doi: 10.15389/agrobiology.2024.3.411eng

UDC: 636.085.6

Supported by the Russian Science Foundation, project No. 20-16-00078-P



E.A. Vlasov, E.A. Sizova, K.S. Nechitailo, K.V. Ryazantseva,
A.M. Kamirova, A.P. Ivanisheva, D.E. Shoshin, L.L. Musabaeva,
A.S. Мustafina

Federal Research Centre of Biological Systems and Agrotechnologies RAS, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia, e-mail, (✉ corresponding author),,,,,,,

Vlasov E.A.
Kamirova A.M.
Sizova E.A.
Ivanisheva A.P.
Nechitailo K.S.
Musabaeva L.L.
Ryazantseva K.V.
Shoshin D.E.
Мustafina A.S.

Final revision received October 23, 2023
Accepted December 01, 2023

An increase in the productivity of domestic animals by 20-30% over the past 50 years has been achieved due to advances in genetics, intensification of metabolic processes and effects on digestion (M. Georges et al., 2019), as well as due to effective preparation of feed for feeding and ensuring greater availability of nutrients for the body (M. Balehegn et al., 2020). Animal feed must have certain qualitative characteristics: it must be nutritious, tasty, clean, easily digested and well absorbed, free of impurities and substances harmful to health and adversely affecting the quality of livestock products (M. Balehegn et al., 2020). Only a small part of the feed fed in its natural form meets these requirements (R.Sh. Fakhrutdinova, 2009). An important criterion is feed conversion, which determines the economic efficiency of the industry, since 70 % of the costs of raising animals are accounted for by feed. The animal's body processes about 20-25 % of the feed energy into products. Approximately 30-35% of energy is spent for physiological needs, and the rest is released in an undigested form with excrement. The task of preparing feed for consumption is to reduce energy losses by changing the physico-chemical properties of the feed, increasing nutritional value, accessibility to the body, namely digestibility and assimilation by animals (R.V. Kartekenova et al., 2013). Various technologies have been developed in the Russian and global production of feedstock to increase the availability of nutritional components. They can be conditionally divided into two groups — physical and biological methods of increasing the nutritional value and availability of feed (A.I., Fitsev 1997). The purpose of this review is to summarize information on the basic (physical and biological) methods of preparing feed for feeding, increasing accessibility, improving their nutritional value and digestibility for farm animals and birds, as well as the principles of their action and application in science and practice. Physical methods involve exposure to temperature, pressure, or other factors, as well as a combination of them. These include both simple methods (for example, soaking with and without germination, frying) and more technologically complex processes — extrusion, expansion (pressure conditioning), micronization, exposure to ultrahigh frequency waves, cavitation (E. Kosmynin, et al., 2006; V.A. Chikulaev, 2020). Biological methods include the use of bacteria, yeast and other microorganisms or their metabolites to break down complex carbohydrates into simpler, easily digestible forms (fermentation) and the production of related substances that can be used by animals (K.S. Krylov et al., 2000; N. Lau et al., 2022). The use of fermentation methods can increase the efficiency of feed use, improve its nutritional value and reduce waste, which leads to increased animal productivity and product quality (L. Yang et al., 2021; L. Yafetto et al., 2023). The presented physical and biological methods of influencing feed components ensure an increase in their digestibility and overall nutritional value due to the degradation of factors that impede effective digestion. Such a strategy seems to be quite profitable in the field of resource-saving technologies in animal husbandry. However, before choosing one or another method, a number of important factors should be taken into account, including energy and labor costs, the degree of destruction of biologically active components and profitability.

Keywords: feed, preparation for feeding, nutritional enhancement, extrusion, cavitation, digestibility.



