PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2025.3.470eng

UDC: 635.713:631.86

Acknowledgements:
Carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (topics FGUS 2024-0010 and FGUS 2025-0005)

 

NEURAL NETWORK EVALUATION OF BASIL (Ocimum basilicum L.) RESPONSE TO ORGANIC FERTILIZER ADDITIVES UNDER CONTROLLED CHEMO AND LIGHT CULTURE CONDITIONS

S.I. Loskutov1, N.I. Vorobyov2, J.V. Puhalky1 , V.R. Sidorova1,
A.S. Mityukov3, A.I. Yakubovskaya4, I.A. Kameneva4,
D.D. Meshcheryakov5

1Research Institute of Food Additives, a Branch of the Gorbatov Federal Scientific Center for Food Systems named RAS, 55, Liteiny prosp., St. Petersburg, Russia 191014, e-mail lislosk@mail.ru, puhalskyyan@gmail.com (✉ corresponding author), liatolani@mail.ru;
2All-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail nik.ivanvorobyov@yandex.ru;
3St. Petersburg Federal Research Center RAS, Institute of Limnology RAS, 9, ul. Sevastyanova, St. Petersburg, Russia 196105, e-mail mitals@yandex.ru;
4Research Institute of Agriculture of Crimea, 150, ul. Kievskaya, Simferopol, Republic of Crimea, Russia 295493, e-mail yakubovskaya_alla@mail.ru, irina.kameneva.7@mail.ru;
5«Led for Plant» LLC, 80, prosp. im. Gazety Krasnoyarsky Rabochiy, Krasnoyarsk, Russia 660068, e-mail jankiss88@gmail.com

ORCID:
Loskutov S.I. orcid.org/0000-0002-8102-2900
Mityukov A.S. orcid.org/0009-0005-6904-0419
Vorobyov N.I. orcid.org/0000-0001-8300-2287
Yakubovskaya A.I. orcid.org/0009-0001-8434-2689
Puhalky J.V. orcid.org/0000-0001-5233-3497
Kameneva I.A. orcid.org/0000-0003-3914-7184
Sidorova V.R. orcid.org/0009-0008-8854-0461
Meshcheryakov D.D. orcid.org/0009-0005-0382-8457

Final revision received October 13, 2024
Accepted December 02, 2024

The demand for natural medicinal plant raw materials (MRM) in the world is growing from year to year. Therefore, industrial phytotrons that grow MRM in protected soil conditions have begun to develop. Modern phytotrons use automated technologies that support a stable microclimate, optimal lighting mode, water and microelement nutrition, as well as substrates that replace the soil. The Automated technologies for growing plants use BigData information obtained from various sensors located in the phytotron. One of the effective tools for statistical analysis of phytotronic BigData is trained neural networks. They are able to detect and visualize the informal dependence of the volume and quality of plant products on the physicochemical characteristics of nutrient and soil substrates, as well as on the lighting regime. In this work, for the first time, an original neural network algorithm for calculating the fractal index of profiles of chemical elements in plants is used to identify the relationship between their physiological and biochemical indicators and growing conditions. The aim of the work was to study the influence of special fertilizing agrotechnology on the physiological and biochemical characteristics of plants of the basil of the green-leaved variety Lemon (Enza Zaden, Holland) and the purple-lavender variety Rosie (Enza Zaden, Holland). Plants were grown under controlled chemo and light culture conditions. Depleted neutralized peat with perlite additives was used as a soil substrate. Plants were grown under controlled chemo and light culture conditions. Depleted neutralized peat with perlite additives was used as a soil substrate. The specificity of the fertilizer technology was the use of organic additives: humic and fulic acids isolated from sapropel raw materials, and an alkaline extract from dried and sieved excrement of Hermetia illucens fly larvae. Plants in the test versions were sprayed on the leaves with solutions of the test extracts once a week. Plants in the control version were watered with filtered water-wire water. At the end of the test, chlorophyll was measured in the leaves (SPAD 502 Plus, Minolta Camera Co, Ltd, Japan). The elemental composition of the biomass was determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) (Agilent 5900. Agilent Technologies, США). Measured basil chemical element profiles were processed using the EuclidNN neural network. A distinctive feature of the EuclidNN neural network is the ability to search for the many-to-one conversion of the plant's chemical element profile to the CSI (Cognitive Salience Index), which characterizes the fractality of the chemical element profile. The computational algorithm of the neural network is not initially known. The algorithm is searched in the EuclidNN neural network training mode. According to the results of the study, it was found that only fulvous fertilizer additive was more effective on the green leaf variety, and fulvous fertilizer additive and zoocompost extract additive were more effective on purple-lavender. The humic fertilizer additive on both basil varieties demonstrated poor efficacy. There was a high correlation with the biomass and height of the plant in these variants (r = 0.85-0.96, p < 0.05) and its absence with the chlorophyll content. In this way, the use of ultra-precise neural networks shows the high efficiency of the proposed solution as an additional mathematical tool in the indirect assessment of the characteristics of the varietal response of plants to growing conditions.

