doi: 10.15389/agrobiology.2025.3.547eng
UDC: 615.322
Astilbe rubra LEAF EXTRACT: PHYTOCHEMICAL COMPOSITION AND EFFECT ON DIGESTIVE ENZYME ACTIVITY in vitro
T.A. Krol ✉, E.V. Sokolova, V.I. Ossipov, D.N. Baleev
All-Russian Research Institute of Medicinal and Aromatic Plants, 7, ul. Grina, Moscow, 117216 Russia, e-mail
tatianakroll1@gmail.com (✉ corresponding author),eka9739@yandex.ru, ossipov@utu.fi, dbaleev@gmail.com
ORCID:
Krol T.A orcid.org/0003-4642-651Х
Ossipov V.I. orcid.org/0000-0002-8383-9965
Sokolova E.V. orcid.org/0000-0002-7605-9688
Baleev D.N. orcid.org/0000-0002-1228-0594
Final revision received February 17, 2025
Accepted April 03, 2025
Astilbe rubra Hook. f. & Thomson, a perennial herbaceous plant of the Saxifragaceae family. The range of this species is in East Asia. In Russia, natural populations grow in the south of the Far East. A. rubra is of interest not only as an ornamental plant, but also as a medicinal, food, and honey plant. In East Asian countries, the rhizome is used as a traditional remedy for various diseases, and the leaves and stems are used for food purposes. Unlike the roots, phenolic compounds of leaves of A. rubra and their biological activity have not been sufficiently studied. Polyphenols are known to exert positive effects on human health through multiple mechanisms including mitigation of oxidative stress, protection of integrity of key macromolecules such as low-density lipoprotein cholesterol and supercoiled DNA. This bioactive group is also able to interact with proteins, which makes them have inhibitory effects on metabolic enzymes associated with type 2 diabetes (e.g., α-amylase, α-glucosidase) and obesity (e.g., pancreatic lipase). Inhibitory potential for aqueous and methanol extract of this species on α-amylase and lipase has been previously shown, suggesting a complex effect on key enzymes dysfunctional in a number of human metabolic disorders associated with obesity and diabetes. This work provides the first detailed study of the composition of phenolic compounds of the leaves. In this regard, the aim of the study was to investigate the composition and content of phenolic compounds in A. rubra leaves extract, as well as their effect its effect on digestive enzymes. The studied A. rubra plants were introduced and grew on the territory of the Botanical Garden of All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (VILAR). An ultra-efficient liquid chromatographic system with a photodiode detector and a triple quadrupole mass spectrometer was used to determine the composition. The obtained MS data were analyzed using the DataAnalysis 4.0 program (Bruker Daltonik GmbH, Germany). For identification, we applied the analysis of UV and MS spectral data, comparing the obtained results with published data. The total content of phenolic compounds was determined by the Folin-Ciocalteu method, and the content of flavonoids by the method based on the complexation reaction of flavonoids with aluminum chloride. The effect of the extract on the activity of pancreatic amylase and lipase was measured by a colorimetric method. The significance of differences was analyzed using one-way analysis of variance followed by Tukey's multiple comparison test for group means. The performed analysis revealed 27 phenolic compounds were identified in the extract of leaves of A. rubra: 10 oligomers of procyanidin types A and B with a degree of polymerization of up to 4, 12 flavonoids (derivatives of quercetin, kaempferol, chrysoeriol, catechin and epicatechin) and 5 phenolic acids (isomers of caffeoylthreonic and caffeoylquinic acids, coumaroylquinic acid). The total content of phenolic compounds in the leaf extract was 276.8±9.2 mg of gallic acid equivalent/g of dry weight, and flavonoids were 46.7±6.08 mg of quercetin equivalent/g of dry weight. The studied extract did not have an inhibitory effect on pancreatic a-amylase in vitro but moderately inhibited the activity of pancreatic lipase. The obtained results expand knowledge in the field of biologically active substances of A. rubra leaves and their application, showing the potential possibility of using not only rhizomes but also leaves.
