doi: 10.15389/agrobiology.2021.4.730eng

UDC: 636.2:636.082:591.1:57.045



A.I. Abilov1, N.A. Kombarova2 , Kh.A. Amerkhanov3,
S.A. Shemetyuk2, A.S. Shamshidin1, S.V. Mymrin4, E.A. Pyzhova5,
N.V. Bogolyubova1, A.A. Gudilina4, S.F. Abilova1, P.G. Kombarov5,
O.S. Mityashova1

1Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail,,,,;
2Head Center for Reproduction of Farm Animals AO, 3, ul. Tsentralnaya, pos. Bykovo, Podolsk Region, Moscow Province, 142143 Russia, e-mail (✉ corresponding author),;
3Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia,e-mail;
4Uralplemcentr OAO, 21 km, Siberian tract, Ekaterinburg, 620913 Russia, e-mail,;
5Lomonosov Moscow State University, Faculty of Geography, 1, Leninskie gory, Moscow, 119991 Russia, e-mail,

Abilov A.I.
Pyzhova E.A.
Kombarova N.A.
Bogolyubova N.V.
Amerkhanov Kh.A.
Gudilina A.A.
Shemetyuk S.A.Х
Abilova S.F.
Shamshidin A.S.
Kombarov P.G.
Mymrin S.V.Х
Mityashova O.S.

Received September 24, 2020


Currently, the potential of highly productive animals adapted to industrial farming should be used most effectively and not depend on the geographical location and agro-climatic resources of the region. Our study showed that the observation of required technologies minimizes effects of regional climatic and geochemical factors. Our findings give more understanding on the metabolic peculiarities of the sire bulls in various geo-climatic conditions of the 55.86°N and 51.18°N zone. This may be of interest for the practice of breeding the Holstein breed in countries with similar geo-climatic factors. We compared the influence of climatic and geochemical conditions of the Central Russia (the Head Center for the Reproduction of Farm Animals, Moscow Province), the Middle Urals (JSC Ural-plemcenter, Sverdlovsk Province), and the Northern Kazakhstan (RCPZh JSC Asyl-Tulik, Akmola region) on the adaptive status of the imported Holstein 3-9-year-old bull sires (n = 122). Blood levels of bioelements Ca, P, Mg, Ca:P, Fe, chlorides, Se, Cu, and Zn were recorded. To assess protein-lipid metabolism parameters and blood enzyme activity, the total protein, albumin, globulins, urea, creatinine, total bilirubin, urea, triglycerides, cholesterol, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were measured. The endogenous hormone levels (testosterone, estradiol, thyroxine, and cortisol) were measured. The volume of ejaculate, the concentration of spermatozoa in the ejaculate, and the number of spermatozoa in the ejaculate were assessed to evaluate sperm productivity. Climatic and geochemical characteristics of the regions were a temperate climate with sod-podzolic soils for the Moscow region, a sharply continental climate with bedrock rocks with sandy-clayey and sod-podzolic soils for the Middle Urals, and sever sharply continental climate with dark chestnut soil for the Northern Kazakhstan. The study revealed that the balance of macroelements was within the permissible limits and did not have significant differences between regions, i.e., 2.34-2.53 mmol/l Ca, 1.47-2.01 mmol/l P (Ca:P 1.20-1.65), and 0.79-0.98 mmol/l Mg. The iron supply in the Moscow region was within the normal range (23.82±6.18 μmol/l), reached the upper limits in the Northern Kazakhstan (30.74±6.97 μmol/l) and exceeded the physiological level (40.32±7.30 μmol/l) in the Middle Urals. The balance of Se (0.72-1.13 μmol/l) and Cu (12.6-16.0 μmol/l) was within allowed limits. On the soils of the Moskvoretsko-Oka geochemical province (the Head Center for the Reproduction of Farm Animals), the bulls were 65.8 % provided with Zn compared to 95.9 % provision (of that minimum allowed) observed in the dry steppe zone on dark chestnut soils of the Northern Kazakhstan. The enzymatic activity (as per the de Ritis coefficient) increased 2-fold in bulls of the Moscow region and the Northern Kazakhstan. All the sires had a sufficient concentration of both total protein and its fractions. The sires of the Moscow region fed an excessive amount of protein, as evidenced by the urea concentration at the