  1. Georges M., Charlier C., Hayes B. Harnessing genomic information for livestock improvement. Nature Reviews Genetics, 2019, 20: 135-156 CrossRef
  2. Balehegn M., Duncan A., Tolera A., Ayantunde A.A., Issa S., Karimou M., Zampaligré N., André K., Gnanda I., Varijakshapanicker P., Kebreab E., Dubeux J., Boote K., Minta M., Feyissa F., Adesogan A.T. Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Global Food Security, 2020: 26: 100372 CrossRef
  3. Fakhrutdinova R.Sh. Sibirskiy vestnik sel’skokhozyaystvennoy nauki, 2009, 4(196): 37-40 (in Russ.).
  4. Khmel’nitskiy M.A., Khrustaleva V.N., Shchetinov S.V., Molochkina O.V. Materialy nauchno-prakticheskoy konferentsii studentov, magistrantov, aspirantov, molodykh uchenykh fakul’teta agro- i biotekhnologiy «Vektor razvitiya nauki» [Proc. Conf. «Science development vector»]. Balashikha, 2023: 140-146 (in Russ.).
  5. Kudasheva A.V., Levakhin G.I., Shirnina N.M., Reznichenko V.G., Rodionova G.B. Vestnik myasnogo skotovodstva, 2009, 1(62): 170-174 (in Russ.).
  6. Kudasheva A.V., Levakhin G.I., Rodionova G.B., Shirnina N.M., Duskaev G.K. Kormoproizvodstvo, 2011, 11: 33-34 (in Russ.).
  7. Raza A., Bashir S., Tabassum R. An update on carbohydrases: growth performance and intestinal health of poultry. Heliyon, 2019, 5(4): e01437 CrossRef
  8. Popov V.V. Adaptivnoe kormoproizvodstvo, 2020, 1: 79-90 CrossRef (in Russ.).
  9. Vasil’eva S.V. Akademicheskaya publitsistika, 2019, 11: 295-298 (in Russ.).
  10. Umerenkova M.V., Vasil’eva S.V. Sbornik statey po materialom IV Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Innovatsii v nauke i praktike» [Proc. Int. Conf. «Innovations in science and practice»]. Ufa, 2017: 32-36 (in Russ.).
  11. Popov V.V. Adaptivnoe kormoproizvodstvo, 2018, 3: 63-82 (in Russ.).
  12. Fitsev A.I. Kormoproizvodstvo, 1997, 5-6: 22-25 (in Russ.).
  13. Chikulaev V.A. Sbornik nauchnykh trudov po rezul’tatam raboty V Mezhdunarodnoy molodezhnoy nauchno-prakticheskoy konferentsii «Molodye issledovateli agropromyshlennogo i lesnogo kompleksov — regionam» [Proc. Int. Conf. «Young researchers of agro-industrial and forestry complexes to regions»]. Vologda, 2020: 222-230 (in Russ.).
  14. Kosmynin E., Lunkov S. Kombikorma, 2006, 4: 57-59 (in Russ.).
  15. Krylov K.S., Chugunov A.A. Gornyy informatsionno-analiticheskiy byulleten’, 2000, 1: 99-100 (in Russ.).
  16. Su W., Jiang Z., Hao L., Li W., Gong T., Zhang Y., Du S., Wang C., Lu Z., Jin M., Wang Y. Variations of soybean meal and corn mixed substrates in physicochemical characteristics and microbiota during two-stage solid-state fermentation. Front. Microbiol., 2021, 12: 688839 CrossRef
  17. Lau N., Hummel J., Kramer E., Hünerberg M. Fermentation of liquid feed with lactic acid bacteria reduces dry matter losses, lysine breakdown, formation of biogenic amines, and phytate-phosphorus. Translational Animal Science, 2022, 6(1): txac007 CrossRef
  18. Kartekenova R.V., Sechin V.A., Kapaeva T.V., Kazachkova N.M. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2013, 6(44): 108-110 (in Russ.).
  19. Yang L., Zeng X., Qiao S. Advances in research on solid-state fermented feed and its utilization: the pioneer of private customization for intestinal microorganisms. Animal Nutrition, 2021, 7(4): 905-916 CrossRef
  20. Yafetto L., Odamtten T.G., Wiafe-Kwagyan M. Valorization of agro-industrial wastes into animal feed through microbial fermentation: a review of the global and Ghanaian case. Heliyon, 2023, 9(4): 14814 CrossRef
  21. Parkhomenko G.G., Gromakov A.V. Khranenie i pererabotka zerna, 2017, 9(217): 31-36 (in Russ.).
  22. Shirnina N.M., Galiev B.Kh., Rakhimzhanova I.A., Baykov A.S. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2021, 4(90): 266-270 (in Russ.).
