doi: 10.15389/agrobiology.2021.4.782eng

UDC: 636.52/.58.033:611.21/.23:57.04:697.92

Supported financially from the Russian State Agrarian University — Timiryazev Moscow Agricultural Academy (project No. 1.2.10)



V.I. Fisinin1, I.P. Saleeva1, A.K. Osmanyan2, V.P. Panov2,
V.V. Malorodov2 , N.G. Cherepanova2, V.Z. Hamitova3

1Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail,;
2Department of Zootechny and Biology, Russian State Agrarian University — Timiryazev Moscow Agricultural Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail,, (✉ corresponding author),;
3Ltd «Chelny-Broiler», 8, ul. Stroybaza, Naberezhnye Chelny, Republic of Tatarstan, 423800 Russia, e-mail

Fisinin V.I.
Malorodov V.V.
Saleeva I.P.
Сherepanova N.G.
Osmanyan A.K.
Hamitova V.Z.
Panov V.P.

Received May 25, 2021


Currently, optimization of indoor microclimatic conditions in poultry houses is attracting considerable interest due to the intensification of broiler meat production. However, given the increase in flock sizes of broilers, little research has focused on the effect of microclimate parameters in poultry houses on the bird’s respiratory system. Insufficient air exchange in the premises can cause functional respiratory disorders in broiler chickens. This paper is the first to report that air circulation in closed poultry houses contributes to maintaining productivity and improves the histostructure and histochemical properties of the tracheal wall in broiler chicks (Gallus gallus domesticus). Our work aimed to study the influence of different air circulation regimes in closed poultry houses on histostructure and histochemical characteristic of the trachea in Ross 308 broiler chicks and their productive performance. The study was conducted in 2020-2021 at the LLC Chelny-Broiler poultry farm (Republic of Tatarstan). Ross 308 cross broiler chicks were raised until 39 days of age in five closed premises under different airflow distribution and air circulation (five groups of 35 birds each). For morphometry, 525 preparations of 175 trachea specimens from of all broilers (2500 g bodyweight) were measured. Trachea sections were stained by hematoxylin and eosin procedure. For histochemical studies of acidic and neutral mucins, sections were stained by a combined method for detecting polysaccharides using the Schiff-iodic acid (PAS-reaction) and alcian blue according to the manufacturer’s recommended (LLC Labico, Russia). In the control groups 2, 3, and 4, there was no air circulation; in the experimental groups I and V, circulation was provided by forced ventilation, capacity of 8.5 thousand m3/h (SF-550-02, AgroKurs, Russia). Ventilation was run at the 10 day-age of the broiler chicks. Insufficient air circulation in the poultry rearing rooms caused destructive changes in the tracheal mucous membrane, i.e., its own lamina proliferation, edema, a decrease in the height of the epithelium, and destruction of cilia. This led to metaplasia of the epithelium and disruption of mucociliary transport. The thickness of the mucous membrane and its own lamina was minimum in the experimental group 1 (147.2±3.3 µm and 129.1±3.1 µm, respectively) and maximum in the control group 3 (404.7±9.4 µm and 395.7±9.4 µm) (p ≤ 0.01). The thickness of the tracheal epithelial layer significantly increased in the experimental groups 1 and 5 (by 14 % on average) compared to the control groups 1, 2, and 3 (p ≤ 0.01). The lack of indoor air circulation led to a significant decrease in the height of cilia in the control groups 2, 3, and 4 (by 39.5, 58.1, and 67.5 %, respectively) as compared to the experimental groups 1 and 5. The increase in birds’ bodyweight at 5 weeks of age in the experimental group 1 increased compared to the control groups 2, 3, and 4 by 6.5, 3.2, and 7.1 %, respectively (p ≤ 0.05). The histochemical characteristics suggests the presence of simple multicellular endoepithelial glands in the tracheal epithelium layer of birds. Thus, with the provision of proper air circulation in an enclosed space, the thickness of the mucous membrane and its own lamina decreases, and the thickness of the epithelial layer and the height of the tracheal cilia increases. These characteristics are indicative of proper airexchange in the poultry houses.

Keywords: Gallus gallus, trachea, histostructure, tracheal mucosa, ciliated epithelium, microclimate, air circulation, ventilation system, respiratory tract, histochemistry, PAS-reaction, alcian blue.