upper limit (7.57±2.82 mmol/l) and creatinine 147.45±37.94 μmol/l). The bulls of the Northern Kazakhstan showed iron overload syndrome of 30.74±6.97 μmol/l with an increased bilirubin of 9.15±3.42 μmol/l. The balance of blood steroid hormones indicates a slight testosterone deficiency (39.17±5.06 nmol/l) and an excess of cortisol (226.75±45.62 nmol/l) in bulls of the Moscow region compared to the Middle Urals (50.36±5.80 and 138.81±21.48 nmol/l) and Kazakhstan (52.79±4.14 and 190.50±50.30 nmol/l); the differences are not statistically significant. The average level of blood thyroxine was within the physiologically permissible values, from 66.65±3.52 nmol/l in the Middle Urals to 91.13±3.35 and 95.39±1.86 nmol/l in the Moscow region and the Northern Kazakhstan, respectively. The level of estradiol varied from 0.197±0.02 nmol/l in the Moscow region to 0.234±0.02 and 0.276±0.04 nmol/l in the Northern Kazakhstan and the Middle Urals, which fit into physiological norms of 0.2-0.4 nmol/l for bull sires. The average ejaculate volume varied from 3.72 to 4.87 ml, with an average sperm concentration of 1.21-1.52 billion/ml. The total number of spermatozoa in the ejaculate was 5.32-6.00 billion; the differences were not statistically significant. Therefore, stable keeping conditions, strict control of the requirements in nutrients and mineral elements, and proper light regime (morning-day solar insolation, darkness at night) make it possible to avoid the negative influence of climatic and geochemical factors on breeding animals.

Keywords: bulls, Holstein breed, spermatozoa, metabolic balance, protein-lipid balance, bio-element balance, endogenous hormones, climatic zones, adaptation.



  1. Surovtsev V., Nikulina Yu., Payurova E. APK: ekonomika, upravlenie, 2019, 12: 38-50 (in Russ.).
  2. Foksha V., Konstandoglo A. Dairy productivity of Holstein cows and realization of their genetic potential. Bulgarian Journal of Agricultural Science, 2019, 25(Suppl 1): 31-36.
  3. Shuvarin M.V., Borisova E.E., Ganin D.V., Sukhanova T.V., Shuvarina N.A., Lekhanov I.A. ANI: ekonomika i upravlenie, 2020, 2(31): 389-393 (in Russ.).
  4. Kirkorova L.A., Burova I.A., Bortnevskaya E.R. Izvestiya SPbGAU, 2014, 36: 173-176 (in Russ.).
  5. Shagdurova E.A. Vestnik KrasGAU, 2011, 4: 22-26 (in Russ.).
  6. Yang Z., Yu T., Hou Q., Xia X., Feng H., Huang C., Wang L., Lv Y., Zhang M. Geochemical evaluation of land quality in China and its applications. Journal of Geochemical Exploration, 2014, 139: 122-135 CrossRef
  7. Kovalsky V.V. Geochemical ecology and problems of health. Philos. Trans. R Soc. Lond. B Biol. Sci., 1979, 288(1026): 185-191.
  8. Aliloo H., Pryce J.E., González-Recio O., Cocks B.G., Goddard M.E., Hayes B.J. Including no additive genetic effects in mating programs to maximize dairy farm profitability. Journal of Dairy Science, 2017, 100: 1203-1222 CrossRef
  9. Clasen J.B., Norberg E., Madsen P., Pedersen J., Kargo, M. Estimation of genetic parameters and heterosis for longevity in crossbred Danish dairy cattle. Journal of Dairy Science, 2017, 100: 6337-6342 CrossRef
  10. Saksa E.I., Plemyashov K.V., Anipchenko P.S. WPSIII-8 The effectiveness of the using bulls evaluated by different methods. Journal of Animal Science, 2018, 96(S3): 521-522 CrossRef
  11. Thompson J. Worldwide Holstein breeding. International Bull Evaluation Service, 1998, Bulletin. 19. Available:
    publication/240610493_World_Wide_Holstein_Breeding. Accessed: 14.05.2021.
  12. Milostiviy R.V., Vysokos M.P., Kalinichenko O.O., Vasilenko T.O., Milostiva D.F. Productive longevity of European Holstein cows in conditions of industrial technology. Ukrainian Journal of Ecology, 2017, 7(3): 169-179 CrossRef
  13. Rodina N.D., Stepanov D.V. Vestnik agrarnoi nauki, 2011, 33(6): 59-62 (in Russ.).
  14. Ward A., Abuargob O.M., Hdud I.M., Ruban S.Y. The influence of the genotype on the longevity and the lifelong productivity of Holstein breed. International Journal of Advance Research, Ideas and Innovations in Technology, 2018, 4(2): 2764-2768.
