doi: 10.15389/agrobiology.2021.4.695eng

UDC: 636.22/.28:619:578.831.31:577.2



A.V. Nefedchenko, A.G. Glotov, S.V. Koteneva, T.I. Glotova

Siberian Federal Scientific Center of Agro-BioTechnologies RAS, Institute of Experimental Veterinary Science of Siberia and the Far East, r.p. Krasnoobsk, PO box 463, Novosibirskii Region, Novosibirsk Province, 630501 Russia, e-mail, (✉ corresponding author),,

Nefedchenko A.V.
Koteneva S.V.
Glotov A.G.
Glotova T.I.

Received April 8, 2021


Bovine respiratory diseases are widespread in all countries with intensive animal husbandry and cause significant economic damage. They are the result of a synergistic interaction of several viruses and bacteria, predominantly of the Pasteurellaceae family. Clinical signs and pathological changes in internal organs depend on the presence or absence of a particular pathogen. Mass outbreaks occur when animals from different sources are mixed. The etiological structure of such outbreaks has been sufficiently studied, however, there is insufficient data on the distribution of bacteria and viruses in the respiratory tract and their quantitative determination. The article presents the results of studying the etiological structure of the outbreak of respiratory diseases in the big dairy farm after the import of cattle, during which more than 400 animals of different age and sex groups died. Samples of internal organs of 58 dead animals of different ages were examined. When studying the etiological structure of the outbreak, standard bacteriological methods were used, viral agents were identified by PCR by gel electrophoresis, and real-time PCR was used to quantify all detected infectious agents. In total, 9 viruses and bacteria were identified, of which the respiratory syncytial virus of cattle (BRSV, Bovine Respiratory Syncytial Virus, genus Pneumovirus, family Paramyxoviridae) and bacteria of the Pasteurellaceae family played a leading etiological role. Using quantitative PCR, the concentrations of the virus and bacteria Pasteurella multocida and Mannheimia haemolytica were determined in the respiratory tract organs of 13 calves of different ages with similar clinical signs, pathological changes and the presence of three pathogens in the respiratory tract organs. The concentration of agents ranged from 0.1±0.03 to 4.8±0.47 log10 genomic equivalents (GE)/ml for BRSV, from 1.3±0.60 to 4.1±0.30 log10 GE/ml for P. multocida, and from 1.9±0.03 to 4.9±0.67 log10 GE/ml for M. haemolytica. The concentration and distribution of pathogens in the organs of calves of different ages differed. BRSV was detected in a wider range of respiratory organs, both free from bacteria and colonized by them. In the lungs, the concentration of the virus was higher than in the tracheal and bronchial exudate. P. multocida was present only in the upper and middle lobes of the lungs of 2.5-4-month-old calves at approximately equal concentrations in acute bronchopneumonia. The degree of colonization of the lungs by this bacterium increased with age and in calves at the age of 6 months its number reached maximum values in the upper and middle lobes of the lungs, pulmonary lymph nodes and washes from the mucous membranes in chronic bronchopneumonia. M. haemolytica was detected in acute bronchopneumonia in calves at the age of 2.5 months in a minimum amount in the middle lobes of the lungs, in a maximum amount in tracheal and bronchial exudates. The results showed that the virus and bacteria multiply in different parts of the lungs without suppressing each other, which confirms the effect of their synergistic interaction and leads to an increase in the severity of the course of pneumonia. Quantification of viruses and bacteria by real-time PCR can be a useful tool for studying the pathogenesis of mixed viral-bacterial infections in vivo. The results obtained underline the role of the BRSV in the development of pulmonary pasteurellosis.

Keywords: cattle, respiratory infections, real-time PCR, quantitative analysis, respiratory syncytial virus, Pasteurella multocida, Mannheimia haemolytica, synergism.