Keywords: Astilbe rubra, procyanidins, flavonoids, phenolic acids.
REFERENCES
- Oh A., Han S.-H., Oh B.-U. Astilbe uljinensis (Saxifragaceae), a new species from South Korea. PhytoKeys, 2020, 161: 89-98 CrossRef
- Shao Y., Xu C., Li Q., Zhang Y., Cai Z., Yu H., Gu M., Su Y., Han H., Liao Z. Structures and tumor cell lines proliferation activities of triterpenes isolated from Astilbe grandis. Chemistry & Biodiversity, 2024, 21(4): e202400100 CrossRef
- Deng J.B., Drew B.T., Mavrodiev E.V., Gitzendanner M.A., Soltis P.S., Soltis D.E. Phylogeny, divergence times, and historical biogeography of the angiosperm family Saxifragaceae. Molecular Phylogenetics and Evolution, 2015, 83: 86-98 CrossRef
- Zhu W.-D., Nie Z.-L., Wen J., Sun H. Molecular phylogeny and biogeography of Astilbe (Saxifragaceae) in Asia and eastern North America. Botanical Journal of the Linnean Society, 2013, 171(2): 377-394 CrossRef
- Han S.-H., Oh B.-U. A morphological study of Korean Astilbe (Saxifragaceae). Journal of Asia-Pacific Biodiversity, 2019, 12(2): 302-310 CrossRef
- Vasil’eva O.Yu. Samarskiy nauchniy vestnik, 2021, 10(3): 34-40 CrossRef (in Russ.).
- Seo C., Jeong W., Lee J.E., Kwon J.G., Kim J.K., Hong S.S. Flavonoids from the aerial parts of Astilbe rubra. Chemistry of Natural Compounds, 2019, 55(6): 1153-1155 CrossRef
- Jeon B.-R., Irfan M., Lee S.E., Lee J.H., Rhee M.H. Astilbe chinensis modulates platelet function via impaired MAPK and PLCγ2 expression. Evidence‐Based Complementary and Alternative Medicine, 2018, 2018(1): 3835021 CrossRef
- Darman G.F. V knige: Krasnaya kniga Amurskoy oblasti: redkie i nakhodyashchiesya pod ugrozoy ischeznoveniya vidi zhivotnikh, rasteniy i gribov. 2-e izd., ispravlennoe, pererabotannoe i dopolnennoe [In: Red book of the Amur region: rare and endangered species of animals, plants and mushrooms]. Blagoveshchensk, 2020 (in Russ.).
- Gil T.-Y., Jin B.-R., Hong C.-H., Park J.H., An H.-J. Astilbe Chinensis ethanol extract suppresses inflammation in macrophages via NF-κB pathway. BMC Complementary Medicine and Therapies, 2020, 20: 302 CrossRef
- Zhang Y., Wang J., Guo H. Ultrasound-assisted extraction of bergenin from Astilbe chinensis. Genetic Resources and Crop Evolution, 2014, 61: 893-899 CrossRef
- Ignatova O.I., Mukhametova S.V. Nauka i Obrazovanie, 2024, 7(4">CrossRef (in Russ.).
- Blanchette L., Beattie D. Are the new Astilbe really better? Combined Proceedings International Plant Propagators' Society, 2001, 51: 449-456.
- Shelekhova O.M. Vozmozhnosti ispol’zovaniya Astilbe v gorodskom ozelenenii. Botanicheskie sadi v sovremennom mire, 2023, 3: 229-232 CrossRef
- Gosudarstvenniy reestr selektsionnikh dostizheniy [State register of breeding achievements]. Available: https://gossortrf.ru/registry/gosudarstvennyy-reestr-selektsionnykh-dostizheniy-dopushchennykh-k-ispolzovaniyu-tom-1-sorta-rasteni. Accessed: 03/28/2025 (in Russ.).