  15. Abramova N.I., Vlasova G.S., Burgomistrova O.N., Khromova O.L., Bogoradova L.N., Zenkova N.V. Molochnokhozyaistvennyi vestnik, 2017, 3(27): 8-15 CrossRef (in Russ.).
  16. Barsukova S.Yu. Agrarnaya politika Rossii. Obshchestvennye nauki i sovremennost', 2017, 5: 31-45 (in Russ.).
  17. Firsova E.V., Kartashova A.P. Genetika i razvedenie zhivotnykh, 2019, 1: 62-69 (in Russ.).
  18. Eskin G.V., Turbina I.S. Agrarnaya nauka, 2018, 9: 8-11 (in Russ.).
  19. Alagirova Zh.T. Sel'skokhozyaistvennyi zhurnal, 2015, 8: 8-12 (in Russ.).
  20. Abilov A.I., Plemyashov K.V., Kombarova N.A., Pyzhova E.A., Reshetnikova N.M. Nekotorye aspekty vosproizvodstva krupnogo rogatogo skota /Pod redaktsiei A.I. Abilova [Some aspects of cattle reproduction. A.I. Abilov (ed.)]. St. Petersburg, 2019 (in Russ.).
  21. Ulimbashev M.B., Alagirova Zh.T. Adaptive ability of Holstein cattle introduced
    into new habital conditions. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(2): 247-254 CrossRef
  22. Shevkhuzhev A.F., Tumov A.A. Molochnoe i myasnoe skotovodstvo, 2018, 1: 31-35 (in Russ.). 
  23. Kubasov R.V. Vestnik Rossiiskoi akademii meditsinskikh nauk, 2014, 69(9-10): 102-109 CrossRef (in Russ.).
  24. Prastowo S., Nugroho T., Mahfudhoh N., Putra F., Subiakti Y., Ratriyanto A., Susilowati A., Sutarno, Widyas N. Milk production of imported Holstein cows over different environment. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 633: 012021.
  25. Pangestu M., Subagyo Y., Yuwono P., Rustomo B. Heat tolerance and productivity of local and imported Holstein-Friesian cows in Indonesia. Asian-Australasian Journal of Animal Sciences, 2000, 13(Suppl.): 505-508.
  26. Marai I.F., Habeeb A.A., Farghaly H.M. Productive, physiological and biochemical changes in imported and locally born Friesian and Holstein lactating cows under hot summer conditions of Egypt. Tropical Animal Health and Production, 1999, 31(4): 233-243 CrossRef
  27. Kuznetsov V.M. Sibirskii vestnik sel'skokhozyaistvennoi nauki, 2014, 3: 85-89 (in Russ.).
  28. Sharafutdinova E.B., Zhukov A. P., Rostova N.YU. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2016, 2(58): 156-159 (in Russ.).
  29. Naranjo-Gómez J.S., Uribe-García H.F., Herrera-Sánchez M.P., Lozano-Villegas K.J., Rodríguez-Hernández R., Rondón-Barragán I.S. Heat stress on cattle embryo: gene regulation and adaptation. Heliyon, 2021, 7(3): e06570 CrossRef
  30. Silvestre F.T., Carvalho T.S.M., Francisco N., Santos J.E.P., Staples C.R., Jenkins T.C., Thatcher WW. Effects of differential supplementation of fatty acids during the peripartum and breeding periods of Holstein cows: I. Uterine and metabolic responses, reproduction, and lactation. J. Dairy Sci., 2011, 94: 189-204 CrossRef
  31. Bobe G., Young J. W., Beitz D. C. Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci., 2004, 87: 3105-3124 CrossRef
  32. Chagas L.M., Bass J.J., Blache D., Burke C.R., Kay J.K., Lindsay D.R., Lucy M.C., Martin G.B., Meier S., Rhodes F.M., Roche J.R., Thatcher W.W., Webb R. New perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows. J. Dairy Sci., 2007, 90: 4022-4032 CrossRef
  33. Mathevon M., Buhr M.M., Dekkers J.C. Environmental, management, and genetic factors affecting semen production in Holstein bulls. J. Dairy Sci., 1998, 81(12): 3321-3330 CrossRef
