PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2025.3.415eng

UDC: 633.358:631.527:581.138.1

Acknowledgements:
Supported financially by the Russian Science Foundation, Project No. 22-16-00109

 

SYMBIOTIC RESPONSIVITY OF GARDEN PEA (Pisum sativum L.): HISTORY OF STUDY AND CURRENT STATE OF THE ART (review)

A.S. Sulima, V.A. Rakova, V.A. Zhukov

All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail asulima@arriam.ru (✉ corresponding author), rakova@arriam.ru, vzhukov@arriam.ru  

ORCID:
Sulima A.S. orcid.org/0000-0002-2300-857X
Zhukov V.A. orcid.org/0000-0002-2411-9191
Rakova V.A. orcid.org/0000-0002-5633-9789

Final revision received November 01, 2024
Accepted December 13, 2024

The ability of legume plants (family Fabaceae) to biological nitrogen fixation (BNF) is a well-known phenomenon in which atmospheric nitrogen (N2) is converted into a form accessible to living systems (“fixed”) as a result of symbiosis of the plant with nitrogen-fixing bacteria collectively known as rhizobia (I.A. Tikhonovich et al., 2009, J. Yang et al., 2022). Thanks to BNF, legume crops do not require intensive treatment with nitrogen fertilizers, which reduces financial costs, has a positive effect on the environment and allows ensuring food security while adhering to the principles of sustainable agriculture (S.M.F. Bessada et al., 2019). Scientifically based attempts to improve the effectiveness of BNF in legumes have been made for a long time, but a large number of external and internal factors affecting the outcome of nitrogen-fixing symbiosis hamper this work. Researchers of ARRIAM (St. Petersburg, Russia) proposed a new criterion for the selection of symbiotically active legumes, which takes into account the interaction with a complex of beneficial microorganisms that are always present in the soil (rhizobia, arbuscular mycorrhiza fungi, growth-promoting bacteria) (O. Shtark et al., 2012). The degree of positive influence of beneficial microorganisms on the agriculturally important characteristics of plants (increase in seed weight, green mass weight, and protein content in seeds) relative to control conditions varies among different plant genotypes and can be quantified. This quantitative feature has been called “efficiency of interaction with beneficial soil microorganisms” (EIBSM), or “symbiotic responsivity” (O. Shtark et al., 2006). This review sums up the results of the work aimed at establishing the molecular and genetic basis of the EIBSM trait, or symbiotic responsivity, with an emphasis on the study of this trait in pea. Over the past ten years, the study of this trait on garden pea (Pisum sativum L.) using modern “omics” approaches has yielded significant results (T. Mamontova et al., 2019; A. Afonin et al., 2021; E. Zorin et al., 2024; D. Kuzmina et al., 2025). The following factors tied to the plant genome were shown to contribute to the EIBSM trait: control by the plant over the spread of microsymbionts in root tissues; secretion of flavonoid molecules that attract nodule bacteria while playing a role in protecting against pathogens; prolongation of the seed filling phase under the influence of microsymbionts. Currently, a search is underway for transcriptomic markers of the EIBSM. One such a marker, the PsGLP2 gene, has been converted into a DNA marker of symbiotic responsivity (E. Zorin et al., 2024). Further study will be aimed at identifying genetic markers of EIBSM during the analysis of recombinant inbred lines, as well as evaluating the possibility of increasing EIBSM through genetic transformation and genome editing.

Keywords: sustainable agriculture, legumes, biological nitrogen fixation, symbiotic responsivity, EIBSM, pea, marker-assisted selection.

 

