doi: 10.15389/agrobiology.2023.4.726eng

UDC: 636.934.55:636.01

Supported financially by the Russian Science Foundation, grant No. 22-26-00213,



N.A. Balakirev, E.A. Orlova ✉, N.N. Shumilina, O.I. Fedorova,
E.E. Larina, M.V. Novikov

Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, ul. Akademika Skryabina, Moscow, 109472 Russia, e-mail, ( corresponding author),,,,

Balakirev N.A.
Fedorova O.I. 0000-0002-5779-0774
Orlova E.A.
Larina E.E.
Shumilina N.N.
Novikov M.V.

Final revision received January 10, 2023
Accepted April 14, 2023

Sable (Martes zibellina L.) skins have always been in high demand on the fur market. At present, there is a trend towards an increase in interest in the skins of wild sables vs. cage-bred sables. According to experts from fur farms and auction houses, this id due to the inferior fur quality the cage-bred sables have during domestication, e.g., the hairline has become thicker and coarser, the fur is less silky, with a low variability in color and tone. According to the preferences of buyers at international fur auctions and the recommendations of auction house experts, sable skins with a fur color points 5 (brown with a golden tin), 6 (the color is somewhat lighter than for 5 points), and 7 (beige, sandy-golden with a dark brown ridge), of medium tone and chestnut shade are currently the most in demand. The assortment of sable breeding products can be expanded by matting with wild animals. This report presents the first results of obtaining hybrid animals with a fur color of 5-7 points from crossing purebred sables with individuals from the wild (females and males of the Yakut, Irkutsk and Yenisei ridges). The work was carried out at OOO Savvatyevo Animal Breeding Plant. The sables caught in Siberia was brought to the farm for mating with cage-breeding sable in 2021. According to the results of whelping in May 2022, two groups of sables were formed, the control (purebred puppies from mating caged-bred male and female sables, 35 males, 30 females) and experimental (crossbred puppies from mating purebred and wild sables, 39 males, 30 females). The resultant reproduction showed that when wild males mate with purebred females, the reproductive performance of females is not inferior to those in crossing with cage-bred males. In crossbred and purebred offspring, the average yield of puppies per successful female was 3.9 sables. Purebred male progeny is inferior to crossbreds in live weight (1279.6±17.8 g, 1560.0±68.5 g, p ≤ 0.001) and body length (45.6±0.5 cm, 47.8±0.6 cm, p ≤ 0.01). Purebred female progeny is somewhat superior to hybrid females in terms of live weight (1138.7±25.4 g, 1111.3±18.7 g, p ≥ 0.01), but body length and chest girth behind the shoulder blades did not reveal differences. Purebred males and females complete their growth earlier than hybrids. Purebred young animals have two variations in the coloring covering hair, almost black and dark brown. In crossbred males and females, the covering hairs are dark brown, brown, light brown, almost black. Purebred and crossbred sables show no significant differences in the color of the base of downy hairs. Crossbred males and females have a greater variability in the color of the tops of downy hair compared to the purebred control. The quality of the hairline of crossbred males is 0.08 points higher than that of crossbred females. In color, crossbred males are lighter than females by 0.34 points, and the males are closer to the desired color variation. By tone, the resulting young sables approach the desired one, and by shade, they correspond (2.03 points for females and 2.07 points for males). Among the resulting males, there are fewer individuals with gray hair (10.5 %) vs. resulting females (13 %), a gray spot is present (average score for females 4.67, for males 4.52). Evaluation of parental pairs with regard to the main economically important traits showes that the best desired type of coloration of crossbred young animals results from mating light males with dark females of heterogeneous pairs. The mother sable coloration does not influence the coloration of daughters and sons while males better transmit their traits by color to offspring, for sons, r = 0.61 (р ≤ 0.001), for daughters, r = 0.72 (р ≤ 0.001).

Keywords: sable, skins, coloring, tone, shade, furs, sable farming, breeding, selection.