  34. Anbaza Yu.V. Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta, 2017, 10: 174-180 (in Russ.).
  35. Rodgers A.B., Morgan C.P., Bronson S.L., Revello S., Bale T.L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci., 2013, 33(21): 9003-9012 CrossRef
  36. González C.R., González B. Exploring the stress impact in the paternal germ cells epigenome: can catecholamines induce epigenetic reprogramming? Frontiers in Endocrinol. (Lausanne), 2021, 11: 630948 CrossRef
  37. Chan J.C., Nugent B.M., Bale T.L. Parental advisory: maternal and paternal stress can impact offspring neurodevelopment. Biol. Psychiatry, 2018, 83(10): 886-894 CrossRef
  38. Rodriguez-Martinez H., Barth A.D. In vitro evaluation of sperm quality related to in vivo function and fertility. In: Reproduction in domestic ruminants VI. J.I. Juengel, J.F. Murray, M.F. Smith (eds.). Nottingham University Press, Nottingham, UK, 2007: 39-54 CrossRef
  39. Lalancette C., Thibault C., Bachand I., Caron N., Bissonnette N. Transcriptome analysis of bull semen with extreme nonreturn rate: use of suppression-substractive hybridization to identify functional markers for fertility. Biol. Reprod., 2008, 78: 618-635 CrossRef
  40. Miller D., Ostermeier G.C. Spermatozoal RNA: why is it there and what does it do? Gynecol. Obstet. Fertil., 2006, 34: 840-846 CrossRef
  41. Tyuzikov I.A. Andrologiya i genital'naya khirurgiya, 2013, 2: 5-10 (in Russ.).
  42. Bokarev I.N. Klinicheskaya meditsina, 2014, 8: 71-76 (in Russ.).
  43. Abilov A.I., Amerkhanov Kh.A., Eskin G.V., Zhavoronkova N.V., Kombarova N.A., Fedorova E.V., Gusev I.V., Pyzhova E.A. Molochnoe i myasnoe skotovodstvo, 2015, 1: 29-33 (in Russ.).
  44. Abilov A.I., Eskin G.V., Amerkhanov Kh.A., Kombarova N.A., Turbina I.S., Fedorova E.V., Gusev I.V., Zhavoronkova N.V. High sperm production as related to macro- and microelement levels in blood serum in servicing bulls of the modern selection. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2014, 6: 96-106 CrossRef
  45. Winter A.G., Zhao F., Lee R.K. Androgen deficiency and metabolic syndrome in men. Transl. Androl. Urol., 2014, 3(1): 50-58 CrossRef
  46. Pivonello R., Menafra D., Riccio E., Garifalos F., Mazzella M., de Angelis C., Colao A. Metabolic disorders and male hypogonadotropic hypogonadism. Frontiers in Endocrinology, 2019, 10: 345 CrossRef
  47. Abilov A.I., Mityashova O.S., Mymrin S.V., Gudilina A.A., Pyzhova E.A., Kombarova N.A., Levina G.N. Endogenous hormone level in bull sires in relation to age, autoimmune status, and production performance of maternal ancestors. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(4): 743-752 CrossRef
  48. Abilov A.I., Mymrin S.V., Gudilina A.A., Mityashova O.S. Voprosy normativno-pravovogo regulirovaniya v veterinarii, 2020, 1: 283-287 CrossRef (in Russ.).
  49. Abilov A.I., Eskin G.V., Kombarova N.A. Blood estradiol level in bull sires influences sperm count and effectiveness of artificial insemination. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(6): 830-836 CrossRef
  50. Amerkhanov Kh.A., Abilov A.I., Eskin G.V., Kombarova N.A., Turbina I.S., Fedorova E.V., Varennikov M.V., Gusev I.V. Concentration of testosterone and cholesterol in blood serum of servicing bulls depending on their type of productivity, age and the season. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2014, 2: 59-66 CrossRef (in Russ.).