REFERENCES

  1. Zelenskiy N.A., Zelenskaya G.M., Mokrikov G.V., Shurkin A.Yu. Zemledelie, 2018, 5: 4-7 CrossRef (in Russ.).
  2. Bamdad H., Papari S., Lazarovits G., Berruti F. Soil amendments for sustainable agriculture: Microbial organic fertilizers. Soil Use and Management, 2022, 38(1): 94-120 CrossRef
  3. Malek Ž., Verburg P.H. Representing responses to climate change in spatial land system models. Land Degradation & Development, 2021, 32(17): 4954-4973 CrossRef
  4. Sibhatu K.T., Qaim M. Rural food security, subsistence agriculture, and seasonality. PloS ONE, 2017, 12(10): e0186406 CrossRef
  5. Pawlak K., Kołodziejczak M. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability, 2020, 12(13): 5488 CrossRef
  6. Willett W., Rockström J., Loken B., Springmann M., Lang T., Vermeulen S., Garnett T., Tilman D., DeClerck F., Wood A. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 2019, 393(10170): 447-492 CrossRef
  7. Ferreira H., Pinto E., Vasconcelos M.W. Legumes as a cornerstone of the transition toward more sustainable agri-food systems and diets in Europe. Frontiers in Sustainable Food Systems, 2021, 5: 694121 CrossRef
  8. Semba R.D. The rise and fall of protein malnutrition in global health. Annals of Nutrition and Metabolism, 2016, 69(2): 79-88 CrossRef
  9. Temba M.C., Njobeh P.B., Adebo O.A., Olugbile A.O., Kayitesi E. The role of compositing cereals with legumes to alleviate protein energy malnutrition in Africa. International Journal of Food Science and Technology, 2016, 51(3): 543-554 CrossRef
  10. Bessada S.M.F., Barreira J.C.M., Oliveira M.B.P.P. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends in Food Science & Technology, 2019, 93: 53-68 CrossRef
  11. Parmar N., Singh N., Kaur A., Thakur S. Comparison of color, anti-nutritional factors, minerals, phenolic profile and protein digestibility between hard-to-cook and easy-to-cook grains from different kidney bean (Phaseolus vulgaris) accessions. Journal of Food Science and Technology, 2017, 54: 1023-1034 CrossRef
  12. Gardner C.D., Hartle J.C., Garrett R.D., Offringa L.C., Wasserman A.S. Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States. Nutrition Reviews, 2019, 77(4): 197-215 CrossRef
  13. Schlüßler A., Schwarzott D., Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, 2001, 105(12): 1413-1421 CrossRef
  14. Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 2008, 6(10): 763-775 CrossRef
  15. Tikhonovich I.A., Provorov N.A. Simbiozi rasteniy i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego [Symbioses of plants and microorganisms: molecular genetics of agricultural systems of the future]. St. Petersburg, 2009 (in Russ.).
  16. Yang J., Lan L., Jin Y., Yu N., Wang D., Wang E. Mechanisms underlying legume—rhizobium symbioses. Journal of Integrative Plant Biology, 2022, 64(2): 244-267 CrossRef
  17. Erisman J.W., Sutton M.A., Galloway J., Klimont Z., Winiwarter W. How a century of ammonia synthesis changed the world. Nature geoscience, 2008, 1(10): 636-639 CrossRef
  18. Zhang X., Davidson E.A., Mauzerall D.L., Searchinger T.D., Dumas P., Shen Y. Managing nitrogen for sustainable development. Nature, 2015, 528(7580): 51-59 CrossRef
  19. Rosa L., Gabrielli P. Energy and food security implications of transitioning synthetic nitrogen fertilizers to net-zero emissions. Environmental Research Letters, 2023, 18(1): 014008 CrossRef
  20. Ladha J.K., Tirol-Padre A., Reddy C.K., Cassman K.G., Verma S., Powlson D.S., Van Kessel C., de B Richter D., Chakraborty D., Pathak H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Scientific Reports, 2016, 6(1): 19355 CrossRef
