doi: 10.15389/agrobiology.2021.4.619eng

UDC: 636.2:591.1:579.62:575:577.2

Supported financially by the Russian Foundation for Basic Research, grant No. 20-016-00168 “Investigation of the features of metabolic gene expression in the cattle rumen microbial community as influenced by various feeding factors”



G.Yu. Laptev, E.A. Yildirim , T.P. Dunyashev, L.A. Ilyina, D.G. Tyurina, V.A. Filippova, E.A. Brazhnik, N.V. Tarlavin, A.V. Dubrovin, N.I. Novikova, V.N. Bolshakov, E.S. Ponomareva

JSC Biotrof+, 19, korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail, (✉ corresponding author),,,,,,,,,,

Laptev G.Yu.
Brazhnik E.A.
Yildirim E.A.
Tarlavin N.V.
Dunyashev T.P.
Dubrovin A.V.
Ilyina L.A.
Novikova N.I.
Tyurina D.G.
Bolshakov V.N.
Filippova V.A.
Ponomareva E.S.

Received January 21, 2021


Under intensified cattle breeding, combined stress factors, in particular, extremely high milk productivity, inconsistency of neuro-humoral and hormonal regulation of feed intake and milk production, negative energy balance, feeds excessive in starch negatively impact the rumen microbiota and, consequently, a cow’s physiology. This paper for the first time shows the phases of dairy cow lactation cycle as an important factor that determines the relative abundance of non-attributable bacteria from the candidate families vadinBE97 and WCHB1-41 which functions are practically not studied. The most pronounced changes in the metabolic potential of the microbiota, namely the inhibition of various metabolic pathways in the rumen chyme, e.g., energy (tricarboxylic acid cycle), protein, carbohydrate, lipid, including volatile fatty acid (VFA) synthesis, occurred in cows during stable and declining milk production phases as compared to dry, fresh and milked cows. The aim of this work is to study the composition and metabolic potential of the rumen microbiome in dairy cows during different physiological phases. The experiment (the JSC Agrofirma Dmitrova Gora, Tver Province, the summer 2020) was performed on 15 black-and-white Holsteinized dairy cows (Bos taurus) of the second and third lactations. The cows were assigned to five groups (5 cows each), including the dry cows (on average 30 days before calving, group I), the cows of 20 milking days (group II), of 90 milking days (group III), at day 208 of lactation (group IV), and in late lactation phase when the milk production is declining (day 310, group V). Dairy cows’ diets were calculated using AMTS.Cattle.Professional software in accordance with the accepted requirements. Total DNA was extracted from rumen chyme samples (a Genomic DNA Purification Kit, Fermentas, Inc., Lithuania). The NGS procedure (a MiSeq platform, Illumina, Inc., USA) was performed using primers to the 16S rRNA V3-V4 region and reagents for NGS library preparation (Nextera® XT IndexKit, Illumina Inc., USA), PCR product purification (Agencourt AMPure XP, Beckman Coulter Inc., USA), and sequencing (MiSeq® ReagentKit v2, 500 cycle, Illumina Inc., USA). Bioinformatic analysis was performed with Qiime2 ver. 2020.8 software. Noise sequences were filtered by the Deblur method. The de novo phylogeny was constructed using the MAFFT software package. To analyze the taxonomy, the reference database Silva 138 ( was used. Reconstruction and prediction of the functional content of the metagenome was performed using PICRUSt2 software package v.2.3.0 with MetaCyc database for metabolic pathways and enzymes. Total RNA was isolated from the chyme samples (Aurum Total RNA kit, Bio-Rad, United States) followed by cDNA synthesis (iScript RT Supermix kit, BioRad, USA). The relative expression of the bacterial L-lactate dehydrogenasegene Ldh-L and the Ldb 0813 gene associated with D-lactate dehydrogenase synthesis was assessed using quantitative PCR (SsoAdvanced Universal SYBR Green Supermix kit, Bio-Rad, USA). The16S metagenomic sequencing revealed a decrease (p ≤ 0.05) in the