  51. Kim T.W., Jeong J.H., Hong S.C. The impact of sleep and circadian disturbance on hormones and metabolism. Int. J Endocrinol., 2015, 2015: 591729 CrossRef
  52. Kumar Jha.P., Challet E., Kalsbeek A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol. Cell Endocrinol., 2015, 418(Pt 1): 74-88 CrossRef
  53. Ouyang J.Q., Davies S., Dominoni D. Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function. J. Exp. Biol., 2018, 221(Pt 6): jeb156893 CrossRef
  54. Bedrosian T.A., Fonken L.K., Nelson R.J. Endocrine effects of circadian disruption. Annu. Rev. Physiol., 2016, 78: 109-131 CrossRef
  55. Russart K.L.G., Nelson R.J. Light at night as an environmental endocrine disruptor. Physiol. Behav., 2018, 190: 82-89 CrossRef
  56. Hut R.A., Paolucci S., Dor R., Kyriacou C.P., Daan S. Latitudinal clines: an evolutionary view on biological rhythms. Proc. Biol. Sci., 2013, 280(1765): 20130433 CrossRef
  57. Poletaeva A.B., Alenikova A.E., Krivonogova O.V. Vestnik Ural'skoi meditsinskoi akademicheskoi nauki, 2009, 2/1(24): 290-292 (in Russ.).
  58. Solonin Yu.G. Zhurnal mediko-biologicheskikh issledovanii, 2019, 7(2): 228-239 CrossRef (in Russ.).
  59. Wacker M., Holick M.F. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol., 2013, 5(1): 51-108 CrossRef
  60. Aziz M., Yadav K.S. Vitamin D deficiency in metabolic syndrome patients. International Journal of Advanced Research, 2016, 4(7): 229-241 CrossRef
  61. Holick M.F. Vitamin D deficiency. N. Engl. J. Med., 2007, 357(3): 266-281 CrossRef
  62. Hasnulin V. Geophysical perturbations as the main cause of Northern stress. Alaska Medicine, 2007, 49(2 Suppl): 237-244.
  63. Krymova T.G., Kolkutin V.V., Dobrovol'skaya M.V. Problemy ekspertizy v meditsine, 2007, 26(2): 39-40 (in Russ.).
  64. Natsional'naya tekhnologiya zamorazhivaniya i ispol'zovaniya spermy plemennykh bykov proizvoditelei [National technology of freezing and using semen of pedigree bull sires]. Moscow, 2008 (in Russ.).
  65. Kurganova I.N. Lopes de Gerenyu V.O., Ableeva V.A., Bykhovets S.S. Fundamental'naya i prikladnaya klimatologiya, 2017, 4: 66-82 CrossRef (in Russ.).
  66. Shklyaev V.A., Shklyaeva L.S. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta, 2011, 5: 61-69 (in Russ.).
  67. SHurr A.V. Pskovskii regionologicheskii zhurnal, 2014, 20: 46-55 (in Russ.).
  68. Rogovskaya N.V., Filippov R.V. Vestnik evraziiskoi nauki, 2014, 3(22): 64 (in Russ.).
  69. Dan'shin A.I. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Ekonomika, 2017, 25(4): 543-552 CrossRef (in Russ.).
  70. Gusev I.V., Rykov R.A. Molochno-myasnoe skotovodstvo, 2018, 6: 22-25 (in Russ.).
  71. Alabada H.K.M., Saleh W.M.M. Vitamin D effectiveness and pathology in humans and domestic animals. Multidisciplinary Reviews, 2020, 3: 1-15 CrossRef
  72. Shil'nikov I.A., Akanova N.I., Temnikov V.N. Agrokhimicheskii vestnik, 2008, 6: 28-31 (in Russ.).
  73. Mitrofanova E.M. Agrarnyi vestnik Urala, 2011, 2(81): 9-11 (in Russ.).
  74. Pashkov S.V., Baibusinova S.B. Vestnik ZabGU, 2017, 2: 16-27 (in Russ.).
  75. Kovalev I.V., Sarycheva I.V. Vestn. Mosk. un-ta. Ser. 17, Pochvovedenie, 2007, 2: 30-36 (in Russ.).
  76. Ivanishchev V.V. Izvestiya Tul'skogo gosudarstvennogo universiteta. Estestvennye nauki, 2019, 3: 127-138 (in Russ.).
  77. Shinoda S., Yoshizawa S., Nozaki E., Tadai K., Arita A. Marginally excessive iron loading transiently blocks mucosal iron uptake in iron-deficient rats. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2014, 307(1): G89-G97 CrossRef
