PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.4.759eng

UDC: 636.5.033:636.084:591.1

Acknowledgements:
Supported financially from the Russian Scince Foundation (project Nо, 22-16-00024)

 

ON THE BIOLOGICAL EFFECTS OF MELANIN IN FEEDING BROILER CROSS SMENA 9 CHICKENS (Gallus gallus L.)

N.V. Bogolyubova , R.V. Nekrasov, N.V. Bardukov,
A.A. Zelenchenkova, R.A. Rykov, P.D. Lakhonin, N.S. Kolesnik,
J.A. Bogolyubova

Ernst Federal Research Center for Animal Husbandry,60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail 652202@mail.ru (✉ corresponding author), nek_roman@mail.ru, bardukv-nikolajj@mail.ru, aly4383@mail.ru, brukw@bk.ru, lakhonin.99@mail.ru,  kominisiko@mail.ru, bogolyubovajulia@gmail.com

ORCID:
Bogolyubova N.V. orcid.org/0000-0002-0520-7022
Rykov R.A. orcid.org/0000-0003-0228-8901
Nekrasov R.V. orcid.org/0000-0003-4242-2239
Lakhonin P.D. orcid.org/0000-0002-7354-0337
Bardukov N.V. orcid.org/0000-0002-5497-2409
Kolesnik N.S. orcid.org/0000-0002-4267-5300
Zelenchenkova A.A orcid.org/0000-0001-8862-3648
Bogolyubova J.A. orcid.org/0009-0000-8237-357X

Final revision received March 19, 2024

Accepted June 06, 2024

 

Dietary antioxidant adaptogens are of interest to improve health, immune and antioxidant status of intensively growing poultry. This work aimed to comprehensively assess the effect of the adaptogen melanin on feed conversion, biochemical and antioxidant status, and the expression of enzyme genes involved in antioxidant protection and immune response in domestic cross Smena 9 broiler chickens (Gallus gallus L.). The cross resultes from crossing cocks of the Cornish CM56 paternal line with hens of the Plymouth Rock CM79 maternal line. The studies were carried out in the physiological yard of the Ernst Federal Research Center for Animal Husbandry on broiler chickens (n = 42, 50 % hens and 50 % cockerels in each group). From 7 to 45 days, the experimental birds were fed water-soluble dietary melanin at 1.42 mg/kg of live weight (LW). To determine the utilization of feed nutrients, a physiological experiment was carried out on day 35 according to common methods (n = 6 in each group). For the biochemical assessment of pro- and antioxidant status, blood was sampled form 10, 20, and 54 birds slaughtered by decapitation at the age of 12, 26 and 45 days, respectively. The assessed parameters were the concentrations of total protein, albumins, globulins, glucose, triglycerides, bilirubin, cholesterol, calcium, phosphorus, magnesium, iron, chlorides; activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase; the number of red blood cells, the hemoglobin content, hematocrit, the concentration of thiobarbituric acid-reacting substances (TBARS), ceruloplasmin activity (CP), total amount of water-soluble antioxidants (TAWSA), TBARS/CP ratio, reduced glutathione, superoxide dismutase (SOD), catalase, total antioxidant status (TAS). At the end of the experiment, we assessed the relative expression of genes involved in antioxidant defense (AOD), namely catalase CAT, glutathione peroxidase GSH-Gpx, heme oxygenase 1 HO-1, superoxide dismutase SOD, NF-E2-related transcription factor 2  Nrf2, and in the immune response, namely avian beta defensin 9 AvBD9, interleukin 6 IL6, interleukin 8 IL8 in the caecum and liver of 10 birds from each group. Feeding melanin improved the digestibility of crude fat (CF) by 4.5 % (p < 0.01) and increased protein nitrogen deposition by 2.14 %. At 26 days of age, in the chickens fed melanin, there were a significant decrease in blood glucose levels (by 14.58 % at p < 0.05), an increase in the Ca/P ratio (p < 0.05), a decrease in phosphorus levels (by 11.94 % at p < 0.05) and magnesium (by 13.04 % at p < 0.05), while the chloride levels increased (by 1.05 % at p < 0.05). At 45 days of age, in birds fed melanin the blood glucose decreased by 13.81 % (p < 0.05), cholesterol by 20.57 % (p < 0.001), calcium by 7.41 % (p < 0.001), phosphorus by 9.27 % (p < 0.01), magnesium by 17.61 % (p < 0.001), and chlorides by 7.79 % (p < 0.001). The antioxidant properties of melanin were most pronounced in the middle and at the final stage of fattening. When feeding melanin in the blood of broilers at 26 days of age, an increase in the level of TAWSA by 9.5 % (p < 0.05) and SOD activity by 14.7 % (p < 0.05) was observed compared to the control. At 45 days of age, the administration of melanin led to a significant increase in total antioxidant status (TAS) by 11.9 % (p < 0.05). The data on the relative expression of AOD and immune genes confirmed the findings. In the liver of the birds fed melanin, there was an increase in relative expression of CAT (by 4.08 times at p = 0.00002), GSH-Gpx (by 5.53 times at p = 0.07), SOD (by 6.31 times at p = 0.06), and AvBD9 (by 2.72 times at p = 0.31). Melanin had a beneficial effect on the birds’ growth, especially during the first week of the experiment. The average daily gain (ADG) for the entire period was 67.16 g in the test group vs. 66.74 g in the control. The results indicate that melanin is a prospective dietary additive for broilers, especially during various stresses.