rumen bacteria a-diversity in group IV and group V. We have found twelve superphila and phyla of microorganisms. The superphylum Bacteroidota and the phylum Firmicutes we refer to the dominant rumen bacteria (up to 59.94±1.86 and 46.82±14.40 % of the population, respectively). The superphylum Actinobacteriota bacteria not found in lactating cows appeared only in dry cows. The bacteria of the superphylum Armatimonadota disappeared from the rumen of fresh cows and during stable lactation phase, and of the phylum Chloroflexi — during early and stable lactation phases. The cows differed significantly in eight bacterial families, the Muribaculaceae, Prevotellaceae, Erysipelatoclostridiaceae, Oscillospiraceae, Ruminococcaceae, Saccharimonadaceae, and candidate families WCHB1-41 and vadinBE97. The rumen genera Asteroleplasma, Sharpea, Moryella, Oribacterium, Shuttleworthia appeared after calving and persisted in the next phases of lactation. These bacteria were absent in dry cows. The predicted functional capability of 17 metabolic pathways of the microbiome varied (p ≤ 0.01) in cows of different groups. The most pronounced changes, namely the suppression of various metabolic pathways in the rumen chyme, occurred in groups IV and V compared to group I, group II, and group III (p ≤ 0.01). An increase in the expression of the Ldh-L (p ≤ 0.01) and Ldb 0813 (p ≤ 0.05) genes associated with the synthesis of lactate dehydrogenases was characteristic of fresh cows compared to dry cows. There was a significant increase in the expression of the rumen bacteria genes Ldh-L (10.6-fold, p ≤ 0.001) and Ldb 0813 (2.8-fold, p ≤ 0.05) when lactation declined as compared to group IV.

Keywords: rumen microbiome, ruminants, dairy cows, diet, starch, cellular tissue, NGS- sequencing, PICRUSt2, MetaCyс, metabolic pathway.



  1. Bergman E. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 1990, 70(2): 567-590 CrossRef
  2. Koike S., Kobayashi Y. Fibrolytic rumen bacteria: their ecology and functions. Asian-Australasian Journal of Animal Sciences, 2009, 22(1): 131-138 CrossRef
  3. Il'ina L.A. Izuchenie mikroflory rubtsa krupnogo rogatogo skota na osnove molekulyarno-biologicheskogo metoda T-RFLP s tsel'yu razrabotki sposobov ee optimizatsii. Kandidatskaya dissertatsiya [Study of the cattle rumen microflora using the T-RFLP protocol for its optimization. PhD Thesis]. Dubrovitsy, 2012 (in Russ.).
  4. McCann J.C., Wickersham T.A., Loor J.J. Rumen microbiome and its relationship with nutrition and metabolism. Bioinformatics and Biology Insights, 2014, 8(8): 109-125 CrossRef
  5. Creevey C.J., Kelly W.J., Henderson G., Leahy S.C. Determining the culturability of the rumen bacterial microbiome. Microbial Biotechnology, 2014, 7(5): 467-479 CrossRef
  6. Akin D., Borneman W., Windham W. Rumen fungi: morphological types from Georgia cattle and the attack on forage cell walls. Biosystems, 1988, 21(3-4): 385-391 CrossRef
  7. Janssen P.H., Kirs M. Structure of the archaeal community of the rumen. Applied and Environmental Microbiology, 2008, 74(12): 3619-3625 CrossRef
  8. Qumar M., Khiaosa-ard R., Pourazad F., Wetzels S., Klevenhusen F., Kandler W., Aschenbach J., Zebeli Q. Evidence of in vivo absorption of lactate and modulation of short chain fatty acid absorption from the reticulorumen of non-lactating cattle fed high concentrate diets. PLoS ONE 11(10): e0164192 CrossRef
  9. Reynolds C.K., Huntington G.B., Tyrrell H.F., Reynolds P.J. Net metabolism of volatile fatty acids, d-β-hydroxybutyrate, nonesterified fatty acids, and blood gases by portal-drained viscera and liver of lactating Holstein cows. Journal of Dairy Science, 1988, 71(9): 2395-2405 CrossRef
  10. Aschenbach J.R., Penner G.B., Stumpff F., Gäbel G. Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH. Journal of Animal Science, 2011, 89(4): 1092-1107 CrossRef
