect of genetic variations within the SH2B2 gene on the growth of Chinese cattle. Gene, 2013, 528(2): 314-319 CrossRef
  56. Hu T., Huang S., Lv X., Wang S., Getachew T., Mwacharo J.M., Haile A., Sun W. miR-143 targeting CUX1 to regulate proliferation of dermal papilla cells in Hu sheep. Genes, 2021, 12(12): 2017 CrossRef
  57. Lv X., Li Y., Chen W., Wang S., Cao X., Yuan Z., Getachew T., Mwacharo J., Haile A., Li Y., Sun W. Association between DNA methylation in the core promoter region of the CUT-like homeobox 1 (CUX1) gene and lambskin pattern in Hu sheep. Genes, 2023, 14(10): 1873 CrossRef
  58. Zhou H., Huang S., Lv X., Wang S., Cao X., Yuan Z., Getachew T., Mwacharo J.M., Haile A., Quan K., Li Y., Reverter A., Sun W. Effect of CUX1 on the proliferation of Hu sheep dermal papilla cells and on the Wnt/β-Catenin signaling pathway. Genes, 2023, 14(2): 423 CrossRef
  59. Zhu X., Zou Y., Jia L., Ye X., Zou Y., Tu J., Li J., Yu R., Yang S., Huang P. Using multi-tissue transcriptome-wide association study to identify candidate susceptibility genes for respiratory infectious diseases. Frontiers in Genetics, 2023, 14: 1164274 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)