  78. Polyakova V.V. Izvestiya Vysshikh uchebnykh zavedenii. Lesnoi zhurnal, 2015, 3(345): 29-34 (in Russ.).
  79. Geary T.W., Waterman R.C., Van Emon M.L., Ratzburg C.R., Lake S., Eik B.A., Armstrong D.R., Zezeski A.L., Heldt J.S. Effect of supplemental trace minerals on novel measures of bull fertility. Transl. Anim. Sci., 2019, 3(Suppl 1): 1813-1817 CrossRef
  80. Pal R., Mani V., Mir S., Singh R., Sharma R. Importance of trace minerals in the ration of breeding bull — a review. International Journal of Current Microbiology and Applied Sciences, 2017, 6(110: 218-224 CrossRef
  81. Pipan M.Z., Mrkun J., Strajn B.J., Vrtač K.P., Kos J., Pišlar A., Zrimšek P. The influence of macro- and microelements in seminal plasma on diluted boar sperm quality. Acta Vet. Scand., 2017, 59(1): 11 CrossRef
  82. Kerns K., Zigo M., Sutovsky P. Zinc: a necessary ion for mammalian sperm fertilization competency. Int. J. Mol. Sci., 2018, 19(12): 4097 CrossRef
  83. Semenova L.I., Ponomareva S.M. Nauchnoe obozrenie. Fundamental'nye i prikladnye issledovaniya, 2018, 5: 8 (in Russ.).
  84. Golubkina N.A., Sindireva A.V., Zaitsev V.F. Yug Rossii: ekologiya, razvitie, 2017, 1: 107-127 CrossRef (in Russ.).
  85. Ermakov V.V. Biogeochemical regioning problems and the biogeochemical selenium provinces in the former USSR. Biol. Trace Element Res., 1992, 33(3): 171-185.
  86. Yatoo M.I., Saxena A., Deepa P.M., Habeab B.P., Devi S., Jatav R.S., Dimri U. Role of trace elements in animals: a review. Veterinary World, 2013, 6(12): 963-967 CrossRef
  87. Malinin M.L., Kuznetsova A.E., Shibaeva M.A., Karablin P.M., Tikhomirova E.I., Laskavyi V.N. Fundamental'nye issledovaniya, 2013, 10(8): 1758-1761 (in Russ.).
  88. Robles-Diaz M., Garcia-Cortes M., Medina-Caliz I., Gonzalez-Jimenez A., Gonzalez-Grande R., Navarro J.M., Castiella A., Zapata E.M., Romero-Gomez M., Blanco S., Soriano G., Hidalgo R., Ortega-Torres M., Clavijo E., Bermudez-Ruiz P.M., Lucena M.I., Andrade R.J., Spanish DILI Registry, Faster Evidence-based Translation (SAFE-T) Consortium. The value of serum aspartate aminotransferase and gamma-glutamyl transpetidase as biomarkers in hepatotoxicity. Liver Int., 2015, 35(11): 2474-2482 CrossRef
  89. Zou Y., Zhong L., Hu C., Sheng G. Association between the alanine aminotransferase/aspartate aminotransferase ratio and new-onset non-alcoholic fatty liver disease in a no obese Chinese population: a population-based longitudinal study. Lipids Health Dis., 2020, 19: 245 CrossRef
  90. Reshetnikova N.M., Eskin G.V., Kombarova H.A., Poroshina E.S., Shavyrin I.I. Problemy biologii produktivnykh zhivotnykh, 2011, 54: 116-121 (in Russ.).
  91. Ndrepepa G. Aspartate aminotransferase and cardiovascular disease — a narrative review. J. Lab. Precis. Med., 2021, 6: 6 CrossRef
  92. Shamban L., Patel B., Williams M. Significantly elevated liver alkaline phosphatase in congestive heart failure. Gastroenterology Research, 2014, 7(2): 64-68 CrossRef
  93. Cheung C.L., Cheung B.M.Y. Bone-specific alkaline phosphatase is elevated in insulin resistance: implications for vascular calcification in diabetes. European Heart Journal, 2013, 34(suppl_1): P5473 CrossRef
  94. Bogolyubova N.V., Rykov R.A. Molochnoe i myasnoe skotovodstvo, 2020, 3: 46-49 (in Russ.). 
  95. Shkuratova I.A., Belousov A.I., Khalturina L.V., Busygina O.A. Veterinariya, 2020, 5: 48-52 CrossRef (in Russ.).
  96. Milovanov V.K. Biologiya vosproizvedeniya i iskusstvennoe osemenenie zhivotnykh [Reproduction biology and artificial insemination of animals]. Moscow, 1962 (in Russ.).