  11. Penner G.B., Aschenbach J.R., Gäbel G., Rackwitz R., Oba M. Epithelial capacity for apical uptake of short chain fatty acids is a key determinant for intraruminal pH and the susceptibility to sub-acute ruminal acidosis in sheep. Journal of Nutrition, 2009, 139(9): 1714-1720 CrossRef
  12. Beauchemin K.A., Yang W.Z. Effects of physically effective fiber on intake, chewing activity, and ruminal acidosis for dairy cows fed diets based on corn silage. Journal of Dairy Science, 2005, 88(6): 2117-2129 CrossRef
  13. Jouany J.-P. Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Animal Reproduction Science, 2006, 96(3-4): 250-264 CrossRef
  14. Zebeli Q., Aschenbach J.R., Tafaj M., Boghun J., Ametaj B.N., Drochner W. Invited review: Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. Journal of Dairy Science, 2012, 95(3): 1041-1056 CrossRef
  15. Steele M.A., Schiestel C., AlZahal O., Dionissopoulos L., Laarman A.H., Matthews J.C., McBride B.W. The periparturient period is associated with structural and transcriptomic adaptions of rumen papillae in dairy cattle. Journal of Dairy Science, 2015, 98(4): 2583-2595 CrossRef
  16. Dieho K., Dijkstra J., Klop G., Schonewille J.T., Bannink A. Changes in rumen microbiota composition and in situ degradation kinetics during the dry period and early lactation as affected by rate of increase of concentrate allowance. Journal of Dairy Science, 2017, 100(4): 2695-2710 CrossRef
  17. Henderson G., Cox F., Ganesh S. Jonker A., Young W., Janssen P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 2015, 5(1): 14567 CrossRef
  18. Kumar S., Indugu N., Vecchiarelli B., Pitta D.W. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Frontiers in Microbiology, 2015, 6(6): 781 CrossRef
  19. Rukkwamsuk T., Kruip T.A. Meijer G.A., Wensing T. Hepatic fatty acid composition in periparturient dairy cows with fatty liver induced by intake of a high energy diet in the dry period. Journal of Dairy Science, 1999, 82(2): 280-287 CrossRef
  20. Schulz K., Frahm J., Meyer U., Kersten S., Reiche D., Rehage J., Dänicke S. Effects of prepartal body condition score and peripartal energy supply of dairy cows on postpartal lipolysis, energy balance and ketogenesis: An animal model to investigate subclinical ketosis. Journal of Dairy Research, 2014, 81(3): 257-266 CrossRef
  21. Solun A.S. Petukhova E.A., Emelina N.T. Kormlenie sel'skokhozyaistvennykh zhivotnykh, 1971, 9: 201-209 (in Russ.).
  22. Toporova L.V. Veterinariya sel'skokhozyaistvennykh zhivotnykh, 2005, 7: 67-74 (in Russ.).
  23. Koenig M., Beauchemin K.A., Rode L.M. Effect of grain processing and silage on microbial protein synthesis and nutrient digestibility in beef cattle fed barley-based diets. Journal of Animal Science, 2003, 81(4): 1057-1067 CrossRef
  24. Pitta D., Kumar S., Vecchiarelli B., Shirley D., Bittinger K., Baker L., Ferguson J.D., Thomsen N. Temporal dynamics in the ruminal microbiome of dairy cows during the transition period. Journal of Animal Science, 2014, 92(9): 4014-4022 CrossRef
  25. Krause K., Oetzel G. Understanding and preventing subacute ruminal acidosis in dairy herds: a review. Animal Feed Science and Technology, 2006, 126(3-4): 215-236 CrossRef
  26. Plaizier J.C., Khafi E., LiS., Gozho G.N., Krause D.O. Subacute ruminal acidosis (SARA), endotoxins and health consequences. Animal Feed Science and Technology, 2012, 172(1-2): 9-21 CrossRef
  27. Ospina P.A., Nydam D.V., Stokol T., Overton T.R. Evaluation of non-esterified fatty acids and b-hydroxybutyrate in transition dairy cattle in the north eastern United States: critical thresholds for prediction of clinical diseases. Journal of Dairy Science, 2010, 93(2): 546-554 CrossRef
  28. McArt J.A., Nydam D.V., Oetzel R. A field trial on the effect of propylene glycol on displaced abomasum, removal from herd and reproduction in fresh cows diagnosed with subclinical ketosis. Journal of Dairy Science, 2012, 95(5): 2505-2512 CrossRef