- Xue Y., Xu X.-M., Yan J.-F., Deng W.-L., Liao X. Chemical constituents from Astilbe chinensis. Journal of Asian Natural Products Research, 2011, 13(2): 188-191 CrossRef
- Nho J.H., Jang J.H., Jung H.K., Lee M.J., Sim M.O., Jeong D.E., Cho H.W. Ethanol extracts from Astilbe chinensis (Maxim.) Franch. Et Savat. exhibit inhibitory activities on oxidative stress generation and viability of human colorectal cancer cells. Korean Journal of Medicinal Crop Science, 2018, 26(2): 141-147 CrossRef
- Zhang X.H., Wang Z., Kang B.-G., Hwang S.H., Lee J.-Y., Lim S.S., Huang B. Antiobesity effect of Astilbe chinensis Franch. et Savet. extract through regulation of adipogenesis and AMP‐activated protein kinase pathways in 3T3‐L1 adipocyte and high‐fat diet‐induced C57BL/6N obese mice. Evidence‐Based Complementary and Alternative Medicine, 2018, 2018(1): 1347612 CrossRef
- Chen C., Yang M., Chen Y., Wang Y., Wang K., Li T., Hu Q., Zhang W., Xia J. Astilbin-induced inhibition of the PI3K/AKT signaling pathway decelerates the progression of osteoarthritis. Experimental and Therapeutic Medicine, 2020, 20(4): 3078-3083 CrossRef
- Osawa Y. Ethnobotanical review of traditional use of wild food plants in Japan. Journal of Ethnobiology and Ethnomedicine, 2024, 20(1): 100 CrossRef
- Han J.M., Yun I., Yang K.M., Kim H.-S., Kim Y.-Y., Jeong W., Hong S.S., Hwang I. Ethanol extract from Astilbe chinensis inflorescence suppresses inflammation in macrophages and growth of oral pathogenic bacteria. PLoS ONE, 2024, 19(7): e0306543 CrossRef
- Zhabbarova Sh.A, Zuparova Z.A., Ismoilova G.M. Farmatsiya, immunitet i vaktsina, 2024, 3: 44-48 (in Russ.).
- Hori K., Wada M., Yahara S., Watanabe T., Devkota H.P. Antioxidant phenolic compounds from the rhizomes of Astilbe rivularis. Natural Product Research, 2018, 32(4): 453-456 CrossRef
- Tu J., Sun H.-X., Ye Y.P. Immunomodulatory and antitumor activity of triterpenoid fractions from the rhizomes of Astilbe chinensis. Journal of Ethnopharmacology, 2008, 119(2): 266-271 CrossRef
- Moon T.C., Lin C.X., Lee J.S., Kim D.S., Bae K., Son K.H., Kim H.P., Kang S.S., Son J.K., Chang H.W. Antiinflammatory activity of astilbic acid from Astilbe chinensis. Biological and Pharmaceutical Bulletin, 2005, 28(1): 24-26 CrossRef
- Riyaphan J., Pham D.C., Leong M.K., Weng C.F. In silico approaches to identify polyphenol compounds as a-glucosidase and a-amylase inhibitors against type-II diabetes. Biomolecules, 2021, 11(12): 1877 CrossRef
- Zhang B., Deng Z., Ramdath D.D., Tang Y., Chen P.X., Liu R., Liu Q., Tsao R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on a-glucosidase and pancreatic lipase. Food Chemistry, 2015, 172: 862-872 CrossRef
- Sheliya M.A., Rayhana B., Ali A., Pillai K.K., Aeri V., Sharma M., Mir S.R. Inhibition of a-glucosidase by new prenylated flavonoids from Euphorbia hirta L. herb. Journal of Ethnopharmacology, 2015, 176: 1-8 CrossRef
- Zhang K., Chen X.-L., Zhao X., Ni J.-Y., Wang H.-L., Han M., Zhang Y.-M. Antidiabetic potential of Catechu via assays for a-glucosidase, a-amylase, and glucose uptake in adipocytes. Journal of Ethnopharmacology, 2022, 291: 115118 CrossRef
- Demidova O.A., Arkhipov V.V., Zhuravleva M.V., Aleksandrova T.V., Aleksandrov A.A. Bezopasnost’ i risk farmakoterapii, 2020, 8(4): 165-177 CrossRef (in Russ.).