  21. Goyal R.K., Mattoo A.K., Schmidt M.A. Rhizobial—host interactions and symbiotic nitrogen fixation in legume crops toward agriculture sustainability. Frontiers in Microbiology, 2021, 12: 669404 CrossRef
  22. Raun W.R., Johnson G.V. Improving nitrogen use efficiency for cereal production. Agronomy journal, 1999, 91(3): 357-363 CrossRef
  23. Abd-Alla M.H., Al-Amri S.M., El-Enany A.W.E. Enhancing Rhizobium—legume symbiosis and reducing nitrogen fertilizer use are potential options for mitigating climate change. Agriculture, 2023, 13(11): 2092 CrossRef
  24. Lindström K., Mousavi S.A. Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 2020, 13(5): 1314-1335 CrossRef
  25. Downie J.A. Legume nodulation. Current Biology, 2014, 24(5): R184-R190 CrossRef
  26. Vance C.P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiology, 2001, 127(2): 390-397 CrossRef
  27. Zahran H.H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 1999, 63(4): 968-989 CrossRef
  28. Liu J., Yu X., Qin Q., Dinkins R.D., Zhu H. The impacts of domestication and breeding on nitrogen fixation symbiosis in legumes. Frontiers in Genetics, 2020, 11: 00973 CrossRef
  29. Clúa J., Roda C., Zanetti M.E., Blanco F.A. Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes, 2018, 9(3): 125 CrossRef
  30. Shtark O.Y., Zhukov V.A., Sulima A.S., Singh R., Naumkina T.S., Borisov A.Y., Energy T., Crops G. Prospects for the use of multi-component symbiotic systems of the Legumes. Ecological Genetics, 2015, 13(1): 33-46 CrossRef
  31. Sun L., Lai M., Ghouri F., Nawaz M.A., Ali F., Baloch F.S., Nadeem M.A., Aasim M., Shahid M.Q. Modern plant breeding techniques in crop improvement and genetic diversity: From molecular markers and gene editing to artificial intelligence—a critical review. Plants, 2024, 13(19): 2676 CrossRef
  32. Jha A.B., Gali K.K., Alam Z., Lachagari V.B.R., Warkentin T.D. Potential application of genomic technologies in breeding for fungal and oomycete disease resistance in pea. Agronomy, 2021, 11(6): 1260 CrossRef
  33. Oldroyd G.E.D. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 2013, 11(4): 252-263 CrossRef
  34. Andrews M., Andrews M.E. Specificity in legume-rhizobia symbioses. International Journal of Molecular Sciences, 2017, 18(4): 705 CrossRef
  35. Peck M.C., Fisher R.F., Long S.R. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. Journal of Bacteriology, 2006, 188(15): 5417-5427 CrossRef
  36. Geurts R., Bisseling T. Rhizobium Nod factor perception and signalling. The Plant Cell, 2002, 14(suppl 1): S239-S249 CrossRef
  37. Perret X., Staehelin C., Broughton W.J. Molecular basis of symbiotic promiscuity. Microbiology and Molecular Biology Reviews, 2000, 64(1): 180-201 CrossRef
  38. Schultze M., Kondorosi A. Regulation of symbiotic root nodule development. Annual Review of Genetics, 1998, 32(1): 33-57 CrossRef
  39. Spaink H.P. The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis. Annual Review of Phytopathology, 1995, 33: 345-368 CrossRef
  40. Wang D., Yang S., Tang F., Zhu H. Symbiosis specificity in the legume — rhizobial mutualism. Cellular Microbiology, 2012, 14(3): 334-342 CrossRef
  41. Downie J.A., Walker S.A. Plant responses to nodulation factors. Current Opinion in Plant Biology, 1999, 2(6): 483-489 CrossRef
  42. Philip-Hollingsworth S., Dazzo F.B., Hollingsworth R.I. Structural requirements of Rhizobium chitolipooligosaccharides for uptake and bioactivity in legume roots as revealed by synthetic analogs and fluorescent probes. Journal of Lipid Research, 1997, 38(6): 1229-1241.