Keywords: basil, morphophysiological parameres, microelement composition, humic acids. fulvic acids, Hermetia illucens, zoocompost, AI neural networks.

 

REFERENCES

  1. Yaldiz G., Camlica M. Agro‐morphological and phenotypic variability of sweet basil (Ocimum basilicum L.) genotypes for breeding purposes. Crop Science, 2021, 61(1): 621-642 CrossRef
  2. Shahrajabian M.H., Sun W., Cheng Q. Chemical components and pharmacological benefits of basil (Ocimum basilicum): a review. International Journal of Food Properties, 2020, 23(1): 1961-1970 CrossRef
  3. Javanmardi J., Khalighi A., Kashi A., Bais H., Vivanco J. Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. Journal of Agricultural and Food Chemistry, 2002, 50(21): 5878-5883 CrossRef
  4. Purushothaman B., Prasannasrinivasan R., Suganthi P., Ranganathan B., Gimbun J., Shanmugam K. A comprehensive review on Ocimum basilicum. Journal of Natural Remedies, 2018, 18(3): 71-85 CrossRef
  5. Singh D., Chaudhuri P.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Industrial Crops and Products, 2018, 118: 367-382 CrossRef
  6. Aminian A.R., Mohebbati R., Boskabady M.H. The effect of Ocimum basilicum L. and its main ingredients on respiratory disorders: an experimental, preclinical, and clinical review. Frontiers in Pharmacology, 2022, 12: 805391 CrossRef
  7. Verma R.S., Bisht P.S., Padalia R.C., Saikia D., Chauhan A. Chemical composition and antibacterial activity of essential oil from two Ocimum sp. grown in sub-tropical India during spring-summer cropping season. Asian Journal of Traditional Medicines, 2011, 6(5): 211-217.
  8. Zhang J.-W., Li S.-K., Wu W.-J. The main chemical composition and in vitro antifungal activity of the essential oils of Ocimum basilicum Linn. var. pilosum (Willd.) Benth. Molecules, 2009, 14(1): 273-278 CrossRef
  9. Hikmawanti N.P.E., Hariyanti, Nurkamalia, Nurhidayah S. Chemical components of Ocimum basilicum L. and Ocimum tenuiflorum L. stem essential oils and evaluation of their antioxidant activities using DPPH method. Pharmaceutical Sciences and Research, 2019, 6(3): 14-154 CrossRef
  10. Osei Akoto C., Acheampong A., Boakye Y.D., Naazo A.A., Adomah D.H. Anti-inflammatory, antioxidant, and anthelmintic activities of Ocimum basilicum (sweet basil) fruits. Journal of Chemistry, 2020: 2153534 CrossRef
  11. Kondrat’eva V.V., Voronkova T.V., Semenova M.V., Olekhnovich L.S., Konovalova L.N., Shelepova O.V. Vestnik KrasGAU, 2022, 9(186): 3-10 CrossRef (in Russ.).
  12. Lin K.-H., Huang M.-Y., Hsu M.-H. Morphological and physiological response in green and purple basil plants (Ocimum basilicum) under different proportions of red, green, and blue LED lightings. Scientia Horticulturae, 2021, 275: 109677 CrossRef
  13. Hosseini A., Zare Mehrjerdi M., Aliniaeifard S., Seif M. Photosynthetic and growth responses of green and purple basil plants under different spectral compositions. Physiology and Molecular Biology of Plants, 2019, 25: 741-752 CrossRef
  14. d’Aquino L., Cozzolino R., Nardone G., Borelli G., Gambale E., Sighicelli M., Menegoni P., Modarelli G.C., Rimauro J., Chianese E., Neena G., Fasolino T., D'Urso G., Montoro P. Effects of white and blue-red light on growth and metabolism of basil grown under microcosm conditions. Plants, 2023, 12(7): 1450 CrossRef