  1. Brogden K.A., Guthmiller J.M. Polymicrobial diseases. Washington, 2002.
  2. Gorden P.J., Plummer P. Control, management and prevention of bovine respiratory disease in dairy calves and cows. Veterinary Clinics of North America: Food Animal Practice, 2010, 26(2): 243-259 CrossRef
  3. Andrews A.H., Blowey R., Boyd H., Eddy R. Respiratory disease. In: Bovine medicine: diseases and husbandry of cattle. A.N. Andrews, R. Blowey, H. Boyd, R. Eddy (ed.). Blackwell Scientific Publications, Oxford, 2004, 1232.
  4. Fulton R.W., Purdy C.W., Confer A.W., Saliki J.T., Loan R.W., Briggs R.E., Burge L.J.  Bovine viral diarrhea viral infections in feeder calves with respiratory disease: interactions with Pasteurella spp., parainfluenza-3 virus, and bovine respiratory syncytial virus. The Canadian Journal of veterinary Research, 2000, 64(3): 151-159.
  5. Ackermann M.R., Brogden K.A. Response of the ruminant respiratory tract to Mannheimia (Pasteurella) haemolytica. Microbes and Infection, 2000, 2(9): 1079-1088 CrossRef
  6. Brodersen B.W. Bovine respiratory syncytial virus. Veterinary Clinics of North America: Food Animal Practice, 2010, 26(2): 323-333 CrossRef
  7. Larsen L.E. Bovine Respiratory Syncytial Virus (BRSV): a review. Acta Veterinaria Scandinavica, 2000, 41(1): 1-24.
  8. Sacco R.E., McGill J.L., Pillatzki A.E., Palmer M.V., Ackermann M.R. Respiratory syncytial virus infection in cattle. Veterinary Pathology, 2014, 51(2): 427-436 CrossRef
  9. Valarcher J.R., Schelcher R., Bourhy H. Evolution of bovine respiratory syncytial virus. Journal of Virology, 2000, 74(22): 10714-10728 CrossRef
  10. Murray G.M., More S.J., Clegg T.A., Earley B., O’Neill R.G., Johnston D., Gilmore J., Nosov M., McElroy M.C., Inzana T.J., Cassidy J.P. Risk factors associated with exposure to bovine respiratory disease pathogens during the peri-weaning period in dairy bull calves. BMC Veterinary Research, 2018, 14: 53 CrossRef
  11. Fulton R.W., d’Offay J.M., Landis C., Miles D.G., Smith R.A., Saliki J.T., Ridpath J.F., Confer A.W., Neill J.D., Eberle R., Clement T.J., Chase C.C., Burge L.J., Payton M.E. Detection and characterization of viruses as field and vaccine strains in feedlot cattle with bovine respiratory disease. Vaccine, 2016, 34(30): 3478-3492 CrossRef
  12. Sudaryatma P.E., Nakamura K., Mekata H., Sekiguchi S., Kubo M., Kobayashi I., Subangkit M., Goto Y., Okabayashi T. Bovine respiratory syncytial virus infection enhances Pasteurella multocida adherence on respiratory epithelial cells. Veterinary Microbiology, 2018, 220: 33-38 CrossRef
  13. Agnes J.T., Zekarias B., Shao M., Anderson M.L., Gershwin L.J., Corbeil L.B. Bovine respiratory syncytial virus and Histophilus somni interaction at the alveolar barrier. Infection and Immunity, 2013, 81: 2592-2597 CrossRef
  14. Singh K.J., Ritchey W., Confer A.W. Mannheimia haemolytica: bacterial-host interactions in bovine pneumonia. Veterinary Pathology, 2011, 48(2): 338-348 CrossRef
  15. Tizioto P.C., Kim J., Seabury C.M., Schnabel R.D., Gershwin L.J., Van Eenennaam A.L., Toaff-Rosenstein R., Neibergs H.L., Taylor J.F. Immunological response to single pathogen challenge with agents of the bovine respiratory disease complex: an RNA-Sequence analysis of the bronchial lymph node transcriptome. PLoS ONE, 2015, 10(6): e0131459 CrossRef
  16. Rice J.A., Carrasco-Medina L., Hodgins D.C., Shewen P.E. Mannheimia haemolytica and bovine respiratory disease. Animal Health Research Reviews, 2007, 8(2): 117-128 CrossRef
  17. Glotov A.G., Glotova T.I., Nekrasova N.V., Nefedchenko A.V., Goppe V.A. Veterinariya, 2005, 11: 20-23 (in Russ.).
  18. Glotov A.G., Glotova T.I., Nefedchenko A.V., Grebennikova T.V., Alipper T.I. Veterinariya, 2007, 12: 27-29 (in Russ.).
  19. Vilcek S., Elvander M., Ballagi-Pordany A., Bleak S. Development of nested PCR assays for detection of bovine respiratory syncytial virus in clinical samples. Journal of Clinical Microbiology, 1994, 32(9): 2225-2231 CrossRef
  20. Horwood P.F., Gravel J.L., Mahony T.J. Identification of two distinct bovine parainfluenza virus type 3 genotypes. Journal of General Virology, 2008, 89(7): 1643-1648 CrossRef