  23. Bykov A., Kvan O., Gavrish I., Bykova L., Mezhuyeva L., Sizentsov A., Rusyaeva M., Korol'kova D. Cavitation treatment as a means of modifying the antibacterial activity of various feed additives. Environmental Science and Pollution Research, 2019, 26(3): 2845-2850 CrossRef
  24. Bhat A.P., Holkar C.R., Jadhav A.J., Pinjari D.V. Acoustic and hydrodynamic cavitation assisted hydrolysis and valorisation of waste human hair for the enrichment of amino acids. Ultrasonics Sonochemistry, 2021, 71: 105368 CrossRef
  25. Gong Q, Liu C, Tian Y, Zheng Y, Wei L, Cheng T, Wang Z, Guo Z, Zhou L. Effect of cavitation jet technology on instant solubility characteristics of soymilk flour: Based on the change of protein conformation in soymilk. Ultrason Sonochem, 2023, 96:106421 CrossRef
  26. Bhimrao Muley A., Bhalchandra Pandit A., Satishchandra Singhal R. Govind Dalvi S. Production of biologically active peptides by hydrolysis of whey protein isolates using hydrodynamic cavitation. Ultrasonics Sonochemistry, 2021, 71: 105385 CrossRef
  27. Hassan M.A., Taha T.H., Hamad G.M. Hashem M., Alamri S., Mostafa Y.S. Biochemical characterisation and application of keratinase from Bacillus thuringiensis MT1 to enable valorisation of hair wastes through biosynthesis of vitamin B-complex. International Journal of Biological Macromolecules, 2020, 153: 561-572 CrossRef
  28. Miroshnikov I.S., Kholodilina T.N., Duskaev G.K., Vasil’chenko A.S. Vestnik myasnogo skotovodstva, 2016, 4(96): 131-137 (in Russ.).
  29. Galiev B.Kh., Shirnina N.M., Baykov A.S., Miroshnikov I.S., Korneychenko V.I., Sechin V.A. Vestnik myasnogo skotovodstva, 2017, 4(100): 190-196 (in Russ.).
  30. Kurilkina M.Ya., Muslyumova D.M., Zav’yalov O.A., Atlanderova K.N. Zhivotnovodstvo i kormoproizvodstvo, 2021, 104(2): 111-119 (in Russ.).
  31. Afanas’ev V.A., Ostrikov A.N., Shevtsov A.A., Terekhina A.V., Aleksandrov A.I. Agrarnyy vestnik Urala, 2019, 8: 187 (in Russ.).
  32. Afanas’ev V.A., Ostrikov A.N., Vasilenko V.N., Frolova L.N., Manuylov V.V. Kormoproizvodstvo, 2017, 6: 33-38 (in Russ.).
  33. Sitnikov V.A., Popov A.N., Nikolaev S.Yu. Sovremennye problemy nauki i obrazovaniya, 2015, 1(1): 1703 (in Russ.).
  34. Bogomolov I.S., Kleymenova N.L., Kopylov M.V. Pishchevaya promyshlennost’, 2022, 1: 32-36 CrossRef (in Russ.).
  35. Mar’in V.A., Vereshchagin A.L., Bychin N.V. Khleboprodukty, 2012, 11: 58-59 (in Russ.).
  36. Afanas’ev V.A., Bogomolov I.S. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologiy, 2012, 3(53): 27-30 (in Russ.).