  29. Duffield T.F., Lissemore K.D., McBride B.W., Leslie K.E. Impact of hyperketonemia in early lactation dairy cows on health and production. Journal of Dairy Science, 2009, 92(2): 571-580 CrossRef
  30. Ospina P.A., Nydam, D.V., Stokol T., Overton T.R. Associations of elevated non-esterified fatty acids and b-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the north eastern United States. Journal of Dairy Science, 2010, 93(2): 1596-1603 CrossRef
  31. Bell A. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. Journal of Animal Science, 1995, 73(9): 2804-2819 CrossRef
  32. Roche J.R., Bell A.W., Overton T.R., Loor J.L. Nutritional management of the transition cow in the 21st century — a paradigm shift in thinking. Animal Production Science, 2013, 53(9): 1000-1023 CrossRef
  33. Slyter L.L. Influence of acidosis on rumen function. Journal of Animal Science, 1976, 43(4): 910-929 CrossRef
  34. Russell J.B., Hino T. Regulation of lactate production in Streptococcus bovis: a spiraling effect that contributes to rumen acidosis. Journal of Dairy Science, 1985, 68(7): 1712-1721 CrossRef
  35. Shishov V.P. Lipoliticheskie i glitserinfermentiruyushchie bakterii rubtsa ovets, soderzhashchikhsya na raznykh ratsionakh. Kandidatskaya dissertatsiya [Lipolytic and glycerin-fermenting bacteria in the rumen of sheep kept on different diets. PhD Thesis]. Borovsk, 1969 (in Russ.).
  36. Pivnyak I.G., Tarakanov B.V. Mikrobiologiya pishchevareniya zhvachnykh [Digestive microbiology in ruminants]. Moscow, 1982 (in Russ.).
  37. Tarakanov B.V. Normal'naya mikroflora predzheludkov zhvachnykh. Sel'skokhozyaistvennye zhivotnye: fiziologicheskie i biokhimicheskie parametry organizma [Normal microflora of the ruminant proventriculus. Farm animals: physiological and biochemical parameters of the body]. Borovsk, 2002: 259-334 (in Russ.).
  38. Lima F.S., Oikonomou G., Lima S.F. Bicalho M.L.S., Ganda E.K., de Oliveira Filho J.C., Lorenzo G., Trojacanec P., Bicalho R.C. Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Applied and Environmental Microbiology, 2015, 81(4): 1327-1337 CrossRef
  39. Zhong Y., Xue M., Liu J. Composition of rumen bacterial community in dairy cows with different levels of somatic cell counts. Frontiers in Microbiology, 2018, 9: 3217 CrossRef
  40. Sundset M.A., Edwards J.E., Cheng Y.F., Senosiain R.S., Fraile M.N., Northwood K.S., Praesteng K.E., Glad T., Mathiesen S.D., Wright A.D. Molecular diversity of the rumen microbiome of Norwe-gian reindeer on natural summer pasture. Microbial Ecology, 2009, 57(2): 335-348 CrossRef
  41. Zeng H., Guo C., Sun D., Seddik H.E., Mao S. The ruminal microbiome and metabolome alterations associated with diet-induced milk fat depression in dairy cows. Metabolites, 2019, 9(7): 154 (doi:10.3390/metabo9070154">CrossRef
  42. Callahan B., McMurdie P., Holmes S. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal, 2017, 11(12): 2639-2643 CrossRef
  43. Zeka F., Vanderheyden K., De Smet E., Cuvelier C.A., Mestdagh P., Vandesompele J. Straightforward and sensitive RT-qPCR based gene expression analysis of FFPE samples. Scientific Reports, 2016, 6: 21418 CrossRef
  44. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408 CrossRef
  45. Kim E.J., Huws S.A., Lee M.R.F., Scollan N.D. Dietary transformation of lipid in the rumen microbial ecosystem. Asian-Australasian Journal of Animal Sciences, 2009, 22(9): 1341-1350 CrossRef
  46. Kalashnikov A.P., Fisinin V.I., Shcheglov V.V., Pervoe N.G., Kleimenov N.I., Strekozov N.I., Kalyshtskii B.D., Egorov I.A., Makhaev E.A., Dvalishvili V.G, Kalashnikov V.V., Vladimirov V.L., Gruzdev N.V., Mysik A. T., Balakirev N.A., Fitsev A.I., Kirilov M.P., Krokhina V. A., Naumepko P. A., Vorob'eva Sv., Trukhachev V.I. Zlydnev N.E., Sviridova T.M., Levakhin V.I., Galiev B.Kh., Arilov A.N., Bugdaev I.E. Normy i ratsiony kormleniya sel'skokhozyaistvennykh zhivotnykh [Rates and rations for farm animals]. Moscow, 2003 (in Russ.).