  15. Tabbert J.M., Riewe D., Schulz H., Krähmer A. Facing energy limitations — approaches to increase basil (Ocimum basilicum L.) growth and quality by different increasing light intensities emitted by a broadband LED light spectrum (400-780 nm). Frontiers in Plant Science, 2022, 13: 1055352 CrossRef
  16. Esmaielpour B., Rahmanian M., Heidarpour O., Shahriari M.H. Effect of vermicompost and spent mushroom compost on the nutrient and essential oil composition of basil (Ocimum basilicum L.). Journal of Essential Oil Bearing Plants, 2017, 20(5): 1283-1292 CrossRef
  17. Dzida K., Zawiślak G., Jarosz Z., Pitura K., Neugebauerova J. Effect of natural fertilization on the yield, biological value, and qualitative and quantitative composition of essential oil in common basil (Ocimum basilicum L.). Acta Agrobotanica, 2023, 76(2): 1-11 CrossRef
  18. Yaldız G., Çamlıca M., Özen F., Eratalar S.A. Effect of poultry manure on yield and nutrient composition of sweet basil (Ocimum basilicum L.). Communications in Soil Science and Plant Analysis, 2019, 50(7): 838-852 CrossRef
  19. Jabborova D., Ma H., Bellingrath-Kimura S.D., Wirth S. Impacts of biochar on basil (Ocimum basilicum) growth, root morphological traits, plant biochemical and physiological properties and soil enzymatic activities. Scientia Horticulturae, 2021, 290: 110518 CrossRef
  20. Alinejadian Bidabadi A., Jamili T., Maleki A. Effect of sugarcane vinasse on nutrient content and growth characteristics and yield of basil (Ocimum basilicum L.). Journal of Vegetables Sciences, 2021, 4(2): 1-14 CrossRef
  21. Tavali İ.E., Yalçin Elidemir A., Çinar A., Aşikli S., Çinar O., Karadeniz Yavuz F., Uyar S. Efficiency of composted vinasse in the production of basil (Ocimum basilicum L.) under greenhouse conditions. Mediterranean Agricultural Sciences, 2021, 34(2): 233-239 CrossRef
  22. Abdipour M., Hosseinifarahi M., Najafian S. Effects of humic acid and cow manure biochar (CMB) in culture medium on growth and mineral concentrations of basil plant. International Journal of Horticultural Science and Technology, 2019, 6(1): 27-38 CrossRef
  23. Sayarer M., Aytaç Z., Kürkçüoğlu M. The effect of irrigation and humic acid on the plant yield and quality of sweet basil (Ocimum basilicum L.) with mulching application under semi-arid ecological conditions. Plants, 2023, 12: 1522 CrossRef
  24. Regina A., Glory J.R., Tulin A.B. Micronutrients biofortification (Zn, Fe, Cu, and Mn) improves the growth, yield, and chlorophyll contents of sweet basil (Ocimum basilicum L.) grown on a near neutral soil. Science and Humanities Journal, 2021, 15: 70-86 CrossRef
  25. Loskutov S.I., Pukhal’skiy Ya.V., Mityukov A.S., Vorob’ev N.I., Glushakov R.I. Rossiyskaya sel’skokhozyaystvennaya nauka, 2023, 5: 43-48 CrossRef (in Russ.).
  26. Pendyurin E.A., Ribina S.Yu., Smolenskaya L.M. Agrarnaya nauka, 2020, 7-8: 106-110 CrossRef (in Russ.).