  43. Ibáñez F., Wall L., Fabra A. Starting points in plant-bacteria nitrogen-fxing symbioses: Intercellular invasion of the roots. Journal of Experimental Botany, 2017, 68(8): 1905-1918 CrossRef
  44. Xiao T.T., Schilderink S., Moling S., Deinum E.E., Kondorosi E., Franssen H., Kulikova O., Niebel A., Bisseling T. Fate map of Medicago truncatula root nodules. Development, 2014, 141(18): 3517-3528 CrossRef
  45. Crespi M., Gálvez S. Molecular mechanisms in root nodule development. Journal of Plant Growth Regulation, 2000, 19(2): 155-166 CrossRef
  46. Haag A.F., Arnold M.F.F., Myka K.K., Kerscher B., Dall’Angelo S., Zanda M., Mergaert P., Ferguson G.P. Molecular insights into bacteroid development during Rhizobium-legume symbiosis. FEMS Microbiology Reviews, 2012, 37: 364-383 CrossRef
  47. Werner G.D.A., Cornwell W.K., Sprent J.I., Kattge J., Kiers E.T. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nature Communications, 2014, 5(1): 4087 CrossRef
  48. Griesmann M., Chang Y., Liu X., Song Y., Haberer G., Crook M.B., Billault-Penneteau B., Lauressergues D., Keller J., Imanishi L., Roswanjaya Y.P., Kohlen W., Pujic P., Battenberg K., Alloisio N., Liang Y., Hilhorst H., Salgado M.G., Hocher V., Gherbi H., Svistoonoff S., Doyle J.J., He S., Xu Y., Xu S., Qu J., Gao Q., Fang X., Fu Y., Normand P., Berry A.M., Wall L.G., Ané J.-M., Pawlowski K., Xu X., Yang H., Spannagl M., Mayer K.F.X., Ka-Shu Wong G., Parniske M., Delaux P.-M., Cheng S. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science, 2018, 361(6398): 1-18 CrossRef
  49. van Velzen R., Doyle J.J., Geurts R. A resurrected scenario: single gain and massive loss of nitrogen-fixing nodulation. Trends in Plant Science, 2019, 24(1): 49-57 CrossRef
  50. van Velzen R.., Holmer R., Bu F., Rutten L., van Zeijl A., Liu W., Santuari L., Cao Q., Sharma T., Shen D., Roswanjaya Y., Wardhani T.A.K., Seifi Kalhor M., Jansen J., van den Hoogen J., Güngör B., Hartog M., Hontelez J., Verver J., Yang W-C., Schijlen E., Repin R., Schilthuizen M., Schranz M.E., Heidstra R., Miyata K., Fedorova E., Kohlen W., Bisseling T., Smit S., Geurts R. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(20): E4700-E4709 CrossRef
  51. Martin F.M., Uroz S., Barker D.G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science, 2017, 356(6340) CrossRef
  52. Oke V., Long S.R. Bacteroid formation in the Rhizobium—legume symbiosis. Current Opinion in Microbiology, 1999, 2(6): 641-646 CrossRef
  53. Brewin N.J. Tisue and cell invasion by Rhizobium: the structure and development of infection threads and symbiosomes. In: The Rhizobiaceae. H.P. Spaink, A. Kondorosi, P.J.J. Hooykaas (eds.).  Springer, 1998: 417-429 CrossRef
  54. Seefeldt L.C., Hoffman B.M., Dean D.R. Mechanism of Mo-dependent nitrogenase. Annual Review of Biochemistry, 2009, 78(1): 701-722 CrossRef
  55. Terpolilli J.J., Hood G.A., Poole P.S. What determines the efficiency of N2-fixing Rhizobium-legume symbioses? Advances in Microbial Physiology, 2012, 60: 325-389 CrossRef
  56. Krusell L., Madsen L.H., Sato S., Aubert G., Genua A., Szczyglowski K., Duc G., Kaneko T., Tabata S., de Bruijn F., Pajuelo E., Sandal N., Stougaard J. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature, 2002, 420(6914): 422-426 CrossRef
  57. Searle I.R., Men A.E., Laniya T.S., Buzas D.M., Iturbe-Ormaetxe I., Carroll B.J., Gresshoff P.M. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science, 2003, 299(5603): 109-112 CrossRef
  58. Nishida H., Suzaki T. Nitrate-mediated control of root nodule symbiosis. Current Opinion in Plant Biology, 2018, 44: 129-136 CrossRef