- Minyazeva Yu.M. Problemi botaniki Yuzhnoy Sibiri i Mongolii, 2023, 22(1): 225-229 CrossRef (in Russ.).
- Krol’ T.A., Baleev D.N., Osipov V.I. Sostav i soderzhanie fenol’nikh soedineniy v pobegakh Casuarina equisetifolia L. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2024, 59(1): 106-115 CrossRef
- Engstrom M.T., Pälijärvi M., Salminen J.P. Rapid fingerprint analysis of plant extracts for ellagitannins, gallic acid, and quinic acid derivatives and quercetin-, kaempferol-and myricetin-based flavonol glycosides by UPLC-QqQ-MS/MS. Journal of Agricultural and Food Chemistry, 2015, 63(16): 4068-4079 CrossRef
- Bohm B.A., Bhat U.G. Flavonoids of Astilbe and Rodgersia compared to Aruncus. Biochemical systematics and ecology, 1985, 13(4): 437-440 CrossRef
- Kwon J.G., Jung Y.W., Seo C., Hong S.S., Shin H.T., Jung S.Y., Choi J.J., Kim J.K. Analytical Method Development of Avicularin and Quercitrin in Astilbe chinensis Extract Using HPLC. Journal of the Society of Cosmetic Scientists of Korea, 2019, 45(4): 333-340 CrossRef
- Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 1965, 16(3): 144-158 CrossRef
- Chang C.-C., Yang M.-H., Wen H.-M., Chern J.-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of food and drug analysis, 2002, 10(3): 3 CrossRef
- Morishita Y., Iinuma Y., Nakashima N., Majima K., Mizuguchi K., Kawamura Y. Total and pancreatic amylase measured with 2-chloro-4-nitrophenyl-4-O-β-D-galactopyranosylmaltoside. Clinical Chemistry, 2000, 46(7): 928-933 CrossRef
- Panteghini M., Bonora R., Pagani F. Measurement of pancreatic lipase activity in serum by a kinetic colorimetric assay using a new chromogenic substrate. Annals of Clinical Biochemistry, 2001, 38(4): 365-370 CrossRef
- Singh M., Dasila K., Chettri A., Jain R., Dhyani A., Pandey A. Phytochemicals, antioxidant and antimicrobial hotential of ethnomedicinal plants of Sikkim Himalaya. Indian Journal of Pharmaceutical Sciences, 2023, 85(1) CrossRef
- Karonen M., Imran I.B., Engström M.T., Salminen J.P. Characterization of natural and alkaline-oxidized proanthocyanidins in plant extracts by ultrahigh-resolution UHPLC-MS/MS. Molecules, 2021, 26(7): 1873 CrossRef
- Kato E., Kushibiki N., Inagaki Y., Kurokawa M., Kawabata J. Astilbe thunbergii reduces postprandial hyperglycemia in a type 2 diabetes rat model via pancreatic alpha-amylase inhibition by highly condensed procyanidins. Bioscience, Biotechnology, and Biochemistry, 2017, 81(9): 1699-1705 CrossRef
- Qi Q., Chu M., Yu X., Xie Y., Li Y., Du Y., Liu X., Zhang Z., Shi J., Yan N. Anthocyanins and proanthocyanidins: Chemical structures, food sources, bioactivities, and product development. Food Reviews International, 2023, 39(7): 4581-4609 CrossRef
- Aboagye I.A., Beauchemin K.A. Potential of molecular weight and structure of tannins to reduce methane emissions from ruminants: a review. Animals, 2019, 9(11): 856 CrossRef
- Zeng Y., Zhao L., Wang K., Renard C.M., Le Bourvellec C., Hu Z., Liu X. A‐type proanthocyanidins: Sources, structure, bioactivity, processing, nutrition, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 2024, 23(3): e13352 CrossRef
- de Almeida Souza R.T., de Andrade Silva D.K., dos Santos M.V., Naumann H.D., Magalhães A.L.R., de Andrade A.P. Association of edaphoclimatic characteristics and variability of condensed tannin content in species from Caatinga. Revista Ciência Agronômica, 2020, 51(3): e20196611.