  27. Fuhrmann A., Wilde B., Conz R.F., Kantengwa S., Konlambigue M., Masengesho B., Kintche K., Kassa K., Musazura W., Späth L., Gold M., Mathys A., Six J., Hartmann M. Residues from black soldier fly (Hermetia illucens) larvae rearing influence the plant-associated soil microbiome in the short term. Frontiers in Microbiology, 2022, 13: 994091 CrossRef
  28. Pendyurin E.A., Zdorovtsov V.A., Ribina S.Yu., Svyatchenko A.V. Agrokhimicheskiy vestnik, 2024, 3: 59-62 (in Russ.).
  29. Rehman S.u., De Castro F., Aprile A., Benedetti M., Fanizzi F.P. Vermicompost: Enhancing plant growth and combating abiotic and biotic stress. Agronomy, 2023, 13(4): 1134 CrossRef
  30. Bogatikh B.A. Fraktal’naya priroda zhivogo: sistemnoe issledovanie biologicheskoy evolyutsii i priroda soznaniya [Fractal nature of life: a systems study of biological evolution and the nature of consciousness]. Moscow, 2020 (in Russ.).
  31. Medvedev V.V. Fiziologiya rasteniy [Plant physiology]. St. Petersburg, 2013 (in Russ.).
  32. Polevoy V.V. Fiziologiya rasteniy [Plant physiology]. Moscow, 1989 (in Russ.).
  33. Svetskiy A.V. Sel’skoe khozyaystvo, 2022, 3: 1-12 CrossRef (in Russ.).
  34. Tokarev K.E., Rudenko A.Yu., Kuz’min V.A., Chernyavskiy A.N. Izvestiya NV AUK, 2021, 4(64): 421-440 CrossRef (in Russ.).
  35. Kozenko K.Yu. Oroshaemoe zemledelie, 2023, 2(41): 45-48 CrossRef (in Russ.).
  36. Karataeva O.G., Gladish Yu.A. Ekonomika sel’skogo khozyaystva Rossii,2019, 6: 15-17 CrossRef (in Russ.).
  37. Savin I.Yu., Statakis D., Negr T., Isaev V.A. Dokladi Rossiyskoy akademii sel’skokhozyaystvennikh nauk, 2007, 6: 11-14 (in Russ.).
  38. Chirkin S.O., Kartechina N.V., Rubanov V.A. Nauka i obrazovanie, 2022, 5(2): 1-8 (in Russ.).
  39. Vorob’ev N.I., Lisov A.K., Kornilov T.V., Khyutti A.V. Agrarnaya nauka Evro-Severo-Vostoka. 2024, 25(2): 283-292 CrossRef (in Russ.).
  40. Yakushev V.V. Tochnoe zemledelie: teoriya i praktika [Precision farming: theory and practice]. St. Petersburg, 2016 (in Russ.).
  41. Ruiz-Espinoza F.H., Murillo-Amador B., García-Hernández J.L., Fenech-Larios L., Rueda-Puente E.O., Troyo-Diéguez E., Kaya C., Beltrán-Morales A. Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (SPAD-502) readings. Journal of Plant Nutrition, 2010, 33(3): 423-438 CrossRef
  42. Minskiy M., Peypert S. Perseptroni [Perceptrons]. Moscow, 1971 (in Russ.).
  43. Gafarov F.M., Galimyanov A.F. Iskusstvennie neyronnie seti i prilozheniya: uchebnoe posobie [Artificial neural networks and applications: a tutorial]. Kazan’, 2018 (in Russ.).
  44. Sergeev A.P., Tarasov D.A. Vvedenie v neyrosetevoe modelirovanie: uchebnoe posobie [Introduction to neural network modeling: a tutorial]. Ekaterinburg, 2017 (in Russ.).
  45. Ghanjaoui M.E., Cervera M.L., Rhazi M.E., de la Guardia M. Validated fast procedure for trace element determination in basil powder. Food Chemistry, 2011, 125(4): 1309-1313 CrossRef
  46. Schmidhuber J. Deep learning in neural networks: an overview. Neural Networks, 2015, 61: 85-117 CrossRef
  47. Sutrop U. List task and a cognitive salience index. Field Metods, 2001, 13(3): 263-276 CrossRef
  48. Vorobyov N.I. The neural network ranking of agro-technologies by indices of soil microbiological activity and soil fertility: new possibilities of statistical analysis. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2025, 60(1): 70-81 CrossRef