  47. Makartsev N.G. Kormlenie sel'skokhozyaistvennykh zhivotnykh [Feeding farm animals]. Kaluga, 2012 (in Russ.).
  48. Nekrasov R.V., Golovin A.V., Makhaev E.A., Anikin A.S., Pervov N.G., Strekozov N.I., Mysik A.T., Duborezov V.M., Chabaev M.G., Fomichev Yu.P., Gusev I.V. Normy potrebnostei molochnogo skota i svinei v pitatel'nykh veshchestvakh [Nutrient requirements for dairy cattle and pigs]. Moscow, 2018 (in Russ.).
  49. Reese A.T., Dunn R.R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio, 2018, 9(4): e01294-18 CrossRef
  50. Bach A., López-García A., González-Recio O., Elcoso G., Fàbregas F., Chaucheyras-Durand F., Castex M. Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. Journal of Dairy Science, 2019, 102(7): 6180-6198 CrossRef
  51. Robinson C.J., Young V.B. Antibiotic administration alters the community structure of the gastrointestinal microbiota. Gut Microbes, 2010, 1(4): 279-284 CrossRef
  52. Duvallet C., Gibbons S.M., Gurry T., Irizarry R.A., Alm E.J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nature Communications, 2017, 8(1): 1784 CrossRef
  53. Fernando S.C., Purvis H.T., Najar F.Z., Sukharnikov L.O., Krehbiel C.R., Nagaraja T.G., Roe B.A., DeSilva U. Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology, 2010, 76(22): 7482-7490 CrossRef
  54. Qiu Q., Gao C., ur Rahman M.A., Cao B., Su H. Digestive ability, physiological characteristics, and rumen bacterial community of holstein finishing steers in response to three nutrient density diets as fattening phases advanced. Microorganisms, 2020, 8(3): 335 CrossRef
  55. Lewin G.R., Carlos C., Chevrette M.G., Horn H.A., McDonald B.R., Stankey R.J., Fox B.G., Currie C.R. Evolution and ecology of Actinobacteria and their bioenergy applications. Annual Review of Microbiology, 2016, 70(1): 235-254 CrossRef
  56. Berlemont R., Martiny A.C. Phylogenetic distribution of potential cellulases in bacteria. Applied and Environmental Microbiology, 2013, 79(5): 1545-1554 CrossRef
  57. Wertz J.T., Kim E., Breznak J.A., Schmidt T.M., Rodrigues J.L. Genomic and physiological characterization of the Verrucomicrobia isolate Geminisphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Applied and Environmental Microbiology, 2012, 78(5): 1544-1555 CrossRef
  58. Dunfield P.F., Yuryev A., Senin P., Smirnova A.V., Stott M.B., Hou S., Ly B., Saw J.H., Zhou Z., Ren Y., Wang J., Mountain B.W., Crowe M.A., Weatherby T.M., Bodelier P.L.E., Liesack W., Feng L., Wang L., Alam M. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 2007, 450(7171): 879-882 CrossRef
  59. Tian R., Ning D., He Z., Zhang P., Spencer S.J., Gao S., Shi W., Wu L., Zhang Y., Yang Y., Adams B.G., Rocha A.M., Detienne B.L., Lowe K.A., Joyner D.C., Klingeman D.M., Arkin A.P., Fields M.W., Hazen T.C., Stahl D.A., Alm E.J., Zhou J. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome, 2020, 8(1): 51 CrossRef
  60. Flint H.J., Duncan S.H., Scott K.P., Louis P. Links between diet, gut microbiota composition and gut metabolism. Proceedings of the Nutrition Society, 2015, 74(1): 13-22 CrossRef
  61. Franke T., Deppenmeier U. Physiology and central carbon metabolism of the gut bacterium Prevotella copri. Molecular Microbiology, 2018, 109(4): 528-540 CrossRef
  62. Meissner S., Hagen F., Deiner C., Günzel D., Greco G., Shen Z., Aschenbach J.R. Key role of short-chain fatty acids in epithelial barrier failure during ruminal acidosis. Journal of Dairy Science, 2017, 100(8): 6662-6675 CrossRef
