doi: 10.15389/agrobiology.2023.4.685eng

UDC: 636.2.034:618.19-002:591.1:577.2



V.G. Vertiprakhov, M.I. Selionova1, V.V. Malorodov1, G.Yu. Laptev2, L.A. Ilyina2

1Russian State Agrarian University — Timiryazev Moscow Agricultural Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail (✉ corresponding author),,;
2Saint-Petersburg State Agrarian University, 2, Peterburgskoe sh., St. Petersburg—Pushkin, 196601 Russia, e-mail,

BVertiprakhov V.G.
Laptev G.Yu.
Selionova M.I.
Ilyina L.A.
Malorodov V.V.

Final revision received March 30, 2023
Accepted June 9, 2023

Mastitis is one of the most serious problems in dairy farming. Mastitis often affects high-yielding cows, with a 10-15 % reduction in productivity and irreversible mammary gland dysfunction. In clinical course pathology has clear diagnostic signs. The main known methods of diagnostics of subclinical forms of mastitis (mastitis tests) are based on the determination of somatic cells in milk, the number of which correlates with inflammation, but the development of methods for early diagnosis of mastitis and pre-mastitis state of cows remains relevant. Biochemical parameters and morphological profiles of animal blood, expression of genes associated with inflammation are also examined in mastitis. However, the presence of enzymes in animal milk has not been fully studied. Trypsin is considered as a hormone-like substance capable of influencing metabolism and being a marker of inflammatory processes in animals and humans. Previously, we have shown the role of trypsin in experimental toxicosis of chickens and dietary changes. In the presented study we have for the first time revealed trypsin in the milk of cows, the increase in its activity in mastitis was established and compared with changes in other indicators used to assess the state of animals in pathology. The aim of the present work is to detect trypsin activity in milk of healthy and mastitis-affected cows and to determine the number of somatic cells in milk, relative expression of genes associated with inflammation, as well as morpho-biochemical blood parameters. The results obtained on Ayrshire cows (Bos taurus), 10 lactating cows without clinical signs of mastitis and 15 cows with clinical signs of mastitis (SGC Smena — a branch of the FSC VNITIP RAS, Moscow Province, 2022), showed that in the milk, the activity of genes associated with inflammation and the trypsin activity varied depending on the mammary gland health. In mastitis this index increased compared to the norm by 106.6 % (p £ 0.05), whereas trypsin activity in blood serum of healthy and mastitis cows had no significant differences. Of the biochemical parameters of cow blood, the most informative were the concentration of glucose, calcium and phosphorus. We found that in blood serum of mastitic cows the amount of glucose increases by 67.4% (p < 0.05), calcium by 38.8% (p < 0.05), the concentration of phosphorus, on the contrary, decreases by 23.8 % (p < 0.05) compared to healthy animals. In the blood morphological profile at mastitis leukocytosis is observed, there is a decrease in immunoreactivity by 42,5 % (p < 0.05), the ratio of lymphocytes and neutrophils by 20.4 % (p < 0.05), the number of eosinophils by 57.4 % (p < 0.05) and basophils by 33.3 % (p < 0.05), while the number of monocytes increases by 46.5 % compared to the control (p < 0.05). The expression of genes of monocyte chemotactic protein 1 and monocyte chemotactic protein 2 increased 5.5-fold, tumor necrosis factor alpha 3.9-fold, interleukin 4 and interleukin 8 2.9-fold and 14-fold, respectively, in cows with mastitis compared to healthy cows. Thus, we found that cow's milk contains trypsin, which is not inferior to the enzyme in the blood serum of animals in terms of activity (48.2±3.8 units/l). In inflammation of the mammary gland confirmed by instrumental and molecular genetic methods, trypsin activity in milk increases, which can be used in the development of diagnostic methods for pre-mastitis and early stages of mastitis.

Keywords: cows, mastitis, milk trypsin, mastitis diagnostic methods.