  49. Mascarenhas W.F. Fast and accurate normalization of vectors and quaternions. Computational and Applied Mathematics, 2018, 37: 4649-4660 CrossRef
  50. Everitt B.S., Landau S., Leese M., Stahl D. Cluster Analysis. John Wiley & Sons, 2011.
  51. Markova L.V., Korchevskaya E.A. Chislennie metodi nakhozhdeniya sobstvennikh vektorov i sobstvennikh znacheniy matrits [Numerical methods for finding eigenvectors and eigenvalues of matrices]. Vitebsk, 2011 (in Russ.).
  52. Nikolić D., Mureşan R.C., Feng W., Singer W. Scaled correlation analysis: a better way to compute a cross-correlogram. European Journal of Neuroscience,2012, 35(5): 742-762 CrossRef
  53. Batushansky A., Toubiana D., Fait A. Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: a case study in cancer cell metabolism. BioMed Research International, 2016, 2016: 8313272 CrossRef
  54. Paparozzi E.T., Li Z., Blankenship E.E., Conley M.E. Purple leaf basil plants express micronutrient deficiencies symptoms differently than green leaf basil plants. Journal of Plant Nutrition, 2021, 45(10): 1466-1479 CrossRef
  55. Smirnova N.V., Khudyaev S.A., Lebedeva M.A., Smolentsev N.B., Kirpikov A.A., Savenkov O.A., Buyanova M.D. Mezhdunarodniy nauchno-issledovatel’skiy zhurnal, 2023, 1(127): 1-6 CrossRef (in Russ.).
  56. Widrow B., Greenblatt A., Kim Y., Park D. The no-prop algorithm: a new learning algorithm for multilayer neural networks. Neural Networks, 2013, 37: 182-188 CrossRef
  57. Zhu M-z., Zhou F., Ran L-s., Li Y-l., Tan B., Wang K-b., Huang J-a., Liu Z-h. Metabolic profiling and gene expression analyses of purple-leaf formation in tea cultivars (Camellia sinensis var. sinensis and var. assamica). Frontiers in Plant Science, 2021, 12: 606962 CrossRef
  58. Adiloglu S. Relation of chelated iron (EDDHA-Fe) applications with iron accumulation and some plant nutrient elements in basil (Ocimum basilicum L.). Polish Journal of Environmental Studies, 2021, 30: 3471-3479 CrossRef
  59. Gregory P.J., Wahbi A., Adu-Gyamfi J., Heiling M., Gruber R., Joy E.J.M., Broadley M.R. Approaches to reduce zinc and iron deficits in food systems. Global Food Security, 2017, 15: 1-10 CrossRef
  60. La Frano M.R., De Moura F.F., Boy E., Lönnerdal B., Burri B.J. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutrition Reviews, 2014, 72(5): 289-307 CrossRef
  61. Ghasemi S., Khoshgoftarmanesh A.H., Hadadzadeh H., Jafari M. Synthesis of iron-amino acid chelates and evaluation of their efficacy as iron source and growth stimulator for tomato in nutrient solution culture. Journal of Plant Growth Regulation, 2012, 31: 498-508 CrossRef
  62. Zanin L., Tomasi N., Cesco S., Varanini Z., Pinton R. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Frontiers in Plant Science, 2019, 10: 675 CrossRef
  63. Hertrampf E., Olivares M. Iron amino acid chelates. International Journal for Vitamin and Nutrition Research, 2004, 74(6): 435-443 CrossRef
  64. Jindo K., Olivares F.L., Malcher D.J.P., Sánchez-Monedero M.A., Kempenaar C., Canellas L.P. From lab to field: role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Frontiers in Plant Science, 2020, 11 CrossRef