  1. Bakeev N.N., Monakhov G.I., Sinitsyn A.A. Sobol’ [Sable]. Vyatka, 2003 (in Russ.). 
  2. Li M., Xia W., Wang M., Yang M., Zhang L., Guo J. Application of molecular genetics method for differentiating Martes zibellina L. heart from its adulterants in traditional Chinese medicine based on mitochondrial cytochrome b gene. Mitochondrial DNA, 2014, 25(1): 78-82 CrossRef
  3. Hua Y., Xu Y., Zhang W., Li B. Complete mitochondrial genome reveals the phylogenetic relationship of sable Martes zibellina linkouensis. Mitochondrial DNA Part A, 2017, 28(2): 263-264 CrossRef
  4. Li B., Wu D., Cai Y., Vladimir G.M., Zhang W., Xu Y. Genetic individualization of sable (Martes zibellina L. 1758) using microsatellites. Anim. Cells Syst. (Seoul), 2018, 22(4): 253-258 CrossRef
  5. Yan J., Wu X., Chen J., Chen Y., Zhang H. Harnessing the strategy of metagenomics for exploring the intestinal microecology of sable (Martes zibellina), the national first-level protected animal. AMB Express, 2020, 10(1): 169 CrossRef
  6. Ma Y., Xu L. Distribution and conservation of sables in China. In: Martens, sables, and fishers biology and conservation. S.W. Buskirk, A.S. Harestad, M.G. Raphael, R.A. Powell (eds.). Ithaca, NY, Cornell University Press Cornell University Press, 1994: 255-261.
  7. Li B., Malyarchuk B., He X.B., Derenko M. Molecular evolution and adaptation of the mitochondrial cytochrome b gene in the subgenus Martes. Genet. Mol. Res.. 2013, 12(3): 3944-3054 CrossRef
  8. Rozhnov V.V., Meshcherskiy I.G., Pishchulina S.L., Simakin L.V. Genetika, 2010, 46(4): 553-557 (in Russ.).
  9. Kashtanov S.N., Svishcheva G.R., Lazebnyy O.E., Kolobkov D.S., Pishchulina I.G., Meshcherskiy S.L., Rozhnov V.V. Molekulyarnaya biologiya, 2015, 49(3): 449-445 CrossRef (in Russ.).
  10. Davletov Z.Kh., Lineytseva Е.G. Sbornik materialov V Vserossiyskoy nauchno-prakticheskoy Internet-konferentsii po sobolyu (aprel’-dekabr’, 2005 god) «Problemy sobolinogo khozyaystva Rossii» [Proc. Russian Conf. «Problems of sable farming in Russia»]. Kirov, 2006: 29-39 (in Russ.).
  11. Kashtanov S.N., Sulimova G.E., Shevyrkov V.L., Svishcheva G.R. Genetika, 2016, 52(9): 1001-1011 CrossRef (in Russ.).
  12. Zhang R., Yang L., Ai L., Yang Q., Chen M., Li J., Yang L., Luan X. Geographic characteristics of sable (Martes zibellina) distribution over time in Northeast China. Ecol. Evol., 2017, 7(11): 4016-4023 CrossRef 
  13. Su L., Liu X., Jin G., Ma Y., Tan H., Khalid M., Romantschuk M., Yin S., Hui N. Habitat elevation shapes microbial community composition and alter the metabolic functions in wild sable (Martes zibellina) guts. Animals (Basel), 2021, 11(3): 865 CrossRef 
  14. Kashtanov S.N., Kazakova T.I. Genetika, 1995, 31(2): 234-238 (in Russ.).
  15. Monakhov V.G. Genetika, 2001, 37(9): 1281-1289 (in Russ.).
  16. Kashtanov S.N., Svishcheva G.R., Pishchulina S.L., Lazebnyy O.E., Meshcherinskiy I.G., Simakin L.V., Rozhnov V.V. Genetika, 2015, 51(1): 78-88 CrossRef (in Russ.).
  17. Monakhov V.G. Doklady akademii nauk, 2018, 482(1): 194-197 CrossRef (in Russ.).
  18. Gosudarstvennye doklady [State reports]. Available: Accessed: 04/06/2023 (in Russ.).
  19. Bakeyev N.N., Sinitsyn A.A. Status and conservation of sables in the commonwealth of independent states. In: Martens, sables, and fishers biology and conservation. S.W. Buskirk, A.S. Harestad, M.G. Raphael, R.A. Powell (eds.). Ithaca, NY, Cornell University Press, 1994: 246-254.
  20. Buskirk S.W., Ma Y., Xu L. Sables (Martes zibellina) in managed forests of northern China. Small Carnivore Conservation, 1994, 10: 12-13.
  21. Hosoda T., Suzuki H., Tsuchiya K., Lan H., Shi L., Kryukov A.P. Phylogenetic relationships within Martes based on nuclear ribosomal DNA and mitochondrial DNA. In: Martes: taxonomy, ecology, techniques, and management. G. Proulx, H.N. Bryant, P.M. Woodard (eds.). Edmonton, Provincial Museum of Alberta, 1997: 3-14.