Keywords: broilers, melanin, feed digestibility, blood biochemistry, gene expression, immunity, antioxidant protection, productivity.

 

REFERENCES

  1. Fisinin V. Zhivotnovodstvo Rossii, 2023, 1: 12-14 (in Russ.).
  2. Betti M., Perez T., Zuidhof M., Renema R. Omega-3-enriched broiler meat: 3. Fatty acid distribution between triacylglycerol and phospholipid classes. Poultry Science, 2009, 88(8): 1740-1754 CrossRef
  3. Rajcic A., Baltic M.Z., Lazic I.B., Starcevic M., Baltic B.M., Vucicevic I., Nesic S. Intensive genetic selection and meat quality concerns in the modern broiler industry. In IOP Conference Series: Earth and Environmental Science, 2021, 854(1): 012077 CrossRef
  4. Surai P.F., Fisinin V.I. Vitagenes in poultry production: Part 1. Technological and environmental stresses. World's Poultry Science Journal, 2016, 72(4): 721-733 CrossRef
  5. Bogolyubova N.V., Nekrasov R.V., Zelenchenkova A.A. Antioxidant status and quality of poultry and animal meat under stress and its correction with the use of various adaptogens (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2022, 57(4): 628-663 CrossRef
  6. Surai P.F. Antioxidants in poultry nutrition and reproduction: an update. Antioxidants, 2020, 9(2): 105 CrossRef
  7. Surai P.F. Selenium in Poultry Nutrition and Health. Wageningen. The Netherlands: Wageningen Academic Publishers, 2018.
  8. Vlaicu P.A., Untea A.E., Panaite T.D., Turcu R.P. Effect of dietary orange and grapefruit peel on growth performance, health status, meat quality and intestinal microflora of broiler chickens. Italian Journal of Animal Science, 2020, 19(1): 1394-1405 CrossRef
  9. Gorlov I.F., Tikhonov S.L., Tikhonova N.V. Industriya pitaniya, 2016, 1: 44-53 (in Russ.).
  10. Choi J., Kong B., Bowker B.C., Zhuang H., Kim W.K. Nutritional strategies to improve meat quality and composition in the challenging conditions of broiler production: a review. Animals, 2023, 13(8): 1386 CrossRef
  11. Mir N.A., Rafiq A., Kumar F., Singh V., Shukla V. Determinants of broiler chicken meat quality and factors affecting them: a review. Journal of Food Science and Technology, 2017, 54(10): 2997-3009 CrossRef
  12. Ogbuewu I.P., Mbajiorgu C.A. Potentials of dietary zinc supplementation in improving growth performance, health status, and meat quality of broiler chickens. Biological Trace Element Research, 2023, 201(3): 1418-1431 CrossRef
  13. Iwiński H., Chodkowska K.A., Drabik K., Batkowska J., Karwowska M., Kuropka P., Szumowski A.,  Szumny A., Różański H. The impact of a phytobiotic mixture on broiler chicken health and meat safety. Animals, 2023, 13(13): 2155 CrossRef
  14. Karadas F., Erdoğan S., Kor D., Oto G., Uluman M. The effects of different types of antioxidants (Se, vitamin E and carotenoids) in broiler diets on the growth performance, skin pigmentation and liver and plasma antioxidant concentrations. Brazilian Journal of Poultry Science, 2016, 18: 101-116 CrossRef
  15. Woods S.L., Sobolewska S., Rose S.P., Whiting I.M., Blanchard A., Ionescu C., Pirgozliev V. Effect of feeding different sources of selenium on growth performance and antioxidant status of broilers. British Poultry Science, 2020, 61(3): 274-280 CrossRef
  16. Kuttappan V.A., Manangi M., Bekker M., Chen J., Vazquez-Anon M. Nutritional intervention strategies using dietary antioxidants and organic trace minerals to reduce the incidence of wooden breast and other carcass quality defects in broiler birds. Frontiers in Physiology, 2021, 12: 663409 CrossRef
  17. Hu R., He Y., Arowolo M.A., Wu S., He J. Polyphenols as potential attenuators of heat stress in poultry production. Antioxidants, 2019, 8(3): 67 CrossRef
  18. Greene E.S., Maynard C., Owens C.M., Meullenet J.F., Dridi S. Effects of herbal adaptogen feed-additive on growth performance, carcass parameters, and muscle amino acid profile in heat-stressed modern broilers. Frontiers in Physiology, 2021, 12: 784952 CrossRef