  65. Eyletters M., Tourliere P., Bitaud C., Brou C., Benomar A., Mellas M., Lannoye R. Identification of Fe and Mn deficiencies by chlorophyll fluorescence technique. In: Progress in botanical research. I. Tsekos, M. Moustakas (eds.). Springer, Dordrecht. 1998, 297-300 CrossRef
  66. Roosta H.R., Estaji A. Niknam F. Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica, 2018, 56(2): 606-615 CrossRef
  67. Yakomaskin S.S., Kargin V.I., Zubarev A.A. Vestnik Ul’yanovskoy gosudarstvennoy sel’skokhozyaystvennoy akademii, 2023, 2(62): 36-42 (in Russ.).
  68. Silva T.C., Bertolucci S.K.V., Carvalho A.A., Tostes W.N., Alvarenga I.C.A., Pacheco F.V., de Assis R.M.A., da Cunha Honorato A., Pinto J.E.B.P. Macroelement omission in hydroponic systems changes plant growth and chemical composition of Melissa officinalis L. essential oil. Journal of Applied Research on Medicinal and Aromatic Plants, 2021, 24: 100297 CrossRef
  69. Nam H.-I., Shahzad Z., Dorone Y., Clowez S., Zhao K., Bouain N., Lay-Pruitt K.S., Cho H., Rhee S.Y., Rouached H. Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling. Nature Communications. 2021, 12(1): 7211 CrossRef
  70. Jolley V.D., Brown J C., Blaylock M.J., Camp S.D. A role for potassium in the use of iron by plants. Journal of Plant Nutrition, 1988, 11(6-11): 1159-1175 CrossRef
  71. Ye Y.Q., Luo H.Y., Li M., Zhang J.J., Cao G.Q., Lin K.M., Lim S.Z., Xu S.S. Potassium ameliorates iron deficiency by facilitating the remobilization of iron from root cell walls and promoting its translocation from roots to shoots. Plant and Soil, 2019, 440: 507-521 CrossRef
  72. Wu L.-B., Holtkamp F., Wairich A., Frei M. Potassium ion channel gene OsAKT1 affects iron translocation in rice plants exposed to iron toxicity. Frontiers in Plant Science, 2019, 10: 579 CrossRef
  73. Yang C.M., Wang M.C., Lu Y.F., Chang I.F., Chou C.H. Humic substances affect the activity of chlorophyllase. Journal of Chemical Ecology, 2004, 30(5): 1057-1065 CrossRef
  74. Koshelev A.V., Derevyagina I.D., Golovkov V.F., Kaabak L.V., Epifanova O.A., Mamontov S.P., Eleev Yu.A., Glukhan E.N. Khimiya i tekhnologiya izmereniya veshchestv, 2019, 1(9): 25-37 CrossRef (in Russ.).
  75. Yang R., Li Z., Huang M., Luo N., Wen J., Zeng G. Characteristics of fulvic acid during coprecipitation and adsorption to iron oxides-copper aqueous system. Journal of Molecular Liquids, 2019, 274: 664-672 CrossRef
  76. Calvo P., Nelson L., Kloepper J.W. Agricultural uses of plant biostimulants. Plant and Soil, 2014, 383: 3-41 CrossRef
  77. Pandeya S., Singh A., Dhar P. Influence of fulvic acid on transport of iron in soils and uptake by paddy seedlings. Plant and Soil, 1998, 198: 117-125 CrossRef
  78. Zhao G., Zhong T. Influence of exogenous IAA and GA on seed germination, vigor and their endogenous levels in Cunninghamia lanceolata. Scandinavian Journal of Forest Research, 2013, 28(6): 511-517 CrossRef
  79. Udalova O.R., Mirskaya G.V., Kononchuk P.Yu., Panova G.G. Agrarniy vestnik Urala, 2021, 06(209): 22-33 CrossRef (in Russ.).

 

back

 


CONTENTS

 

Full article PDF (Rus)