  21. Takiuchi E., Stipp D.T., Alfieri A.F., Alfieri A.A. Improved detection of bovine coronavirus N gene in faces of calves infected naturally by a semi-nested PCR assay and an internal control. Journal of Virological Methods, 2006, 13(2): 148-154 CrossRef
  22. OIE. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 8th Edition. Paris, France, 2018.
  23. Nefedchenko A.V., Shikov A.N., Glotov A.G., Glotova T.I., Ternovoi V.A., Agafonov A.P., Sergeev A.N., Donchenko N.A. Molekulyarnaya genetika, mikrobiologiya i virusologiya, 2016, 34: 62-66 CrossRef (in Russ.).
  24. Subramaniam S., Bergonier D., Poumarat F. Species identification of Mycoplasma bovis and Mycoplasma agalactiae based on the urvC genes by PCR. Molecular and Cellular Probes, 1998, 12(3): 161-169 CrossRef
  25. Angen Ø., Ahrens P., Tegtmeier C. Development of a PCR test for identification of Haemophilus somnus in pure and mixed cultures. Veterinary Microbiology, 1998, 63(1): 39-48 CrossRef
  26. Boxus M., Letellier C., Kerkhofs P. Real time RT-PCR for the detection and quantitation of bovine respiratory syncytial virus. Journal of Virological Methods,2005, 125(2): 125-130 CrossRef
  27. Zhao H., Liu J., Li Y., Yang C., Zhao S., Liu J., Liu A., Liu G., Yin H., Guan G., Luo J.  Validation of reference genes for quantitative real-time PCR in bovine PBMCs transformed and non-transformed by Theileria annulata. Korean Journal of Parasitology, 2016, 54(1): 39-46 CrossRef
  28. Nefedchenko A.V., SHikov A.N., Glotov A.G., Glotova T.I., Ternovoi V.A., Maksyutov R.A., Agafonov A.P., Sergeev A.N. Detection and genotyping Pasteurella multocida of five capsular groups in real time polymerase chain reaction. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(2): 401-408 CrossRef
  29. Jordan R., Shao M., Mackman R.L., Perron M., Cihlar T., Lewis S.A., Eisenberg E.J., Carey A., Strickley R.G., Chien J.W., Anderson M.L., McEligot H.A., Behrens N.E., Gershwin L.J. Antiviral efficacy of an RSV fusion inhibitor in a bovine model of RSV infection. Antimicrobial Agents and Chemotherapy, 2015, 59(8): 4889-4900 CrossRef
  30. Antonis A.F.G. Age-dependent differences in the pathogenesis of bovine respiratory syncytial virus infections related to the development of natural immunocompetence. Journal of General Virology, 2010, 91(10): 2497-2506 CrossRef
  31. Blodörn K., Hägglund S., Gavier-Widen D., Eléouët J.F., Riffault S., Pringle J., Taylor G., Valarcher J.F. A bovine respiratory syncytial virus model with high clinical expression in calves with specific passive immunity. BMC Veterinary Research, 2015, 11: 76 CrossRef
  32. Thomas L.H., Slott E.J., Collins A.P., Jebbett J. Experimental pneumonia in gnotobiotic calves produced by respiratory syncytial virus. British Journal of Experimental Pathology, 1984, 65: 19-28.
  33. Tjørnehøj K., Uttenthal A., Viuff B., Larsen L.E., Røntved C., Rønsholt L. An experimental infection model for reproduction of calf pneumonia with bovine respiratory syncytial virus (BRSV) based on one combined exposure of calves. Research in Veterinary Science, 2003, 74(1): 55-65 CrossRef
  34. Yaman T., Büyükbayram H., Özyıldız Z., Terzi F., Uyar A., Keles Ö.F., Özsoy Ş.Y., Yener Z.  Detection of bovine respiratory syncytial virus, Pasteurella multocida, and Mannheimia haemolyticaby immunohistochemical method in naturally-infected cattle. Journal of Veterinary Research, 2018, 62(4): 439-445 CrossRef
  35. Thonur L., Maley M., Gilray J., Crook T., Laming E., Turnbull D., Nath M., Willoughby K. One-step multiplex real time RT-PCR for the detection of bovine respiratory syncytial virus, bovine herpesvirus 1 and bovine parainfluenza virus 3. BMC Veterinary Research, 2012, 8: 37 CrossRef
  36. Zhang W., Liu X., Liu M., Ma B., Xu L., Wang J. Development of a multiplex PCR for simultaneous detection of Pasteurella multocida, Mannheimia haemolytica and Trueperella pyogenes.  Acta Veterinaria Hungarica, 2017, 65(3): 327-339 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)