  1. Cheng W.N., Han S.G. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments — a review. Asian-Australas. J. Anim. Sci., 2020, 33(11): 1699-1713 CrossRef
  2. Belay N., Mohammed N., Seyoum W. Bovine mastitis: prevalence, risk factors, and bacterial pathogens isolated in lactating cows in Gamo Zone, Southern Ethiopia. Vet. Med. (Auckl.), 2022, 13: 9-19 CrossRef
  3. Mukhamadieva N., Julanov M., Zainettinova D., Stefanik V., Nurzhumanova Z., Mukataev A., Suychinov A. Prevalence, diagnosis and improving the effectiveness of therapy of mastitis in cows of dairy farms in East Kazakhstan. Vet. Sci., 2022, 9(8): 398 CrossRef
  4. Titov V.Yu., Fisinin V.I. Sposob ranney diagnostiki mastitov u korov. Patent RU 2 371 717 C1.GNU Vserossiyskiy nauchno-issledovatel’skiy i tekhnologicheskiy institut ptitsevodstva (RU). Zayavl. 2008.02.04. Opubl.  2009.10.27 [Method for early diagnosis of mastitis in cows. Patent RU 2 371 717 C1. All-Russian Research and Technological Institute of Poultry Farming (RU). Appl. 02/04/2008. Publ. 10/27/2009] (in Russ.).
  5. Saleem H.D., Razooqi M.A., Gharban H.A.J. Cumulative effect of sub-clinical mastitis on immunological and biochemical parameters in cow milk. Arch. Razi. Inst., 2021, 76(6): 1629-1638 CrossRef
  6. Braun U., Gerspach C., Riond B., Oschlies C., Corti S., Bleul U. Haematological findings in 158 cows with acute toxic mastitis with a focus on the leukogram. Acta Vet. Scand., 2021, 63(1): 11 CrossRef
  7. Watanabe A., Yagi Y., Shiono H., Yokomizo Y., Inumaru S. Effects of intramammary infusions of interleukin-8 on milk protein composition and induction of acute-phase protein in cows during mammary involution. Canadian Journal of Veterinary Research, 2008, 72(3): 291-296.
  8. Vitenberga-Verza Z., Pilmane M., Šerstņova K., Melderis I., Gontar Ł., Kochański M., Drutowska A., Maróti G, Prieto-Simón B. Identification of inflammatory and regulatory cytokines IL-1-, IL-4-, IL-6-, IL-12-, IL-13-, IL-17A-, TNF-α-, and IFN-γ-producing cells in the milk of dairy cows with subclinical and clinical mastitis. Pathogens, 2022, 11(3): 372 CrossRef
  9. Pilla R., Schwarz D., König S., Piccinini R. Microscopic differential cell counting to identify inflammatory reactions in dairy cow quarter milk samples. Journal of Dairy Science, 2012, 95(8): 4410-4420 CrossRef
  10. Rothman S., Leibow C., Isenman L. Conservation of digestive enzymes. Phsyological Reviews, 2002, 82(1): 1-18 CrossRef
  11. Korot’ko G.F. Fizicheskaya kul’tura, sport — nauka i praktika, 2013, 1: 51-57 (in Russ.).
  12. Vertiprakhov V.G., Grozina A.A., Dolgorukova A.M. The activity of pancreatic enzymes on different stages of metabolism in broiler chicks. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(4): 509-515 CrossRef
  13. Permyakov N.K., Podol’skiy A.E., Titova G.P. Ul’trastrukturnyy analiz sekretornogo tsikla podzheludochnoy zhelezy [Ultrastructural analysis of the pancreatic secretory cycle]. Moscow, 1973 (in Russ.).
  14. Karimova Sh.F., Yuldashev N.M., Ismailova G.O., Nishantaev M.K. Uspekhi sovremennogo estestvoznaniya, 2015, 9-3: 422-428 (in Russ.).
  15. Shahani K.M., Kwan A.J., Friend B.A. Role and significance of enzymes in human milk. The American Journal of Clinical Nutrition, 1980, 33(8): 1861-1868 CrossRef
  16. Freed L.M., Berkow S.E., Hamosh P., York C.M., Mehta N.R., Hamosh M. Lipases in human milk: effect of gestational age and length of lactation on enzyme activity. J. Am. Coll. Nutr., 1989, 8(2): 143-150 CrossRef
  17. Ramachandran R., Hollenberg M.D. Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br. J. Pharmacol., 2008, 153: 263-282 CrossRef