- Yu K., Song Y., Lin J., Dixon R.A. The complexities of proanthocyanidin biosynthesis and its regulation in plants. Plant Communications, 2023, 4(2): 100498 CrossRef
- Mora J., Pott D.M., Osorio S., Vallarino J.G. Regulation of plant tannin synthesis in crop species. Frontiers in Genetics, 2022, 13: 870976 CrossRef
- Miranda-Hernández A.M., Muñiz-Márquez D.B., Wong-Paz J.E., Aguilar-Zárate P., de la Rosa-Hernández M., Larios-Cruz R., Aguilar C.N. Characterization by HPLC—ESI—MS2 of native and oxidized procyanidins from litchi (Litchi chinensis) pericarp. Food Chemistry, 2019, 291: 126-131 CrossRef
- Rauf A., Imran M., Abu-Izneid T., Patel S., Pan X., Naz S., Silva A.S., Saeed F., Suleria H.A. Proanthocyanidins: a comprehensive review. Biomedicine & Pharmacotherapy, 2019, 116: 108999 CrossRef
- Xie C., Wang K., Liu X., Liu G., Hu Z., Zhao L. Characterization and bioactivity of A-type procyanidins from litchi fruitlets at different degrees of development. Food Chemistry, 2023, 405(Part A): 134855 CrossRef
- Mitra P.K., Ghosh T., Mitra P. Effect of season on in vitro antioxidant activity of Astilbe rivularis Buch-Ham. Ex D. Don leaves. Biomedical Journal of Scientific & Technical Research, 2017, 1: 1-4 CrossRef
- Subedi L., Timalsena S., Duwadi P., Thapa R., Paudel A., Parajuli K. Antioxidant activity and phenol and flavonoid contents of eight medicinal plants from Western Nepal. Journal of Traditional Chinese Medicine, 2014, 34(5): 584-590 CrossRef
- Gonçalves R., Mateus N., De Freitas V. Inhibition of a-amylase activity by condensed tannins. Food Chemistry, 2011, 125(2): 665-672 CrossRef
- Kim H.-Y., Lim S.-H., Park Y.H., Ham H.J., Lee K.-J., Park D.S., Kim K.-H., Kim S.M. Screening of a-amylase, a-glucosidase and lipase inhibitory activity with Gangwon-do wild plants extracts. Journal of the Korean Society of Food Science and Nutrition, 2011, 40(2): 308-315 CrossRef
- Cheng Q., Cai S., Ni D., Wang R., Zhou F., Ji B., Chen Y. In vitro antioxidant and pancreatic a-amylase inhibitory activity of isolated fractions from water extract of Qingzhuan tea. Journal of Food Science and Technology, 2015, 52: 928-935 CrossRef
- Xiao J., Ni X., Kai G., Chen X. A review on structure—activity relationship of dietary polyphenols inhibiting a-amylase. Critical Reviews in Food Science and Nutrition, 2013, 53(5): 497-506 CrossRef
- Sokolova E.V., Krol’ T.A., Baleev D.N. Ovoshchi Rossii, 2025, 1: 88-91 CrossRef (in Russ.).