  37. Abdollahi M.R, Zaefarian F., Hall L., Jendza J.A. Feed acidification and steam-conditioning temperature influence nutrient utilization in broiler chickens fed wheat-based diets. Poultry Science, 2020, 99(10): 5037-5046 CrossRef
  38. Ebbing M.A., Yacoubi N., Naranjo V., Sitzmann W., Schedle K., Gierus M. Towards large particle size in compound feed: using expander conditioning prior to pelleting improves pellet quality and growth performance of broilers. Animals, 2022, 12(19): 2707 CrossRef
  39. Kiarie E.G., Mills A. Role of feed processing on gut health and function in pigs and poultry: conundrum of optimal particle size and hydrothermal regimens. Front. Vet. Sci., 2019, 6: 19 CrossRef
  40. Ebbing M.A., Yacoubi N., Naranjo V., Sitzmann W., Gierus M. Influence of expander conditioning prior to pelleting on pellet quality, broiler digestibility and performance at constant amino acids composition while decreasing AMEN. Animals, 2022, 12(22): 3126 CrossRef
  41. Lundblad K.K., Issa S., Hancock J.D., Behnke K.C., McKinney L.J., Alavi S., Prestøkken E., Fledderus J., Sørensen M. Effects of steam conditioning at low and high temperature, expander conditioning and extruder processing prior to pelleting on growth performance and nutrient digestibility in nursery pigs and broiler chickens.Animal Feed Science and Technology, 2011, 169(3-4): 208-217 CrossRef
  42. Boroojeni F.G., Svihus B, Reichenbach H., Zentek J. The effects of hydrothermal processing on feed hygiene, nutrient availability, intestinal microbiota and morphology in poultry — a review. Animal Feed Science and Technology, 2016, 220: 187-215 CrossRef
  43. Pleadin J., Frece J., Markov K. Mycotoxins in food and feed. In: Advances in Food and Nutrition Research. Vol. 89. Academic Press, 2019: 297-345 CrossRef
  44. Jedziniak P., Panasiuk Ł., Pietruszka K., Posyniak A. Multiple mycotoxins analysis in animal feed with LC-MS/MS: comparison of extract dilution and immunoaffinity clean-up. J. Sep. Sci., 2019, 42(6): 1240-1247 CrossRef
  45. Xu H., Wang L., Sun J., Wang L., Guo H., Ye Y., Sun X. Microbial detoxification of mycotoxins in food and feed. Critical Reviews in Food Science and Nutrition, 2022, 62(18): 4951-4969 CrossRef
  46. Vila-Donat P., Marín S., Sanchis V., Ramos A.J. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food and Chemical Toxicology, 2018, 114: 246-259 CrossRef
  47. Janik E., Niemcewicz M., Podogrocki M., Ceremuga M., Stela M., Bijak M. T-2 Toxin-the most toxic trichothecene mycotoxin: metabolism, toxicity, and decontamination strategies. Molecules, 2021, 26(22): 6868 CrossRef
  48. Oliveira M., Vasconcelos V. Occurrence of mycotoxins in fish feed and its effects: a review. Toxins, 2020, 12(3): 160 CrossRef
  49. Blagov D.A., Mironova I.V., Mitrofanov S.V., Nigmat’yanov A.A., Sultanbaev U.R. Kormlenie sel’skokhozyaystvennykh zhivotnykh i kormoproizvodstvo, 2020, 11(184): 68-76 CrossRef (in Russ.).
  50. Zambrano Y., Contardo I., Moreno M.C., Bouchon P. Effect of extrusion temperature and feed moisture content on the microstructural properties of rice-flour pellets and their impact on the expanded product. Foods, 2022, 11(2): 198 CrossRef
  51. Yang P., Wang H., Zhu M., Ma Y. Evaluation of extrusion temperatures, pelleting parameters, and vitamin forms on vitamin stability in feed. Animals, 2020, 10(5): 894 CrossRef
  52. Liu Y., Liu M., Huang S,. Zhang Z. Optimisation of the extrusion process through a response surface methodology for improvement of the physical properties and nutritional components of whole black-grained wheat flour. Foods, 2021, 10(2): 437 CrossRef
  53. Kurilkina M.Ya., Zav’yalov O.A., Atlanderova K.N., Kholodilina T.N. Zhivotnovodstvo i kormoproizvodstvo, 2020, 103(1): 8-19 CrossRef (in Russ.).
  54. Kholodilina T.N., Kurilkina M.Ya., Atlanderova K.N. Zhivotnovodstvo i kormoproizvodstvo, 2022, 105(1): 74-81 CrossRef (in Russ.).