  19. Afkhami Ardakani M. The effect of herbal adaptogen on feeding-related hypothalamic neuropeptides in heat-stressed broilers. Graduate Thesis. University of Arkansas-Fayettevilleyu 2023.
  20. Alagawany M., Elnesr S.S., Farag M.R. Use of liquorice (Glycyrrhiza glabra) in poultry nutrition: Global impacts on performance, carcass and meat quality. World's Poultry Science Journal, 2019, 75(2): 293-304 CrossRef
  21. Alagawany M., Elnesr S.S., Farag M.R., Abd El-Hack M.E., Barkat R.A., Gabr A.A., Dhama K. Potential role of important nutraceuticals in poultry performance and health — a comprehensive review. Research in Veterinary Science, 2021, 137: 9-29 CrossRef
  22. Ando H., Ohagi Y., Yoshida M., Yoshimoto S., Yagi M., Monji K., Yagi M., Uchiumi T., Kang D., Ichihshi M. Melanin pigment interrupts the fluorescence staining of mitochondria in melanocytes. Journal of Dermatological Science, 2016, 84(3): 349-351 CrossRef
  23. Efimov N., Egorova A.V., Emanuylova Zh.V., Ivanov A.V., Konopleva A.P., Zotov A.A., Lukashenko V.S., Komarov A.A., Egorov I.A., Egorova T.A., Baykovskaya E.Yu., Manukyan V.A., Saleeva I.P., Kavtarashvili A.Sh., Smolov S.V. Rukovodstvo po rabote s ptitsey myasnogo krossa Smena 9 s autoseksnoy materinskoy formoy [Guide to working with poultry of meat cross Smena 9 with autosexed maternal form]. Moscow, 2021 (in Russ.).
  24. Edygenov A.K., Tadzhieva A.K., Sharipov R.I., Borisov V.V., Fedosova L.N. Rekomendatsii po provedeniyu fiziologicheskogo opyta v ptitsevodstve. Rekomendatsii po provedeniyu balansovogo opyta v ptitsevodstve [Recommendations for conducting physiological experiments in poultry farming. Recommendations for conducting balance experiments in poultry farming]. Moscow, 2019 (in Russ.).
  25. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25(4): 402-408 CrossRef
  26. Mirzaei-Aghsaghali A. Importance of medical herbs in animal feeding: a review. Annals of Biological Research, 2012, 3(2): 918-923.
  27. Oso A.O., Suganthi R.U., Reddy G.M., Malik P.K., Thirumalaisamy G., Awachat V.B., Selvrju S., Arangasamy A., Bhatta R. Effect of dietary supplementation with phytogenic blend on growth performance, apparent ileal digestibility of nutrients, intestinal morphology, and cecal microflora of broiler chickens. Poultry Science, 2019, 98(10): 4755-4766 CrossRef
  28. Nwaigwe C.U., Ihedioha J.I., Shoyinka S.V., Nwaigwe C.O. Evaluation of the hematological and clinical biochemical markers of stress in broiler chickens. Veterinary World, 2020, 13(10): 2294 CrossRef
  29. Wensveen F.M., Šestan M., Wensveen T.T., Polić B. Blood glucose regulation in context of infection. Vitamins and Hormones, 2021, 117: 253-318 CrossRef
  30. Saris N.E., Mervaala E.,Karppanen H., Khawaja J.A., Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. Clinica Chimica Acta; International Journal of Clinical Chemistry, 2000,294(1-2): 1-26 CrossRef
  31. Torshin I.Yu., Gromova O.A. Russkiy meditsinskiy zhurnal, 2012, 20(22): 1142-1149 (in Russ.).
  32. Xu L., Li J., Chang M., Cheng Y., Geng X., Meng J., Zhu M. Comparison of physicochemical and biochemical properties of natural and arginine-modified melanin from medicinal mushroom Ganoderma lucidum. Journal of Basic Microbiology, 2020, 60 (11-12): 1014-1028 CrossRef
  33. Aljumaily T.K.H., Kamil Y.M., Taha A.T. Effect of addition amla (Phyllanthus emblica) and vitamin C powder on some physiological and production performance of broiler. Plant Archuves, 2019, 19(1): 1117-1120.
  34. Tawfeek S.S., Hassanin K.M.A., Youssef I.M.I. The effect of dietary supplementation of some antioxidants on performance, oxidative stress, and blood parameters in broilers under natural summer conditions. Journal of World’s Poultry Research, 2014, 4(1): 10-19.
