doi: 10.15389/agrobiology.2024.3.492eng

UDC: 633.111.1:631.52(571.1)

Statistical processing of experimental data was supported by the Russian Scienсe Foundation (Agreement No. 22-16-20008; March 23, 2022). Field research was supported by the Ministry of Agriculture of the Russian Federation.



V.P. Shamanin1, I.V. Pototskaya1 , A.S. Chursin1, S.S. Shepelev1,
D.S. Nardin1, V.E. Pozherukova1, H. Köksel2, A.I. Morgounov3

1Stolypin Omsk State Agrarian University, 1, Institutskaya pl., Omsk, 644008 Russia, e-mail:p.shamanin@оmgau.оrg, iv.pоtоtskaya@оmgau.оrg (✉ corresponding author),as.chursin@оmgau.оrg, sergeysс,,
2İstinye University, Maltepe Mah., Edirne Çırpıcı Yolu, No. 9 Zeytinburnu, İstanbul, 34010 Turkey, e-mail;
3Food and Agriculture Organization, King Abdulaziz Road, P.O. Box: 558, Riyadh, 11421 Kingdom of Saudi Arabia, e-mail

ORCID: Shamanin V.P.
Nardin D.S.
Pozherukova V.E.
Chursin A.S.
Koksel H.
Shepelev S.S.
Morgounov A.I.

Final revision received July 11, 2022
Accepted February 06, 2024

Climate change and environmental problems dictate the need for the development of wheat varieties with complex and prolonged resistance to diseases and drought tolerance. Breeding programs oriented for development of varieties suitable for ecological and organic farming will reduce production costs and pesticide load on agrocenoses for the coming decades. In this work, for the first time, the value of spring bread wheat varieties with complex resistance to leaf and stem rust under conditions of Western Siberia, for non-pesticide agricultural technology and intensive natural infectious background for obtaining environmentally friendly grain, including with the functional properties of purple-grained wheat, was revealed. During research, the yield of developed varieties was 3.4-4.4 t/ha, their economic efficiency was determined. The work purpose to evaluate the wheat varieties with complex resistance to diseases developed in Omsk SAU in the frame of shuttle breeding, as well as purple-grained variety on yield, the grain quality, and efficiency of their cultivation for non-pesticide agricultural technology and intensive infectious background under conditions of Western Siberia. The researches were conducted on experimental field of Omsk SAU (55°02′′N, 73°31′′E) under conditions of the southern forest-steppe of Western Siberia in 2016-2021. The research material were varieties and lines of spring bread wheat (Triticum aestivum L.) developed in Omsk SAU from the competitive variety trial: early maturing Stolypinskaya 2, Niva 55, Agronomicheskaya 5, Lutescens 128-15; medium maturing Silantiy, Lutescens 27-12; late maturing EF 22. The checks were used early maturing variety Pamyati Azieva, medium maturing Duet, and late maturing Element 22. The evaluation of growing season duration and analysis of yield were recorded following methodical instructions of State variety Trial. The protein and gluten content was determined using device Infralum FT 10M («Lumeks», Russia) corresponds to State Standard ISO 12099-2017. The harvest was carried out with a single-phase combine Sampo-130 (Sampo-Rosenlew, Finland). Infection response of the varieties to leaf and stem rust (Puccinia triticina Erikss. and Puccinia graminis f. sp. tritici Erikss. et Henn.) was recorded as recommended by CIMMYT scales: R resistant, damage degree 0-5 %; M heterogeneous type, pustules of various sizes, surrounded by or without chlorotic and necrotic spots; MR moderately resistant, 10-25 %; MS moderately susceptible, 30-50 %; S susceptible, > 50 %. In Kenya (Njoro), the varieties Niva 55, Silantius, and Lutescens 128-15 lines were evaluated under natural infectious of P. graminis Ug99 by CIMMYT scale. Identification of resistance genes to leaf and stem rust was carried out in accordance with the established protocols ( Analysis of the phenolic compounds content and antioxidant properties of the purple-grained variety EF 22 compared to red-grained checks Pamyati Azieva and Element 22 was performed. The economic efficiency of the grain production of the studied varieties and lines was calculated. It is shown that in the years of epiphytoties (2016-2020), varieties with complex resistance under conditions of Western Siberia, on average in terms of yield had a significant increase in yield, depending on the genotype of the variety from 0.3 to 1.1 t/ha. The protein and gluten content in the grain of these varieties corresponded to the requirements for strong wheat (16 % and > 28 %, respectively). Based on PCA analysis of data for 2017-2019, upon high infectious load, a negative relationship was found between the damage from leaf and stem rust, yield and grain quality. Comparative evaluation of the recurrent variety Element 22 with complex resistance to leaf and stem rust (Lr10, Lr26/Sr31, Sr35) and its analogue E 22 with purple grain, revealed a statistically significant advantage of the yield, the content of total phenolic compounds in grain, including the bound phenolic compounds and their antioxidant activity (565.6 mg of gallic acid equivalents (GAE)/100 g and 62.7 %, respectively). An exceed in  the gross profit due to the cultivation of varieties with a complex resistance to diseases was 25-40%, without the market premium for EF 22 as a functional product. The decrease of the fungicidal load on wheat crops is important for the environmentally friendly production of grain and the preservation of the environment in Western Siberia.