  55. Antimonov S.V., Sagitov R.F., Kirilenko A.S., Mustafaev S.K. Izvestiya vysshikh uchebnykh zavedeniy. Pishchevaya tekhnologiya, 2010: 2-3(314-315): 5-48 (in Russ.).
  56. Santos Pereira C., Cunha S.C., Fernandes J.O. Prevalent mycotoxins in animal feed: occurrence and analytical methods. Toxins, 2019, 11(5): 290 CrossRef
  57. Tian M., Feng Y., He X., Zhang D., Wang W., Liu D. Mycotoxins in livestock feed in China - current status and future challenges. Toxicon, 2022, 214: 112-120 CrossRef
  58. Akinmusire O., El-Yuguda A., Musa J., Oyedele O.A., Sulyok M., Somorin Y.M., Ezekiel C.N., Krska R. Mycotoxins in poultry feed and feed ingredients in Nigeria. Mycotoxin Research, 2019, 35(2): 149-155 CrossRef
  59. Biscoto G., Salvato L., Alvarenga É., Dias R.R.S., Pinheiro G.R.G., Rodrigues M.P., Pinto P.N., Freitas R.P., Keller K.M. Mycotoxins in cattle feed and feed ingredients in Brazil: a five-year survey. Toxins, 2022, 14(8): 552 CrossRef
  60. Fumagalli F., Ottoboni M., Pinotti L., Cheli F. Integrated mycotoxin management system in the feed supply chain: innovative approaches. Toxins, 2021, 13(8): 572 CrossRef
  61. Hoffmans Y., Schaarschmidt S., Fauhl-Hassek C., Van der Fels-Klerx H.J. Factors during production of cereal-derived feed that influence mycotoxin contents. Toxins, 2022, 14(5): 301 CrossRef
  62. Schaarschmidt S., Fauhl-Hassek C. The fate of mycotoxins during the processing of wheat for human consumption. Comprehensive Reviews in Food Science and Food Safety, 2018, 17(3): 556-593 CrossRef
  63. Schaarschmidt S., Fauhl-Hassek C. The fate of mycotoxins during secondary food processing of maize for human consumption. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(1): 91-148 CrossRef
  64. Ochieng P.E., Scippo M.L., Kemboi D.C., Croubels S., Okoth S., Kang'ethe E.K., Doupovec B., Gathumbi J.K., Lindahl J.F., Antonissen G. Mycotoxins in poultry feed and feed ingredients from Sub-Saharan Africa and their impact on the production of broiler and layer chickens: a review. Toxins, 2021, 13(9):633 CrossRef
  65. Mamonov R.A., Zbrozhik D.G. Vestnik Soveta molodykh uchenykh Ryazanskogo gosudarstvennogo agrotekhnologicheskogo universiteta imeni P.A. Kostycheva, 2017, 2(5): 165-169 (in Russ.).
  66. Yang C.K., Cheng Y.H., Tsai W.T., Liao R.W., Chang C.S., Chien W.C., Jhang J.C., Yu Y.H. Prevalence of mycotoxins in feed and feed ingredients between 2015 and 2017 in Taiwan. Environmental Science and Pollution Research, 2019, 26(23): 23798-23806 CrossRef
  67. Van der Fels-Klerx H.J., Adamse P., Punt A., Punt A., van Asselt E.D. Data analyses and modelling for risk based monitoring of mycotoxins in animal feed. Toxins, 2018, 10(2): 54 CrossRef
  68. Gajęcki M., Gajęcka M., Zielonka Ł. The presence of mycotoxins in feed and their influence on animal health. Toxins, 2020, 12(10): 663 CrossRef
  69. Zebiri S., Mokrane S., Verheecke-Vaessen C., Choque E., Reghioui H., Sabaou N., Mathieu F., Riba A. Occurrence of ochratoxin A in Algerian wheat and its milling derivatives. Toxin Reviews, 2019, 38: 206-211 CrossRef
  70. Nogueira W.V., de Oliveira F.K., Marimón Sibaja K.V., Garcia S.O., Kupski L., de Souza M.M., Tesser M.B., Garda-Buffon J. Occurrence and bioacessibility of mycotoxins in fish feed. Food Additives & Contaminants: Part B, 2020, 13(4): 244-251 CrossRef