  59. Ferguson B.J., Mens C., Hastwell A.H., Zhang M., Su H., Jones C.H., Chu X., Gresshoff P.M. Legume nodulation: The host controls the party. Plant, Cell and Environment, 2019, 42(1): 41-51 CrossRef
  60. Westhoek A., Clark L.J., Culbert M., Dalchau N., Griffiths M., Jorrin B., Karunakaran R., Ledermann R., Tkacz A., Webb I., James E.K., Poole P.S., Turnbull L.A. Conditional sanctioning in a legume-Rhizobium mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(19): e2025760118 CrossRef
  61. Herridge D., Rose I. Breeding for enhanced nitrogen fixation in crop legumes. Field Crops Research, 2000, 65(2-3): 229-248 CrossRef
  62. Sharma V., Bhattacharyya S., Kumar R., Kumar A., Ibañez F., Wang J., Guo B., Sudini H.K., Gopalakrishnan S., DasGupta M., Varshney R.K., Pandey M.K. Molecular basis of root nodule symbiosis between Bradyrhizobium and ‘crack-entry’ legume groundnut (Arachis hypogaea L.). Plants, 2020, 9(2): 276 CrossRef
  63. Courty P.E., Smith P., Koegel S., Redecker D., Wipf D. Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Critical Reviews in Plant Sciences, 2014, 34(1-3): 4-16 CrossRef
  64. Peix A., Ramírez-Bahena M.H., Velázquez E., Bedmar E.J. Bacterial associations with legumes. Critical Reviews in Plant Sciences, 2014, 34(1-3): 17-42 CrossRef
  65. Abdel-Wahab A.M., Abd-Alla M.H. Nodulation and nitrogenase activity of Vicia faba and Glycine max in relation to Rhizobia strain, form and level of combined nitrogen. Phyton, 1995, 35(2): 177-187.
  66. Bourion V., Heulin-Gotty K., Aubert V., Tisseyre P., Chabert-Martinello M., Pervent M., Delaitre C., Vile D., Siol M., Duc G., Brunel B., Burstin J., Lepetit M. Co-inoculation of a pea core-collection with diverse rhizobial strains shows competitiveness for nodulation and efficiency of nitrogen fixation are distinct traits in the interaction. Frontiers in Plant Science, 2018, 8: 2249 CrossRef
  67. Pandey A.K., Rubiales D., Wang Y., Fang P., Sun T., Liu N., Xu P. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theoretical and Applied Genetics, 2021, 134(3): 755-776 CrossRef
  68. Chamkhi I., Cheto S., Geistlinger J., Zeroual Y., Kouisni L., Bargaz A., Ghoulam C. Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Industrial Crops and Products, 2022, 183: 114958 CrossRef
  69. Basile L.A., Lepek V.C. Legume—rhizobium dance: an agricultural tool that could be improved? Microbial Biotechnology, 2021, 14(5): 1897-1917 CrossRef
  70. Naumkina T.S., Suvorova G.N., Vasil’chikov A.G., Miroshnikova M.P., Barbashov M.V., Donskaya M.V., Donskoy M.M., Gromova T.A., Naumkin V.V. Zernobobovie i krupyanie kul’turi, 2012, (2): 21-26 (in Russ.).
  71. Labutova N.M., Polyakov A.I., Lyakh V.A., Gordon V.L., Malinovskiy B.N. Dokladi Rossiyskoy akademii sel’skokhozyaystvennikh nauk, 2004, 2: 10-11 (in Russ.).
  72. Ibrahim K.K., Arunachalam V., Rao P.S.K., Tilak K. Seasonal response of groundnut genotypes to arbuscular mycorrhiza—Bradyrhizobium inoculation. Microbiological Research, 1995, 150(2): 218-224 CrossRef
  73. Shtark O.Yu., Danilova T.N., Naumkina T.S., Vasil’chikov A.G., Chebotar’ V.K., Kazakov A.E., Zhernakov A.I., Nemankin T.A., Prilepskaya N.A., Borisov A.Yu., Tikhonovich I.A. Ekologicheskaya genetika, 2006, 4(2): 22-28 CrossRef (in Russ.).
  74. Requena N., Jimenez I., Toro M., Barea J.M. Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. The New Phytologist, 1997, 136(4): 667-677 CrossRef
  75. Requena N., Perez-Solis E., Azcón-Aguilar C., Jeffries P., Barea J.-M. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Applied and Environmental Microbiology, 2001, 67(2): 495-498 CrossRef