  22. Sheng H., Ohtaishi N., Lu H. The mammals of China. Beijing, China forestry Publishing House, 1999.
  23. Zhu Y., Li B., Zhang W., Monakhov V.G. Current status comparison of sable conservation and utilization in Russia and China. Journal of Economic Animal, 2011, 15(4): 198-202.
  24. Won C., Smith K.G. History and current status of mammals of the Korean Peninsula. Mammal Review, 1999, 29(1): 3-33 CrossRef
  25. Murakami T., Asano M., Ohtaishi N. Mitochondrial DNA variation in the Japanese marten Martes melampus and Japanese sable, Martes zibellina. Jpn. J. Vet. Res., 2004, 51(3-4): 135-142.
  26. Proulx G., Aubry K., Birks J., Buskirk S., Fortin C., Frost H., Krohn W., Mayo L., Monakhov V., Payer D., Saeki M., Santos-Reis M., Weir R., Zielinski W. World distribution and status of the genus Martes in 2000. In: Martens and fishers (Martes) in Human-Altered Environments. Boston, MA, Springer, 2005: 21-76 CrossRef
  27. Clark E.L., Munkhbat J., Dulamtseren S., Baillie J.E.M., Batsaikhan N., Samya R., Stubbe M. Summary conservation action plans for Mongolian mammals. London, 2006, V. 1.
  28. Monakhov V.G. Zoologicheskiy zhurnal, 2015, 94(4): 466-466 CrossRef (in Russ.).
  29. Liu G., Zhao C., Xu D., Zhang H., Monakhov V., Shang S., Gao X., Sha W., Ma J., Zhang W., Tang X., Li B., Hua Y., Cao X., Liu Z., Zhang H. First draft genome of the sable, Martes zibellina. Genome Biol. Evol., 2020, 12(3): 59-65 CrossRef 
  30. Koldaeva E.M. Krolikovodstvo i zverovodstvo, 1998, 5-6: 11 (in Russ.).
  31. Balakirev N.A., Trapezov O.V. Veterinariya, zootekhniya i biotekhnologiya, 2018, 9: 66-71 (in Russ.).
  32. Mishukov L.K. Krolikovodstvo i zverovodstvo, 1998, 5: 15 (in Russ.).
  33. Portnova N.T. Krolikovodstvo i zverovodstvo, 1966, 4: 15-16 (in Russ.).
  34. Kashtanov S.N., Lazebnyy O.E. Krolikovodstvo i zverovodstvo, 2011, 5: 15-19 (in Russ.).
  35. Kashtanov S.N., Petrishchev V.N., Kazakova T.I., Gracheva S.A. Krolikovodstvo i zverovodstvo, 1996, 1: 6 (in Russ.).
  36. Kuznetsov G.A., Kharlamov K.V. Krolikovodstvo i zverovodstvo, 2014, 5: 12-14 (in Russ.).
  37. Kuznetsov G.A. Krolikovodstvo i zverovodstvo, 2012, 2: 14-16 (in Russ.).
  38. Nyukhalov A.P., Svishcheva G.R., Chernova I.E., Lazebnyy O.E., Kashtanov S.N. Krolikovodstvo i zverovodstvo, 2012, 6: 8-13 (in Russ.).
  39. Kuznetsov G.A. Krolikovodstvo i zverovodstvo, 2015, 3: 12-16 (in Russ.).
  40. Kuznetsov G.A., Kharlamov K.V., Fedoseeva G.A., Maksimova L.V. Krolikovodstvo i zverovodstvo, 2015, 4: 20-22 (in Russ.).
  41. Manakhov A.D., Mintseva M.Y., Andreeva T.V., Filimonov P.A., Onokhov A.A., Chernova I.E., Kashtanov S.N., Rogaev E.I. Genome analysis of sable fur color links a lightened pigmentation phenotype to a frameshift variant in the tyrosinase-related protein 1 gene. Genes (Basel), 2021, 12(2): 157 CrossRef
  42. Kashtanov S.N., Kirillushkin K.I., Fedorova O.I. Veterinariya, zootekhniya i biotekhnologiya, 2020, 9: 85-89 CrossRef (in Russ.).
  43. Balakirev N.A., Shumilina N.N., Fedorova O.I., Orlova E.A., Larina E.E. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy meditsiny im. N.Е. Baumana, 2022, 251(3): 20-27 CrossRef (in Russ.).
  44. Balakirev N.A., Novikov M.V., Reusova T.V., Strepetova O.A., Shumilina N.N., Orlova E.A., Larina E.E. Krolikovodstvo i zverovodstvo, 2022, 5: 19-20 (in Russ.).
  45. Rezul’taty torgov [Trading results]. Available: Accessed: 04/06/2023 (in Russ.).
  46. Osipova N.N., Cherkashina A.G., Pavlova A.I., Posel’skaya S.N., Zakharov E.S. Veterinariya, zootekhniya i biotekhnologiya, 2019, 4: 80-85 CrossRef (in Russ.).
  47. Chekalova T.M. Krolikovodstvo i zverovodstvo, 2015, 2: 16-20 (in Russ.).
  48. Chekalova T.M., Orlova E.A., Zotova A.A. Krolikovodstvo i zverovodstvo, 2018, 3: 31-32 CrossRef (in Russ.).







Full article PDF (Rus)

Full article PDF (Eng)