  71. Pizzolato Montanha F., Anater A., Burchard J., Luciano F.B., Meca G., Manyes L., Pimpão C.T. Mycotoxins in dry-cured meats: a review. Food and Chemical Toxicology, 2018, 111: 494-502 CrossRef
  72. Ma R., Zhang L., Liu M., Su Y.T., Xie W.M., Zhang N.Y., Dai J.F., Wang Y., Rajput S.A., Qi D.S., Karrow N.A., Sun L.H. Individual and combined occurrence of mycotoxins in feed ingredients and complete feeds in China. Toxins, 2018, 10(3): 113 CrossRef
  73. Tolosa J., Rodríguez-Carrasco Y., Ruiz M., Vila-Donat P. Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: a review. Food and Chemical Toxicology, 2021, 158: 112661 CrossRef
  74. Juan C., Oueslati S., Mañes J., Berrada H. Multimycotoxin determination in Tunisian farm animal feed. Journal of Food Science, 2019, 84(12): 3885-3893 CrossRef
  75. Magallanes López A., Manthey F.A., Simsek S. Wet milling technique applied to deoxynivalenol-contaminated wheat dry-milled fractions. Cereal Chem., 2019, 96(3): 487-496 CrossRef
  76. Mrudula Vasudevan U., Jaiswal A., Krishna S., Pandey A. Thermostable phytase in feed and fuel industries. Bioresource Technology, 2019, 278: 400-407 CrossRef
  77. Peng R.-H., Zhang W.-H., Wang Y., Deng Y.-D., Wang B., Gao J.-J., Li Z.-J., Wang L.-J., Fu X.-Y., Xu J., Han H.-J., Tian Y.-S., Yao Q.-H. Genetic engineering of complex feed enzymes into barley seed for direct utilization in animal feedstuff. Plant Biotechnol. J., 2023, 21(3): 560-573 CrossRef
  78. Ward N.E. Debranching enzymes in corn/soybean meal-based poultry feeds: a review. Poultry Science, 2021, 100(2): 765-775 CrossRef
  79. Pojić M., Mišan A., Tiwari B. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science and Technology, 2018, 75: 93-104 CrossRef
  80. de Souza T.P.P., da S. Mariano R.M., Vieira M.S., Andrade S.F.V., Godoi R.R., Goncalves A.F.A., Naves L.P., Lima W.J.N., Goncalves D.B, Campos-da-Paz M., Galdino A.S. Biofactories for the production of recombinant phytases and their application in the animal feed industry. Recent Patents on Biotechnology, 2018: 12(2): 113-125 CrossRef
  81. Golder H.M., Rossow H.A., Lean I.J. Effects of in-feed enzymes on milk production and components, reproduction, and health in dairy cows. Journal of Dairy Science, 2019: 102(9): 8011-8026 CrossRef
  82. Coutinho T.S., Tardioli P.W., Farinas C.S. Phytase immobilization on hydroxyapatite nanoparticles improves its properties for use in animal feed. Applied Biochemistry and Biotechnology, 2020, 190(1): 270-292 CrossRef
  83. Rangel Pedersen N., Tovborg M., Soleimani Farjam A., Della Pia E.A. Multicomponent carbohydrase system from Trichoderma reesei: a toolbox to address complexity of cell walls of plant substrates in animal feed. PLoS ONE, 2021, 16(6): e0251556 CrossRef
  84. Bakare A.G., Zindove T.J., Iji P.A., Stamatopoulos K., Cowieson A.J. A review of limitations to using cassava meal in poultry diets and the potential role of exogenous microbial enzymes. Tropical Animal Health and Production, 2021, 53(4): 426 CrossRef
  85. Ribeiro G.O., Badhan A., Huang J., Beauchemin K.A., Yang W., Wang Y., Tsang A., McAllister T.A. New recombinant fibrolytic enzymes for improved in vitro ruminal fiber degradability of barley straw1. Journal of Animal Science, 2018, 96(9): 3928-3942 CrossRef
  86. Ferreira A.V.F., Silva F.F., Silva A.A.M., Azevedo L.S., da Fonseca S.T.D., Camilo N.H., Dos Santos K.P.E., de Carvalho L.C., Tarabal V.S., da Silva J.O., Machado J.M., Nogueira L.M., Torres F.A.G., Galdino A.S. Recent patents on the industrial application of alpha-amylases. Recent Patents on Biotechnology, 2020, 14(4): 251-268 CrossRef