  63. Pascual J., Hahnke S., Abendroth C., Langer T., Ramm P., Klocke M., Luschnig O., Porcar M. Draft genome sequence of a new Oscillospiraceae bacterium isolated from anaerobic digestion of biomass. Microbiology Resource Announcements, 2020, 9(27): e00507-20 CrossRef
  64. Lagkouvardos I., Lesker T.R., Hitch T.C.A., Gálvez E.J.C., Smit N., Neuhaus K., Wang J., Baines J.F., Abt B., Stecher B., Overmann J., Strowig T., Clavel T. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome, 2019, 7(1): 28 CrossRef
  65. Ormerod K.L., Wood D.L., Lachner N., Gellatly S.L., Daly J.N., Parsons J.D., Dal’Molin C.G.O., Palfreyman R.W., Nielsen L.K., Cooper M.A., Morrison M., Hansbro P.M., Hugenholtz P. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome, 2016, 4(1): 36 CrossRef
  66. Petzel J.P., McElwain M.C., DeSantis D.J., Manolukas M.V., Williams M.V., Hartman P.A., Allison M.J., Pollack J.D. Enzymic activities of carbohydrate, purine, and pyrimidine metabolism in the Anaeroplasmataceae (class Mollicutes). Archives of Microbiology, 1989, 152(4): 309-316 CrossRef
  67. Zhang X., Zhang S., Shi Y., Shen F., Wang H. A new high phenyl lactic acid-yielding Lactobacillus plantarum IMAU10124 and a comparative analysis of lactate dehydrogenase gene. FEMS Microbiology Letters, 2014, 356(1): 89-96 CrossRef
  68. Yeswanth S., Kumar Y.N., Prasad U.V., Swarupa V., Koteswara rao V., Sarma P.V.G.K. Cloning and characterization of l-lactate dehydrogenase gene of Staphylococcus aureus. Anaerobe, 2013, 24: 43-48 CrossRef
  69. Carlier J.P., K'ouas G., Han X.Y. Moryella indoligenes gen. nov., sp. nov., an anaerobic bacterium isolated from clinical specimens. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(4): 725-729 CrossRef
  70. Sizova M.V., Muller P.A., Stancyk D., Panikov N.S., Mandalakis M., Hazen A., Hohmann T., Doerfert S.N., Fowle W., Earl A.M., Nelson K.E., Epstein S.S. Oribacterium parvum sp. nov. and Oribacterium asaccharolyticum sp. nov., obligately anaerobic bacteria from the human oral cavity, and emended description of the genus Oribacterium. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(8): 2642-2649 CrossRef
  71. Downes J., Munson M.A., Radford D.R., Spratt D.A., Wade W.G. Shuttleworthia satelles gen. nov., sp. nov., isolated from the human oral cavity. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(5): 1469-1475 CrossRef
  72. Dewanckele L., Jeyanathan J., Vlaeminck B., Fievez V. Identifying and exploring biohydrogenating rumen bacteria with emphasis on pathways including trans-10 intermediates. BMC Microbiology, 2020, 20(1): 198 CrossRef
  73. Ferlay A., Bernard L., Meynadier A., Malpuech-Brugère C., Ferlay A., Bernard L., Meynadier A., Malpuech-Brugère C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: a review. Biochimie, 2017, 141: 107-120 CrossRef
  74. Bauman D.E., Griinari J.M. Nutritional regulation of milk fat synthesis. Annual Review of Nutrition, 2003, 23(1): 203-227 CrossRef
  75. Neubauer V., Petri R.M., Humer E., Kröger I., Reisinger N., Baumgartner W., Wagner M., Zebeli Q. Starch-rich diet induced rumen acidosis and hindgut dysbiosis in dairy cows of different lactations. Animals, 2020, 10(10): 1727 CrossRef
  76. Tadepalli S., Narayanan S.K., Stewart G.C., Chengappa M.M., Nagaraja T.G. Fusobacterium necrophorum: a ruminal bacterium that invades liver to cause abscesses in cattle. Anaerobe, 2009, 15(1-2): 36-43 CrossRef