  97. White I.G. Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reprod. Fertil. Dev., 1993, 5(6): 639-658 CrossRef
  98. Chung T.H., Kwon Y.J., Lee Y.J. High triglyceride to HDL cholesterol ratio is associated with low testosterone and sex hormone-binding globulin levels in middle-aged and elderly men. Aging Male, 2020, 23(2): 93-97 CrossRef
  99. Masaki H., Kim N., Nakamura H., Kumasawa K., Kamata E., Hirano K.I., Kimura T.. Long-chain fatty acid triglyceride (TG) metabolism disorder impairs male fertility: a study using adipose triglyceride lipase deficient mice. Mol. Hum. Reprod., 2017, 23(7): 452-460 CrossRef
  100. Laursen A.H., Bjerrum O.W., Friis‐Hansen L., Hansen T.O., Marott J.L., Magnussen K. Causes of iron overload in blood donors — a clinical study. Vox Sanguinis, 2018, 113(2): 110-119 (doi: 10.1111/vox.12619">CrossRef
  101. Polunina T.E., Maev I.V.  Meditsinskii sovet, 2008, 9-10: 41-52 (in Russ.).
  102. Babichev V.N. Problemy endokrinologii, 2013, 59(1): 62-69 CrossRef (in Russ.).
  103. Vanita P., Jhansi K. Metabolic syndrome in endocrine system. J. Diabetes Metab., 2011, 2: 163 CrossRef
  104. Blakemore J., Naftolin F. Aromatase: contributions to physiology and disease in women and men. Physiology, 2016, 31: 258-269 CrossRef
  105. Grossmann M. Low testosterone in men with type 2 diabetes: significance and treatment. J. Clin. Endocrinol. Metab., 2011, 96(8): 2341-2353 CrossRef
  106. Bekaert M., Van Nieuwenhove Y., Calders P., Cuvelier C.A., Batens A.H., Kaufman J.M., Ouwens D.M., Ruige J.B. Determinants of testosterone levels in human male obesity. Endocrine, 2015, 50(1): 202-211 CrossRef
  107. Santi D., Spaggiari G., Granata A.R.M., Setti M., Tagliavini S., Trenti T., Simoni M. Seasonal changes of serum gonadotropins and testosterone in men revealed by a large data set of real-world observations over nine years. Frontiers in Endocrinology (Lausanne), 2020, 10: 914 CrossRef
  108. Tracz M.J., Sideras K., Boloña E.R., Haddad R.M., Kennedy C.C., Uraga M.V., Caples S.M., Erwin P.J., Montori V.M. Testosterone use in men and its effects on bone health. A systematic review and meta-analysis of randomized placebo-controlled trials. J. Clin. Endocrinol. Metab., 2006, 91(6): 2011-2016 CrossRef
  109. Kim T.W., Jeong J.H., Hong S.C. The impact of sleep and circadian disturbance on hormones and metabolism. International Journal of Endocrinology, 2015, 2015: 591729 CrossRef
  110. Gubina A.E., Koinosov A.P. Ekologiya cheloveka, 2018, 2: 31-36 CrossRef (in Russ.).
  111. Hut R.A., Paolucci S., Dor R., Kyriacou C.P., Daan S. Latitudinal clines: an evolutionary view on biological rhythms. Proc. R. Soc. B, 2013, 280(1765): 20130433 CrossRef
  112. Kuznetsova E.A., Adamchik A.S. Sovremennye problemy nauki i obrazovaniya, 2016, 3: 122 (in Russ.).
  113. Thun R., Eggenberger E., Zerobin K., Lüscher T., Vetter W. Twenty-four-hour secretory pattern of cortisol in the bull: evidence of episodic secretion and circadian rhythm. Endocrinology, 1981, 109(6): 2208-2212 CrossRef
  114. Patyukov A.G., Stepanova I.P., Makarova YA.S., Mugak V.V. Zootekhniya, 2014, 4: 28-29 (in Russ.).
  115. Yuan G., Al-Shali K.Z., Hegele R.A. Hypertriglyceridemia: its etiology, effects and treatment. Canadian Medical Association Journal, 2007, 176(8): 1113-1120 CrossRef
  116. Kuznetsova E.A., Adamchik A.S., Goncharov N.P., Katsiya G.V. Andrologiya i genital'naya khirurgiya, 2016, 17(1): 26-31 CrossRef (in Russ.).