  87. Ahmed U., Pfannstiel J., Stressler T., Eisele T. Purification and characterization of a fungal aspartic peptidase from Trichoderma reesei and its application for food and animal feed protein hydrolyses. J. Sci. Food Agric., 2022, 102(12): 5190-5199 CrossRef
  88. Van Dorn R., Shanahan D., Ciofalo V. Safety evaluation of xylanase 50316 enzyme preparation (also known as VR007), expressed in Pseudomonas fluorescens, intended for use in animal feed. Regulatory Toxicology and Pharmacology, 2018, 97: 48-56 CrossRef
  89. Jarpa-Parra M. Lentil protein: a review of functional properties and food application. An overview of lentil protein functionality. International Journal of Food Science and Technology, 2018, 53(4): 892-903 CrossRef
  90. Mudgil P., Baby B., Ngoh Y.Y., Kamal H., Vijayan R., Gan C.-Y., Maqood S. Molecular binding mechanism and identification of novel anti-hypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates. LWT, 2019: 112: 108193 CrossRef
  91. Matulessy D.N., Erwanto Y., Nurliyani N., Suryanto E., Abidin M.Z., Hakim T.R. Characterization and functional properties of gelatin from goat bone through alcalase and neutrase enzymatic extraction. Veterinary World, 2021, 14(9): 2397-2409 CrossRef
  92. Mudgil P., Jobe B., Kamal H., Alameri M., Al Ahbabi N., Maqsood S. Dipeptidyl peptidase-IV, a-amylase, and angiotensin I converting enzyme inhibitory properties of novel camel skin gelatin hydrolysates. LWT, 2019, 101: 251-258 CrossRef
  93. Kamal H., Jafar S., Mudgil P., Murali C., Amin A., Maqsood S. Inhibitory properties of camel whey protein hydrolysates toward liver cancer cells, dipeptidyl peptidase-IV, and inflammation. Journal of Dairy Science, 2018, 101(10): 8711-8720 CrossRef
  94. Mudgil P., Omar L., Kamal H., Kilari B.P., Maqsood S. Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. LWT, 2019, 110: 207-213 CrossRef
  95. Jafar S., Kamal H., Mudgil P., Hassan H.M., Maqsood S. Camel whey protein hydrolysates displayed enhanced cholesteryl esterase and lipase inhibitory, anti-hypertensive and anti-haemolytic properties. LWT, 2018, 98: 212-218 CrossRef
  96. Bedford M. The evolution and application of enzymes in the animal feed industry: the role of data interpretation. British Poultry Science, 2018, 59(5): 486-493 CrossRef
  97. Raveendran S., Parameswaran B., Ummalyma S., Abraham A., Mathew A.K., Madhavan A., Rebello S., Pandey A. Applications of microbial enzymes in food industry. Food Technol Biotechnol, 2018, 56(1): 16-30 CrossRef
  98. Shi C., Zhang Y., Lu Z., Wang Y. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Animal Sci. Biotechnol., 2017, 8: 50 CrossRef
  99. Cui Y., Li J., Deng D., Lu H., Tian Z., Liu Z., Ma X. Solid-state fermentation by Aspergillus niger and Trichoderma koningii improves the quality of tea dregs for use as feed additives. PLoS ONE, 2021, 16(11): e0260045 CrossRef
  100. Murugesan G., Sathishkumar M., Swaminathan K. Supplementation of waste tea fungal biomass as a dietary ingredient for broiler chicks. Bioresource Technology, 2005, 96(16): 1743-1748 CrossRef
  101. Gungor E., Erener G. Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on growth performance, carcass traits, and meat quality in broiler chickens. Poultry Science, 2020, 99(1): 301-309 CrossRef







Full article PDF (Rus)