  18. Vertiprakhov V.G., Gogina N.N., Ovchinnikova N.V. Veterinariya, 2020, 7: 56-59 (in Russ.).
  19. Vertiprakhov V.G., Grozina A.A., Gogina N.N., Kislova I.V., Ovchinnikova N.V., Koshcheeva M.V. The intestinal T-2 and HT-2 toxins, intestinal and fecal digestive enzymes, morphological and biochemical blood indices in broilers (Gallus gallus L.) with experimentally induced T-2 toxicosis. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(4): 682-694 CrossRef
  20. Vertiprakhov V.G., Grozina A.A., Fisinin V.I. The exocrine pancreatic function in chicken (Gallus gallus L.) fed diets supplemented with different vegetable oils. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 5(4): 726-737 CrossRef
  21. Sermyagin A.A., Lashneva I.A., Kositsin A.A., Ignat’eva L.P., Artem’eva O.A., Sölkner J., Zinov’eva N.A. Differential somatic cell count in milk as criteria for assessing cows’ udder health in relation with milk production and components. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(6): 1183-1198 CrossRef
  22. Vertiprakhov, V.G., Grozina, A.A. Veterinariya, 2018, 6: 51-54 CrossRef (in Russ.).
  23. Zaros L.G., Bricarello P.A., Amarante A.F.T., Coutinho L.L. Quantification of bovine cytokine gene expression using real-time RT-PCR methodology. Genetics and Molecular Biology, 2007, 30(3): 575-579 CrossRef
  24. Meza Cerda M.-I., Gray R., Higgins D.P. Cytokine RT-qPCR and ddPCR for immunological investigations of the endangered Australian sea lion (Neophoca cinerea) and other mammals. PeerJ, 2020, 8: e10306 CrossRef
  25. Laptev G.Y., Filippova V.A., Kochish I.I., Yildirim E.A., Ilina L.A., Dubrovin A. V, Brazhnik E.A., Novikova N.I., Novikova O.B., Dmitrieva M.E., Smolensky V.I., Surai P.F., Griffin D.K., Romanov M.N. Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella enteritidis and fed a phytobiotic. Animals, 2019, 9(9): 615 CrossRef
  26. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408 CrossRef
  27. Ovchinnikova N.V., Kislova I.V., Tolpygo S.M. Sbornik tezisov konferentsii s mezhdunarodnym uchastiem, posvyashchennoy 100-letiyu MGMSU im. A.I. Evdokimova «Meditsinskaya fizika, fiziologiya i smezhnye distsipliny v akademicheskoy i vuzovskoy nauke» [Proc. Conf. «Medical physics, physiology and related disciplines in academic and university science»]. Moscow, 2022: 373-376 (in Russ.).
  28. Vertiprakhov V.G., Borisenko K.V., Ovchinnikova N.V., Sirukhi M.N. Ptitsa i ptitseprodukty, 2020, 3: 42-45 CrossRef (in Russ.).
  29. Zhang R., Zhu W., Mao S. High-concentrate feeding upregulates the expression of inflammation-related genes in the ruminal epithelium of dairy cattle. Journal of Animal Science and Biotechnology, 2016, 7: 42 CrossRef
  30. Karthikeyan A., Radhika G., Aravindhakshan T.V., Anilkumar K. Expression profiling of innate immune genes in milk somatic cells during subclinical mastitis in crossbred dairy cows. Animal Biotechnology, 2016, 27(4): 303-309 CrossRef
  31. Khan M.Z., Khan A., Xiao J., Ma J., Ma Y., Chen T., Shao D., Cao Z. Overview of research development on the role of NF-κB signaling in mastitis. Animals,2020, 10(9): 1625 CrossRef
  32. Khan M.Z., Khan A., Xiao J., Ma Y., Ma J., Gao J., Cao Z. Role of the JAK-STAT pathway in bovine mastitis and milk production. Animals, 2020, 10(11): 2107 CrossRef
  33. Wiggans G.R., Sonstegard T.S., VanRaden P.M., Matukumalli L.K., Schnabel R.D., Taylor J.F., Schenkel F.S., Van Tassell C.P. Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the united states and Canada. Journal of Dairy Science, 2009, 92: 3431-3436 CrossRef   
  34. Alluwaimi A.M. The cytokines of bovine mammary gland: prospects for diagnosis and therapy. Research in Veterinary Science, 2004, 77: 211-222 CrossRef
  35. Shah K.N., Valand P., Nauriyal D.S., Joshi C.G. Immunomodulation of IL-1, IL-6 and IL-8 cytokines by Prosopis juliflora alkaloids during bovine sub-clinical mastitis. 3 Biotech., 2018, 8: 409 CrossRef