  117. Maduka I.C., Neboh E.E., Ufelle S.A. The relationship between serum cortisol, adrenaline, blood glucose and lipid profile of undergraduate students under examination stress. African Health Sciences, 2015, 15(1): 131-136 CrossRef
  118. Platonova N.M. Klinicheskaya i eksperimental'naya tireoidologiya, 2015, 11(1): 12-21 CrossRef (in Russ.).
  119. Björndahl L., Kvist U. Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol. Hum. Reprod., 2010, 16(1): 23-29 CrossRef
  120. Prasad A.S. Zinc in human health. In: Personalized medicine, in relation to redox state, diet and lifestyle. Ch. 10 /F. Atroshi (ed.). IntechOpen, 2020 CrossRef
  121. Beigi Harchegani A., Dahan H., Tahmasbpour E., Bakhtiari Kaboutaraki H., Shahriary A. Effects of zinc deficiency on impaired spermatogenesis and male infertility: the role of oxidative stress, inflammation and apoptosis. Hum. Fertil. (Camb.), 2020, 23(1): 5-16 CrossRef
  122. Bozhedomov V.A, Gromenko D.S., Ushakova I.V., Toroptseva M.V., Galimov SH.N., Golubeva E.L., Okhtyrskaya T.A., Aleksandrova L.A., Sukhikh G.T. Problemy reproduktsii, 2008, 6: 67-73 (in Russ.).
  123. Kasperczyk A., Dobrakowski M., Czuba Z.P., Kapka-Skrzypczak L., Kasperczyk S. Influence of iron on sperm motility and selected oxidative stress parameters in fertile males — a pilot study. Ann. Agric. Environ. Med., 2016, 23(2): 292-296 CrossRef
  124. Amstislavskaya T.G., Popova N.K. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii, 2009, 7(2): 3-2 (in Russ.).  
  125. Lephart E.D., Call S.B., Rhees R.W., Jacobson N.A., Weber K.S., Bledsoe J., Teuscher C. Neuroendocrine regulation of sexually dimorphic brain structure and associated sexual behavior in male rats is genetically controlled. Biol. Reprod., 2001, 64(2): 571-578 CrossRef
  126. Hitit M., Ugur M.R., Dinh T.T.N., Sajeev D., Kaya A., Topper E., Tan W., Memili E. Cellular and functional physiopathology of bull sperm with altered sperm freezability. Frontiers in Veterinary Science, 2020, 7: 581137 CrossRef
  127. Trubnikov D.V. Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii, 2015, 1: 69-71 (in Russ.).
  128. Hassan M.H., El‑Taieb M.A., Fares N.N., Fayed H.M., Toghan R., Ibrahim H.M. Men with idiopathic oligoasthenoteratozoospermia exhibit lower serum and seminal plasma melatonin levels: Comparative effect of night‑light exposure with fertile males. Experimental and Therapeutic Medicine, 2020, 20(1): 235-242 CrossRef
  129. Awad H., Halawa F., Mostafa T., Atta H. Melatonin hormone profile in infertile males. Int. J. Androl., 2006, 29: 409-413 CrossRef
  130. Diatroptov M.E., Simonova E.Yu., Diatroptova M.A. Rossiiskii mediko-biologicheskii vestnik imeni akademika I.P. Pavlova, 2013, 3: 107-113 CrossRef (in Russ.).
  131. Fatima N., Rana S. Metabolic implications of circadian disruption. Pflugers Arch. — Eur. J. Physiol., 2020, 472: 513-526 CrossRef
  132. Amstislavskaya T.G. Psikhofarmakologiya i biologicheskaya narkologiya, 2008, 8(1-2/1): 2271-2279 (in Russ.).
  133. Hasnulin V.I., Voytik I.M., Hasnulina A.V., Ryabichenko T.I., Skosyreva G.A. Some ethnic features of northern aborigines’ psychophysiology as a base for survival in extreme natural conditions: a review. Open Journal of Medical Psychology, 2014, 3(4): 292-300 CrossRef
  134. Hassi J., Sikkilä K., Ruokonen A., Leppäluoto J. The pituitary-thyroid axis in healthy men living under subarctic climatological conditions. Journal of Endocrinology, 2001, 169(1): 195-203 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)