  77. Krebs H.A., Eggleston L.V. Metabolism of acetoacetate in animal tissues. Biochemical Journal, 1945, 39(5): 408-419.
  78. Galochkina V.P. Vzaimosvyaz' fermentov tsikla Krebsa i metabolizma piruvata s produktivnost'yu vyrashchivaemykh na myaso bychkov i ptitsy. Kandidatskaya dissertatsiya [The relationship of the Krebs cycle enzymes and pyruvate metabolism with the productivity of steers and poultry raised for meat. PhD Thesis]. Borovsk, 2007 (in Russ.).
  79. Filippovich Yu.B. Osnovy biokhimii [Fundamentals of biochemistry]. Moscow, 1999 (in Russ.).
  80. Begley T.P., Kinsland C., Strauss E. The biosynthesis of coenzyme A in bacteria. Vitamins and Hormones, 2001, 61: 157-171 CrossRef
  81. Leonardi R., Zhang Y.M., Rock C.O., Jackowski S. Coenzyme A: back in action. Progress in Lipid Research, 2005, 44(2-3): 125-153 CrossRef
  82. Clark J.H., Davis C.L. Some aspects of feeding high producing dairy cows. Journal of Dairy Science, 1980, 63(6): 873-885 CrossRef
  83. Abdo K.M., King K.W., Engel R.W. Protein quality of rumen microorganisms. Journal of Animal Science, 1964, 23(3): 734-736 CrossRef
  84. Hilton W.M. Nutrient requirements of beef cattle (7th edn.). National Academy Press, Washington, DC, 1996 CrossRef
  85. Swick R.W., Wood H.G. The role of transcarboxylation in propionic acid fermentation. Proceedings of the National Academy of Sciences USA, 46(1): 28-41 CrossRef
  86. Wang X., Li X., Zhao C., Hu P., Chen H., Liu Z., Liu G., Wang Z. Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows. Applied and Environmental Microbiology, 2012, 78(7): 2386‐2392 CrossRef
  87. Smith S.E., Loosli J.K. Cobalt and vitamin 12 in ruminant nutrition: a review. Journal of Dairy Science, 1957, 40(10): 1215-1227 CrossRef
  88. Lawrence J.G., Roth J.R. Evolution of coenzyme B(12) synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex. Genetics, 1996, 142(1): 11-24.
  89. Gebreyesus G., Difford G.F., Buitenhuis B., Lassen J., Noel S.J., Højberg O., Plichta D.R., Zhu Z., Poulsen N.A., Sundekilde U.K., Løvendahl P., Sahana G. Predictive ability of host genetics and rumen microbiome for subclinical ketosis. Journal of Dairy Science, 2020, 103(5): 4557-4569 CrossRef
  90. Lima J., Auffret M.D., Stewart R.D., Dewhurst R.J., Duthie C.A., Snelling T.J., Walker A.W., Freeman T.C., Watson M., Roehe R. Identification of rumen microbial genes involved in pathways linked to appetite, growth, and feed conversion efficiency in cattle. Frontiers in Genetics, 2019, 10: 701 CrossRef
  91. Ogunade I., Pech-Cervantes A., Schweickart H. Metatranscriptomic analysis of sub-acute ruminal acidosis in beef cattle. Animals, 2019, 9(5): 232 CrossRef
  92. Nocek J.E. Bovine acidosis: implications on laminitis. Journal of Dairy Science, 1997, 80(5): 1005-1028 CrossRef
  93. Bustin S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 2002, 29(1): 23-39 CrossRef
  94. Huang Y., You C., Liu Z. Cloning of D-lactate dehydrogenase genes of Lactobacillus delbrueckii subsp. bulgaricus and their roles in D-lactic acid production. Biotechnology, 2017, 7(3): 194 CrossRef
  95. Hernández J., Benedito J.L., Abuelo A., Castillo C. Ruminal acidosis in feedlot: from aetiology to prevention. The Scientific World Journal, 2014: 702572 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)