  76. Borisov A.Yu., Tsiganov V.E., Shtark O.Yu., Yakobi L.M., Naumkina T.S., Serdyuk V.P. Katalog mirovoy kollektsii VIR. Vip. 728. Gorokh (simbioticheskaya effektivnost’) /Pod redaktsiey I.A. Tikhonovicha, M.A. Vishnyakovoy [Catalogue of the world collection of VIR. Issue 728. Peas (symbiotic efficiency). I.A. Tikhonovich, M.A. Vishnyakova (eds.)]. St. Petersburg, 2002 (in Russ.).
  77. Borisov A.Yu., Naumkina T.S., Shtark O.Yu., Danilova T.N., Tsiganov V.E. Dokladi Rossiyskoy akademii sel’skokhozyaystvennikh nauk, 2004, 2: 12-13 (in Russ.).
  78. Provorov N.A., Tikhonovich I.A. Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genetic Resources and Crop Evolution, 2003, 50(1): 89-99 CrossRef
  79. Tikhonovich I.A., Andronov E.E., Borisov A.Yu., Dolgikh E.A., Zhernakov A.I., Zhukov V.A., Provorov N.A., Rumyantseva M.L., Simarov B.V. Genetika, 2015, 51(9): 973 CrossRef (in Russ.).
  80. Tikhonovich I.A., Provorov N.A. Uspekhi sovremennoy biologii, 2007, 127(4): 339-357 (in Russ.).
  81. Borisovskaya G.M., Cherepanova N.P., Zavarzin A.A. Russkiy De Bari. Sankt-Peterburgskiy universitet, 2003, (26): 38-40 (in Russ.).
  82. Roy S., Liu W., Nandety R.S., Crook A., Mysore K.S., Pislariu C.I., Frugoli J., Dickstein R., Udvardi M.K. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell, 2020, 32(1): 15-41 CrossRef
  83. Martínez-Romero E. Coevolution in Rhizobium-legume symbiosis? DNA and Cell Biology, 2009, 28(8): 361-370 CrossRef
  84. Geurts R., Xiao T.T., Reinhold-Hurek B. What does it take to evolve a nitrogen-fixing endosymbiosis? Trends in Plant Science, 2016, 21(3): 199-208 CrossRef
  85. Shtark O.Y., Borisov A.Y., Zhukov V.A., Tikhonovich I.A. Mutually beneficial legume symbioses with soil microbes and their potential for plant production. Symbiosis, 2012, 58(1-3): 51-62 CrossRef
  86. Shtark O.Y., Borisov A.Y., Zhukov V.A., Provorov N.A., Tikhonovich I.A. Intimate associations of beneficial soil microbes with host plants. In: Soil microbiology and sustainable crop production. G. Dixon, E. Tilston (eds.). Dordrecht: Springer; 2010: 119-196 CrossRef
  87. Jacobi L.M., Kukalev A.S., Ushakov K.V., Tsyganov V.E., Provorov N.A., Borisov A.Y., Tikhonovich I. Genetic variability of garden pea (Pisum sativum L.) for symbiotic capacities. Pisum Genet., 1999, 31: 44-45.
  88. Xavier G.R., Jesus E.d.C., Dias A., Coelho M.R.R., Molina Y.C., Rumjanek N.G. Contribution of biofertilizers to pulse crops: From single-strain inoculants to new technologies based on microbiomes strategies. Plants, 2023, 12: 954 CrossRef
  89. Naumkina T.S. Selektsiya gorokha (Pisum sativum L.) na povishenie effektivnosti simbioticheskoy azotfiksatsii. Doktorskaya dissertatsiya [Breeding of peas (Pisum sativum L.) to increase the efficiency of symbiotic nitrogen fixation. DSc Thesis]. Orel, 2007 (in Russ.).
  90. Shtark O.Yu., Borisov A.Yu., Zhukov V.A., Nemankin T.A., Tikhonovich I.A. Ekologicheskaya genetika, 2011, 9(2): 80-94 (in Russ.).
  91. Nguyen G.N., Norton S.L., Rosewarne G.M., James L.E., Slater A.T. Automated phenotyping for early vigour of field pea seedlings in controlled environment by colour imaging technology. PLoS ONE, 2018, 13(11): e0207788 CrossRef
  92. Sinjushin A., Semenova E., Vishnyakova M. Usage of morphological mutations for improvement of a garden pea (Pisum sativum): the experience of breeding in Russia. Agronomy, 2022, 12(3): 544 CrossRef
  93. Biswas M.K., Patil A., Sunkad G. Enhancing legume cultivars through agronomy, breeding, and genetics. Agronomy, 2023, 13(4): 1035 CrossRef
  94. Khlestkina E.K. Vavilovskiy zhurnal genetiki i selektsii, 2013, 17(4/2): 1044-1054 (in Russ.).