  36. Murphy M.P., Niedziela D.A., Leonard F.C., Keane O.M. The in vitro host cell immune response to bovine-adapted Staphylococcus aureus varies according to bacterial lineage. Scientific Reports, 2019, 9: 6134 CrossRef
  37. Krukowski H., Lassa H., Zastempowska E., Smulski S., Bis-Wencel H. Etiological agents of bovine mastitis in Poland. Medycyna Weterynaryjna, 2020, 76: 221-225 CrossRef
  38. Sztachańska M., Barański W., Janowski T., Pogorzelska J., Zduńczyk S. Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland. Polish Journal of Veterinary Sciences,2016, 19: 119-124 CrossRef
  39. Jagielski T., Roeske K., Bakuła Z., Piech T., Wlazło Ł., Bochniarz M., Woch P., Krukowski H. A survey on the incidence of Prototheca mastitis in dairy herds in Lublin Province. Polish Journal of Veterinary Sciences, 2019, 102: 619-628 CrossRef
  40. Watts J.L. Etiological agents of bovine mastitis. Veterinary Microbiology, 1988, 16: 41-66 CrossRef
  41. Jagielski T., Krukowski H., Bochniarz M., Piech T., Roeske K., Bakuła Z., Wlazło Ł., Woch P. Prevalence of Prototheca spp. on dairy farms in Poland — a cross-country study. Microbial Biotechnology, 2019, 12: 556-566 CrossRef
  42. Rainard P., Riollet C. Innate immunity of the bovine mammary gland. Veterinary Research, 2006, 37: 369-400 CrossRef
  43. Moyes K.M., Drackley J.K., Morin D.E., Loor J.J. Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-a in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis. Functional and Integrative Genomics, 2010, 10: 53-61 CrossRef
  44. Rainard P., Riollet C. Innate immunity of the bovine mammary gland. Veterinary Research, 2006, 37: 369–400 CrossRef
  45. Zhang Y., Lu Y., Ma L., Cao X., Xiao J., Chen J., Jiao S., Gao Y., Liu C., Duan Z., Li D., He Y., Wei B., Wang H. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-κB signaling and protects against endotoxin shock. Immunity, 2014, 40(4): 501-514 CrossRef
  46. Schukken Y.H., Gunther J., Fitzpatrick J., Fontaine M.C., Goetze L., Holst O,. Leigh J., Petzl W., Schuberth H.J., Sipka A., Smith D.G., Quesnell R., Watts J., Yancey R., Zerbe H., Gurjar A., Zadoks R.N., Seyfert H.M.; members of the Pfizer mastitis research consortium. Host-response patterns of intramammary infections in dairy cows. Veterinary Immunology and Immunopathology, 2011, 144: 270-289 CrossRef
  47. Liu Y., Zhang J., Zhou Y.H., Zhang H.M., Wang K., Ren Y., Jiang Y.N., Han S.P., He J.J., Tang X.J. Activation of the IL-6/JAK2/STAT3 pathway induces plasma cell mastitis in mice. Cytokine,2018, 110: 150-158 CrossRef
  48. Khan M.Z., Dari G., Khan A., Yu Y. Genetic polymorphisms of TRAPPC9 and CD4 genes and their association with milk production and mastitis resistance phenotypic traits in Chinese Holstein. Frontiers in Veterinary Science,2022, 23: 9 CrossRef
  49. Bannerman D.D. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. Journal of Animal Science, 2009, 87: 10-25 CrossRef
  50. Kawabata A., Matsunami M., Sekiguchi F. Gastrointestinal roles for proteinase-activated receptors in health and disease. Review. British Journal of Pharmacology, 2008, 153: 230-240 CrossRef
  51. Kirsanova E., Heringstad B., Lewandowska-Sabat A., Olsaker I. Identification of candidate genes affecting chronic subclinical mastitis in Norwegian Red cattle: combining genome-wide association study, topologically associated domains and pathway enrichment analysis. Animal Genetics, 2020, 51(1): 22-31 CrossRef
  52. Mount J.A., Karrow N.A., Caswell J.L., Boermans H.J., Leslie K.E. Assessment of bovine mammary chemokine gene expression in response to lipopolysaccharide, lipotechoic acid+peptidoglycan, and CpG oligodeoxynucleotide 2135. Canadian Journal of Veterinary Research, 2009, 73: 49-57.