  1. Zavalii M.A. Rinologiya, 2014, 1: 38-49 (in Russ.).
  2. Belyaeva E.V., Rybakova A.V., Gushchin Ya.A., Vaganova D.S., Koptyaeva K.E., Muzhikyan A.A., Makarova M.N., Makarov V.G. Laboratornye zhivotnye dlya nauchnykh issledovanii, 2018, 3: 49-60 CrossRef (in Russ.).
  3. Pavlov A.V., Esev L.I. Zhurnal anatomii i gistopatologii, 2017, 6(2): 62-67 (in Russ.).
  4. Tseluiko S.S., Semenov D.A., Gorbunov M.M., Vislobokov N.A., Kazanskii P.R., SHvyndina N.V., Shklover V.Ya. Byulleten' fiziologii i patologii dykhaniya, 2012, 45: 52-56 (in Russ.).
  5. Ross S.M., Corrsin S. Results of an analytical model of mucociliary pumping. Journal of Applied Physiology, 1974, 37(3): 333-340 CrossRef
  6. Carvalho O., Gonçalves C. Comparative physiology of the respiratory system in the animal kingdom. The Open Biology Journal, 2011, 4: 35-46 CrossRef
  7. Troyanchuk O.V., Levchuk O.K. Uchenye zapiski uchrezhdeniya obrazovaniya Vitebskaya ordena Znak pocheta gosudarstvennaya akademiya veterinarnoi meditsiny, 2013, 49(1-1): 73-78 (in Russ.).
  8. Maina J.N. Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone. Biological Reviews Cambridge Philosophical Society, 2006, 81(4): 545-579 CrossRef
  9. Bacha J.W., Bacha M.L. Color atlas of veterinary histology, 3rd edition. Lippincott Williams and Willcons Company, USA, 2012.
  10. ÇEvik-Demirkan A., Haziroğlu R.M., Kürtül İ. Gross morphological and histological features of larynx, trachea and syrinx in Japanese quail. Anatomia, Histologia, Embryologia, 2007, 36(3): 215-219 CrossRef
  11. Matveev O.A., Guz'ko A.P., Baimukhambetov R.K. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2018, 6(74): 170-173 (in Russ.).
  12. Al-Mussawi A.M., Al-Mehanna A.H., Al-Baghdady F.H. Histological study of the trachea in indigenous male turkey (Meleagris gallopava). Al-Qadisiyah Journal of Veterinary Medicine Sciences, 2012, 11(2): 47-53.
  13. Waad S.K. Comparative histological study of trachea in guinea fowl and coot bird. Basrah Journal of Veterinary research, 2015, 14(2): 122-128.
  14. Samuelson D.A. Text book of veterinary histology. Saunders Elsevier, 2007.
  15. Pervenetskaya M.V., Fomenko L.V. Aktual'nye voprosy veterinarnoi biologii, 2014, 1(21): 10-12 (in Russ.).
  16. Vrakin V.F., Sidorova M.V. Anatomiya i gistologiya domashnei ptitsy [Anatomy and histology of poultry]. Moscow, 1984 (in Russ.).
  17. Mikroskopicheskaya tekhnika: Rukovodstvo /Pod redaktsiei D.S. Sarkisova, Yu.P. Perova [Microscopic technique: manual. D.S. Sarkisov, Yu.P. Perov (eds.)]. Moscow, 1996 (in Russ.).
  18. Su Y., Wei H., Bi Y., Wang Y., Zhao P., Zhang R., Li X., Li J., Bao J. Pre-cold acclimation improves the immune function of trachea and resistance to cold stress in broilers. Journal of Cellular Physiology, 2019, 234(5): 7198-7212 CrossRef
  19. Su Y., Li S., Xin H., Li J., Li X., Zhang R., Li J., Bao J. Proper cold stimulation starting at an earlier age can enhance immunity and improve adaptability to cold stress in broilers. Poultry Science, 2020, 99(1): 129-141 CrossRef
  20. Fisinin V.I., Trukhachev V.I., Saleeva I.P., Morozov V.Yu., Zhuravchuk E.V., Kolesnikov R.O., Ivanov A.V. Microbiological risks related to the industrial poultry and animal production (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(6): 1120-1130 CrossRef
  21. Bakutis B., Monstviliene E., Januskeviciene G. Analyses of airborne contamination with bacteria, endotoxins and dust in livestock barns and poultry houses. Acta Vet. Brno, 2004, 73(2): 283-289 CrossRef
  22. Plewa K., Lonc E. Analysis of airborne contamination with bacteria and moulds in poultry farming: a case study. Pol. J. Environ. Stud., 2011, 20(3): 725-731.
  23. Radon K., Danuser B., Iversen M., Monso E., Weber C., Hartung J., Donham K., Palmgren U., Nowak D. Air contaminants in different European farming environments. Ann. Agric. Environ. Med., 2002, 9(1): 41-48.
  24. Fisinin V.I., Kavtarashvili A.Sh. Heat stress in poultry. I. Danger, related physiological changes, and symptoms (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(2): 162-171 CrossRef
  25. Fedde M.R. Relationship of structure and function of the avian respiratory system to disease susceptibility. Poultry Science, 1998, 77(8): 1130-1138 CrossRef
  26. Nesterova L.Yu. Vestnik donskogo gosudarstvennogo agrarnogo universiteta, 2016, 2-1(20): 16-22 (in Russ.).
  27. Hodgson T., Casais R., Dove B., Britton P., Cavanagh D. Recombinant infectious bronchitis coronavirus Baudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity. Journal of Virology, 2004, 78(24): 13804-13811 CrossRef
  28. Kirkpatrick N.C., Mahmoudian A., Colson C.A., Devlin J.M., Noormohammadi A.H. Relationship between mortality, clinical signs and tracheal pathology in infectious laryngotracheitis. Avian Pathology, 2006, 35(6): 449-453 CrossRef
  29. Oldoni I., Rodríguez-Avila A., Riblet S.M., Zavala G., García M. Pathogenicity and growth characteristics of selected infectious laryngotracheitis virus strains from the United States. Avian Pathology, 2009, 38(1): 47-53 CrossRef
  30. Osmanyan A.K., Malorodov V.V., Cherepanova N.G., Saleeva I.P. Ptitsevodstvo, 2020, 12: 42-46 CrossRef (in Russ.).
  31. Osmanyan A.K., Malorodov V.V. Ptitsa i ptitseprodukty, 2021, 1: 13-16 CrossRef (in Russ.).
  32. Al-Mashhadani E.H., Beck M.M. Effect of atmospheric ammonia on the surface ultrastructure of the lung and trachea of broiler chicks. Poultry Science, 1985, 64(11): 2056-2061 CrossRef
  33. Nagaraja K.V., Emery D.A., Jordan K.A., Newman J.A., Pomeroy B.S. Scanning electron microscopic studies of adverse effects of ammonia on tracheal tissues of turkeys. American Journal of Veterinary Research, 1983, 44(8): 1530-1536.
  34. Hodges R.D. The histology of the fowl. CA Academic Press, London, 1974.
  35. Naumann H.H. On the defense mechanisms of the respiratory mucosa towards infection. Acta Oto-Laryngologica, 1980, 89(3-4): 165-176 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)