  95. Kumar J., Gupta D. Sen, Gupta S., Dubey S., Gupta P., Kumar S. Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Reports, 2017, 36(8): 1187-1213 CrossRef
  96. MacKay T.F.C., Stone E.A., Ayroles J.F. The genetics of quantitative traits: challenges and prospects. Nature Reviews Genetics, 2009, 10(8): 565-577 CrossRef
  97. Duc G., Agrama H., Bao S., Berger J., Bourion V., De Ron A.M., Gowda C.L.L., Mikic A., Millot D., Singh K.B., Tullu A., Vandenberg A., Vaz Patto M.C., Warkentin T.D., Zong X. Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Critical Reviews in Plant Sciences, 2015, 34(1-3): 381-411 CrossRef
  98. Varshney R.K., Kudapa H., Pazhamala L., Chitikineni A., Thudi M., Bohra A., Gaur P.M., Janila P., Fikre A., Kimurto P., Ellis N. Translational genomics in agriculture: some examples in grain legumes. Critical Reviews in Plant Sciences, 2015, 34(1-3): 169-194 CrossRef
  99. Watson C.A., Reckling M., Preissel S., Bachinger J., Bergkvist G., Kuhlman T., Lindström K., Nemecek T., Topp C.F.E., Vanhatalo A., Zander P., Murphy-Bokern D., Stoddard F.L. Grain legume production and use in European agricultural systems. Advances in Agronomy, 2017, 144: 235-303 CrossRef
  100. Magrini M.B., Anton M., Cholez C., Corre-Hellou G., Duc G., Jeuffroy M.H., Meynard J.M., Pelzer E., Voisin A.S., Walrand S. Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecological Economics, 2016, 126: 152-162 CrossRef
  101. Kreplak J., Madoui M.A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P. E., Gali K. K., Syme R. A., Main D., Klein A., Bérard A., Vrbová I., Fournier C., d’Agata L., Belser C., Berrabah W., Toegelová H., Milec Z., Vrána J., Lee H.T., Kougbeadjo A., Térézol M., Huneau C., Turo C.J., Mohellibi N., Neumann P., Falque M., Gallardo K., McGee R., Tar’an B., Bendahmane A., Aury J-M., Batley J., Le Paslier M.-C., Ellis N., Warkentin T.D., Coyne C.J., Salse J., Edwards D., Lichtenzveig J., Macas J., Doležel J., Wincker P., Burstin J. A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51(9): 1411-1422 CrossRef
  102. Macas J., Neumann P., Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics, 2007, 8(1): 427 CrossRef
  103. Yang T., Liu R., Luo Y., Hu S., Wang D., Wang C., Pandey M.C., Ge S., Xu Q., Li N., Li G., Huang Y., Saxena R.K., Ji Y., Li M., Yan X., He Y., Liu Y., Wang X., Xiang C., Varshney R.K., Ding H., Gao S., Zong X. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nature Genetics, 2022, 54(10): 1553-1563 CrossRef
  104. Wu D.T., Li W.X., Wan J.J., Hu Y.C., Gan R.Y., Zou L. A comprehensive review of pea (Pisum sativum L.): chemical composition, processing, health benefits, and food applications. Foods, 2023, 12(13): 2527 CrossRef
  105. Borisov A.Yu., Shtark O.Yu., Zhukov V.A., Nemankin T.A., Naumkina T.S., Pinaev A.G., Akhtemova G.A., Voroshilova V.A., Ovchinnikova E.S., Rychagova T.S., Tsyganov V.E., Zhernakov A.I., Kuznetsova E.V., Grishina O.A., Sulima A.S., Fedorina Ya.V., Chebotar’ V.K., Bisseling T., Lemanceau P., Gianinazzi-Pearson V., Ratet P., Sanjuan J., Stougaard J., Berg G., McPhee K., Ellis N., Tikhonovich I.A. Interaction of legumes with beneficial soil microorganisms: from plant genes to varieties. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 3: 41-47 (in Russ.).
  106. Zhukov V.A., Zhernakov A.I., Sulima A.S., Kulaeva O.A., Kliukova M.S., Afonin A.M., Shtark O.Y., Tikhonovich I.A. Association study of symbiotic genes in pea (Pisum sativum L.) cultivars grown in symbiotic conditions. Agronomy, 2021, 11(11): 2368 CrossRef