  53. Yu C., Shi Z.R., Chu C.Y., Lee K.H., Zhao X., Lee J.W. Expression of bovine granulocyte chemotactic protein-2 (GCP-2) in neutrophils and a mammary epithelial cell line (MAC-T) in response to various bacterial cell wall components. The Veterinary Journal, 2010, 186: 89-95 CrossRef
  54. Kalliolias G.D., Ivashkiv L.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nature Reviews Rheumatology, 2016, 12: 49-62 CrossRef
  55. Ahmad S., Azid N.A., Boer J.C., Lim J., Chen X., Plebanski M., Mohamud R. The key role of TNF-TNFR2 interactions in the modulation of allergic inflammation: a review. Frontiers in Immunology,2018, 9: 2572 CrossRef
  56. Zhao C., Liu G., Li X., Guan Y., Wang Y., Yuan X., Sun G., Wang Z., Li X. Inflammatory mechanism of Rumenitis in dairy cows with subacute ruminal acidosis. BMC Veterinary Research, 2018, 14(1): 135 CrossRef
  57. Cai Z., Guldbrandtsen B., Lund M.S., Sahana G. Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. BMC Genomics, 2018. 19: 656 CrossRef
  58. Blum J.W., Dosogne H., Hoeben D., Vangroenweghe F., Hammon H.M., Bruckmaier R.M., Burvenich C. Tumor necrosis factor-alpha and nitrite/nitrate responses during acute mastitis induced by Escherichia coli infection and endotoxin in dairy cows. Domestic Animal Endocrinology, 2000, 19(4): 223-235 CrossRef
  59. Li X., Körner H., Liu X. Susceptibility to intracellular infections: contributions of TNF to immune defense. Frontiers in Microbiology, 2020, 11: 1643 CrossRef
  60. Ezzat Alnakip M., Quintela-Baluja M., Böhme K., Fernández-No I., Caamaño-Antelo S., Calo-Mata P., Barros-Velázquez J. The Immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. Journal of Veterinary Medicine, 2014, 2014: 659801 CrossRef
  61. Karo-Atar D., Bitton A., Benhar I., Munitz A. Therapeutic targeting of the interleukin-4/interleukin-13 signaling pathway: in allergy and beyond. BioDrugs, 2018, 32: 201-220 CrossRef
  62. Heeb L.E.M., Egholm C., Impellizzieri D., Ridder F., Boyman O. Regulation of neutrophils in type 2 immune responses. Current Opinion in Immunology,2018, 54: 115-122 CrossRef
  63. Fonseca I., Silva P.V., Lange C.C., Guimarães M.F.M., Weller M.M.D.C.A., Sousa K.R.S., Lopes P.S., Guimarães J.D., Guimarães S.E.F. Expression profile of genes associated with mastitis in dairy cattle. Genetics and Molecular Biology,2009, 32: 776-781 CrossRef
  64. Ivashkiv L.B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nature Reviews Immunologyb 2018, 18: 545-558 CrossRef
  65. Kak G., Raza M., Tiwari B.K. Interferon-gamma (IFN-γ): exploring its implications in infectious diseases. Biomolecular Concepts, 2018, 9: 64-79 CrossRef
  66. Bochniarz M., Zdzisińska B., Wawron W., Szczubiał M., Dąbrowski R. Milk and serum IL-4, IL-6, IL-10, and amyloid A concentrations in cows with subclinical mastitis caused by coagulase-negative Staphylococci. Journal of Dairy Science, 2017, 100: 9674-9680 CrossRef
  67. Baggiolini M., Dewald B., Moser B. Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Advances in Immunology, 1994, 55: 97-179 CrossRef
  68. Barber M.R., Pantschenko A.G., Hinckley L.S., Yang T.J. Inducible and constitutive in vitro neutrophil chemokine expression by mammary epithelial and myoepithelial cells. Clinical and Diagnostic Laboratory Immunology, 1999, 6: 791-798 CrossRef
  69. Boudjellab N., Chan-Tang H.S., Li X., Zhao X. Interleukin 8 response by bovine mammary epithelial cells to lipopolysaccharide stimulation. American Journal of Veterinary Research, 1998, 59: 1563-1567.