  35. Yang X., Chen Y., Zhang L., He J., Wu Q., Li S., Wang D., Gou J., Wu Z., Zhang K., Li S., Niu X. Melanin precursors mediated adaption to temperature changes in fungus and animal via inhibition of lipid-mediated ferroptosis. Science China Life Sciences, 2023, 66(8): 1800-1817 CrossRef
  36. Mandal A.B., Kulkarni R, Rokade J.J., Bhanja S.K., Singh R. Effect of dietary addition of amla (Emblica officinalis) on performance and HSP70 gene expression in coloured broiler chicken during extreme summer. Journal of Animal Research, 2017, 7(2): 233-241 CrossRef
  37. Oh J.J., Kim J.Y., Kim Y.J., Kim S., Kim G.H. Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Chemosphere, 2021, 272: 129884 CrossRef
  38. Kunwar A., Adhikary B., Jayakumar S., Barik A., Chattopadhyay S., Raghukumar S., Priyadarsini K.I. Melanin, a promising radioprotector: mechanisms of actions in a mice model. Toxicol. Appl. Pharmacol., 2012, 264(2): 202-211. (doi:10.1016/j.taap.2012.08.002">CrossRef
  39. Wang B., Min Z., Yuan J., Zhang B., Guo Y. Effects of dietary tryptophan and stocking density on the performance, meat quality, and metabolic status of broilers. Journal of Animal Science and Biotechnology, 2014, 5(1): 44 CrossRef
  40. Hou R., Liu X., Wu X., Zheng M., Fu J. Therapeutic effect of natural melanin from edible fungus Auricularia auricula on alcohol-induced liver damage in vitro and in vivo. Food Science and Human Wellness, 2021, 10(4): 514-522 CrossRef
  41. Abdelhalim M., Moussa S., Qaid H., Al-Ayed M. Potential effects of different natural antioxidants on inflammatory damage and oxidative-mediated hepatotoxicity induced by gold nanoparticles. International Journal of Nanomedicine, 2018, 13: 7931-7938 CrossRef
  42. Rageh M., El-Gebaly R. Melanin nanoparticles: Antioxidant activities and effects on γ-ray-induced DNA damage in the mouse. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 2018, 828: 15-22 CrossRef
  43. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 2006, 141(2): 312-322 CrossRef
  44. Azad M.A.K., Kikusato M., Sudo S., Amo T., Toyomizu M. Time course of ROS production in skeletal muscle mitochondria from chronic heat-exposed broiler chicken. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2010, 157(3): 266-271 CrossRef
  45. Goel A., Ncho C.M., Choi Y.H. Regulation of gene expression in chickens by heat stress. Journal of Animal Science and Biotechnology, 2021, 12(1): 11 CrossRef
  46. Li L., Shi F., Yang L.,Yang Q., Shaikh F, Li J., Ye M. Immunoregulatory effect assessment of a novel melanin and its carboxymethyl derivative. Immunoregulatory effect assessment of a novel melanin and its carboxymethyl derivative. Bioorganic and Medicinal Chemistry Letters, 2017, 27(8): 1831-1834 CrossRef
  47. Yacout S.M., Elsawa S.F., Gaillard E.R. Calf melanin immunomodulates RPE cell attachment to extracellular matrix protein. Graefe's Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie, 2018, 256(10): 1883-1893 CrossRef
  48. Le T. K., Lai S. Y., Huang Y. W., Chen Y. T., Hou C. Y., Hsieh S. L. Antioxidant activity and mechanism of melanin from cuttlefish (Sepia pharaonis) ink on Clone-9 cells. Food Bioscience, 2024: 104444 CrossRef
  49. Claire D’Andre H., Paul W., Shen X., Jia X., Zhang R., Sun L., Zhang X. Identification and characterization of genes that control fat deposition in chickens. Journal of Animal Science and Biotechnology, 2013, 4(1): 43 CrossRef
  50. Song S., Li S., Su N., Li J., Shi F., Ye M. Structural characterization, molecular modification and hepatoprotective effect of melanin from Lachnum YM226 on acute alcohol-induced liver injury in mice. Food and Function, 2016, 7(8): 3617-3627 CrossRef
  51. El-Khabery A.M.M., Sitohy M.Z., Hefnawy H.T., Gomaa A.M. Effect of using Egyptian Leek leaves powder (Allium porrum l.) as unconventional feed on growth performance, carcass quality and some serum biochemical analysis in broiler chickens. Zagazig Journal of Agricultural Research, 2016, 43(2): 555-567 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)