  107. Kuzmina D.O., Zorin E.A., Sulima A.S., Romanyuk D.A., Gordon M.L., Zhernakov A.I., Kulaeva O.A., Akhtemova G.A., Shtark O.Y., Tikhonovich I.A., Zhukov V.A. Transcriptomic analysis of the symbiotic responsivity trait in pea (Pisum sativum L.). Vavilovskii Zhurnal Genetiki i Selektsii, 2025, 29(2): 248-258 CrossRef
  108. Zhukov V.A., Akhtemova G.A., Zhernakov A.I., Sulima A.S., Shtark O.Yu., Tikhonovich I.A. Simbioticheskaya effektivnost’ genotipov gorokha posevnogo (Pisum sativum L.) pri modelirovanii v vegetatsionnom eksperimente. Sel'skokhozyaistvennayabiologiya[AgriculturalBiology], 2017, 52(3): 607-614 CrossRef
  109. Mamontova T., Afonin A.M., Ihling C., Soboleva A., Lukasheva E., Sulima A.S., Shtark O.Y., Akhtemova G.A., Povydysh M.N., Sinz A., Frolov A., Zhukov V.A., Tikhonovich I.A. Profiling of seed proteome in pea (Pisum sativum L.) lines characterized with high and low responsivity to combined inoculation with nodule bacteria and arbuscular mycorrhizal fungi. Molecules, 2019, 24(8): 1603 CrossRef
  110. Afonin A.M., Gribchenko E.S., Zorin E.A., Sulima A.S., Romanyuk D.A., Zhernakov A.I., Shtark O.Y., Akhtemova G.A., Zhukov V.A. Unique transcriptome features of pea (Pisum sativum L.) lines with differing responses to beneficial soil microorganisms. Ecological Genetics, 2021, 19(2): 131-141 CrossRef
  111. Jung S.C., Martinez-Medina A., Lopez-Raez J.A., Pozo M.J. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 2012, 38(6): 651-664 CrossRef
  112. Zhu L., Huang J., Lu X., Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: recognition, initiation, elicitation and regulation. Frontiers in Plant Science, 2022, 13: 952397 CrossRef
  113. Zorin E.A., Sulima A.S., Zhernakov A.I., Kuzmina D.O., Rakova V.A., Kliukova M.S., Romanyuk D.A., Kulaeva O.A., Akhtemova G.A., Shtark O.Y., Tikhonovich I.A., Zhukov V.A. Genomic and transcriptomic analysis of pea (Pisum sativum L.) breeding line ‘Triumph’ with high symbiotic responsivity. Plants, 2024, 13(1): 78 CrossRef
  114. Yakobi L.M., Kukalev A.S., Ushakov K.V., Tsiganov V.E., Naumkina T.S., Provorov N.A., Borisov A.Yu., Tikhonovich I.A. Polymorphism of forms of pea according to the efficiency of symbiosis with endomycorrhizal fungus Glomus sp. under conditions of inoculation with rhizobia. Sel'skokhozyaistvennayabiologiya[AgriculturalBiology], 2000, 35(3): 94-102 (in Russ.).
  115. Dunwell J.M., Gibbings J.G., Mahmood T., Saqlan Naqvi S.M. Germin and germin-like proteins: Evolution, structure, and function. Critical Reviews in Plant Sciences, 2008, 27(5): 342-375 CrossRef
  116. Barman A.R., Banerjee J. Versatility of germin-like proteins in their sequences, expressions, and functions. Functional and Integrative Genomics, 2015, 15(5): 533-548 CrossRef
  117. Govindan G., Sandhiya K.R., Alphonse V., Somasundram S. Role of germin-like proteins (GLPs) in biotic and abiotic stress responses in major crops: a review on plant defense mechanisms and stress tolerance. Plant Molecular Biology Reporter, 2024, 42: 450-468 CrossRef
  118. Iannetta P.P.M., Hawes C., Begg G.S., Maaß H., Ntatsi G., Savvas D., Vasconcelos M., Hamann K., Williams M., Styles D., Toma L., Shrestha S., Balázs B., Kelemen E., Debeljak M., Trajanov A., Vickers R., Rees R.M. A multifunctional solution for wicked problems: value-chain wide facilitation of legumes cultivated at bioregional scales is necessary to address the climate-biodiversity-nutrition nexus. Frontiers in Sustainable Food Systems, 2021, 5: 692137 CrossRef
  119. Rubiales D., Annicchiarico P., Vaz Patto M.C., Julier B. Legume breeding for the agroecological transition of global agri-food systems: A European perspective. Frontiers in Plant Science, 2021, 12: 782574 CrossRef

 

back

 


CONTENTS

 

Full article PDF (Rus)