  70. Caswell J.L., Middleton D.M., Gordon J.R. Production and functional characterization of recombinant bovine interleukin-8 as a specific neutrophil activator and chemoattractant. Veterinary Immunology and Immunopathology, 1999, 67: 327-340 CrossRef
  71. Bannerman D.D., Paape M.J., Lee J.-W., Zhao X., Hope J.C., Rainard P. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clinical and Diagnostic Laboratory Immunology, 2004, 11: 463-472 CrossRef
  72. Barber M.R., Yang T.J. Chemotactic activities in nonmastitic and mastitic mammary secretions: Presence of interleukin-8 in mastitic but not nonmastitic secretions. Clinical and Diagnostic Laboratory Immunology, 1998, 5: 82-86 CrossRef
  73. Stojkovic B., McLoughlin R.M., Meade K.G. In vivo relevance of polymorphic interleukin 8 promoter haplotype for the systemic immune response to LPS in Holstein-Friesian calves. Veterinary Immunology and Immunopathology, 2016, 182: 1-10 CrossRef
  74. De Matteis G., Scatà M.C., Grandoni F., Crisà A., O’Brien M.B., Meade K.G., Catillo G. Effect of IL8 haplotype on immunological traits in periparturient dairy cows. Veterinary Immunology and Immunopathology, 2021, 238: 110288 CrossRef
  75. De Matteis G., Scatà M.C., Catillo G., Grandoni F., Rossi E., Zilio D.M, Crisà A., Lopreiato V., Trevisi E., Barile V.L. Comparison of metabolic, oxidative and inflammatory status of Simmental½Holstein crossbred with parental breeds during the peripartal and early lactation periods. Journal of Dairy Research, 2021, 88(3): 253-260 CrossRef
  76. Pawlik A., Sender G., Kapera M., Korwin-Kossakowska A. Association between interleukin 8 receptor α gene (CXCR1) and mastitis in dairy cattle. Central European Journal of Immunology, 2015, 40(2): 153-158 CrossRef
  77. Vertiprakhov V.G., Ovchinnikova N.V. The activity of trypsin in the pancreatic juice and blood of poultry increases simultaneously in the postprandial period. Frontiers in Physiology, 2022, 13: 874664 CrossRef
  78. Titov V.Yu., Petrenko Yu.M., Vanin A.F. Biokhimiya, 2008, 73: 113-118 (in Russ.).
  79. Koshikawa N., Hasegawa S., Nagashima Y., Mitsuhashi K., Tsubota Y., Miyata S., Miyagi Y., Yasumitsu H., Miyazaki K. Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am. J. Pathol., 1998, 153(3):  937-944 CrossRef
  80. Guenther F., Melzig M.F. Protease-activated receptors and their biological role — focused on skin inflammation. J. Pharm. Pharmacol., 2015, 67(12): 1623-1633 CrossRef
  81. Mihara K., Ramachandran R., Saifeddine M., Hansen K., Renaux B., Polley D., Gibson S., Vanderboor C., Hollenberg M.D. Thrombin-mediated direct activation of proteinase-activated receptor-2: another target for thrombin signaling. Mol. Pharmacol., 2016, 89(5): 606-614 CrossRef
  82. Cenac N., Coelho A.-M., Nguyen C., Compton S., Andrade-Gordon P., MacNaughton W.K., Wallace J.L., Hollenberg M.D., Bunnett N.W., Garcia-Villar R., Bueno L., Vergnolle N. Induction of intestinal inflammation in mouse by activation of proteinase-activated receptor-2. Am. J. Pathol., 2002, 161(5): 1903-1915 CrossRef
  83. Cuffe J.E., Bertog M., Velázquez-Rocha S., Dery O., Bunnett N., Korbmacher C. Basolateral PAR-2 receptors mediate KCl secretion and inhibition of Na+ absorption in the mouse distal colon. J. Physiol., 2002, 539(Pt 1): 209-222 CrossRef
  84. Holzhausen M., Spolidorio L.C., Ellen R.P., Jobin M.C., Steinhoff M., Andrade-Gordon P., Vergnolle N. Protease-activated receptor-2 activation: a major role in the pathogenesis of Porphyromonas gingivalis infection. Am. J. Pathol., 2006, 168(4): 1189-1199 CrossRef
  85. Vergnolle N. Proteinase-activated receptor-2-activating peptides induce leukocyte rolling, adhesion, and extravasation in vivo. J. Immunol., 1999, 163(9): 5064-5069.







Full article PDF (Rus)

Full article PDF (Eng)