Keywords: wheat, variety, genes, disease resistance, yield, phenolic compounds, antioxidants, organic farming.



  1. Fess T.L., Kotcon J.B., Benedito V.A. Crop breeding for low input agriculture: a sustainable response to feed a growing world population. Sustainability, 2011, 3(10): 1742-1772 CrossRef
  2. Mesterházy Á., Oláh J., Popp J. Losses in the grain supply chain: causes and solutions. Sustainability, 2020, 12(6): 2342 CrossRef
  3. Shagayda N.I., Svetlov N.M., Uzun V.Ya., Loginova D.A., Prishchepov A.V. Potentsial rosta sel’skokhozyaystvennogo proizvodstva Rossii za schet vovlecheniya v oborot neispol’zuemykh sel’skokhozyaystvennykh ugodiy [Potential for growth of agricultural production in Russia due to the involvement of unused agricultural land in circulation]. Moscow, 2018 (in Russ.).
  4. Tarasova A.A., Galeev M.M. Nauka i obrazovanie, 2020, 3(3): 118-125 (in Russ.).
  5. van Mansvelt J.D., Temirbekova S.K. General position of organic agriculture in Western Europe: concept, practical aspects and global prospects. Sel’skokhozyaystvennayabiologiya[Agricultural Biology], 2017, 52(3): 478-486 CrossRef
  6. Mistratova N.A., Stupnitskiy D.N., Yashin S.E. Vestnik Krasnoyarskogo GAU, 2021, 11(176): 100-107 CrossRef (in Russ.).
  7. Rahmann G., Nieberg H. New insights into organic farming in Germany — empirical results of a survey in 218 farms. Landbauforschung Völkenrode, 2005, 3(55): 193-202.
  8. Chable V., Dawson J., Bocci R., Goldringer I. Seeds for organic agriculture: development of participatory plant breeding and farmers’ networks in France. In: Organic farming, prototype for sustainable agricultures. S. Bellon, S. Penvern (eds). Springer, Dordrecht, 2014: 383-400 CrossRef
  9. Mäder P., Hahn D., Dubois D., Gunst L., Alföldi T., Bergmann H., Oehme M., Amadò R., Schneider H., Graf U., Velimirov A., Fließbach A., Niggli U. Wheat quality in organic and conventional farming: results of a 21 year field experiment. Science of Food and Agriculture, 2007, 87(10): 1826-1835 CrossRef
  10. Ryan M.H., Derrick J.W., Dann P.R. Grain mineral concentrations and yield of wheat grown under organic and conventional management. ScienceofFoodandAgriculture, 2004, 84(3): 207-216 CrossRef
  11. Stekol’nikov K.E Biosfera, 2020, 12(1-2): 53-62 CrossRef (in Russ.).
  12. Chiriacò M.V., Grossi G., Castaldia S., Valentini R. The contribution to climate change of the organic versus conventional wheat farming: a case study on the carbon footprint of wholemeal bread production in Italy. Journal of Cleaner Production, 2017, 153(1): 309-319 CrossRef
  13. Shamanin V.P., Pototskaya I.V., Kuz’min O.G. Vestnik Kazanskogo GAU, 2017, 12 (2-44): 58-63 (in Russ.).
  14. Singh R.P., Huerta-Espino J., Bhavani S., Herrera-Foessel S.A., Singh D., Singh P.K., Velu G., Mason R.E., Jin Y., Njau P., Crossa J. Race non-specific resistance to rust diseases in CIMMYT spring wheats: breeding and advances. Euphytica, 2011, 179: 175-186 CrossRef 
  15. Lapochkina I.F., Baranova O.A., Shamanin V.P., Volkova G.V., Gainullin N.R., Anisimova A.V., Galinger D.N., Lazareva E.N., Gladkova E.V., Vaganova O.F. The development of the initial material of spring common wheat for breeding for resistance to stem rust (Puccinia graminis Pers. f. sp. tritici), including the Ug99 race, in Russia. Russian Journal of Genetics: Applied Research, 2017, 7(3): 308-317 CrossRef
  16. Gultyaeva E.I., Shaydayuk E.L., Shamanin V.P., Akhmetova A.K., Tyunin V.A., Shreyder E.R., Kashina I.V., Eroshenko L.A., Sereda G.A., Morgunov A.I. Genetic structure of Russian and Kazakhstani leaf rust causative agent Puccinia triticina Erikss. populations as assessed by virulence profiles and SSR markers. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(1): 85-95 CrossRef
  17. Skolotneva E.S., Kel’bin V.N., Shamanin V.P., Boyko N.I., Aparina V.A., Salina E.A. Vavilovskiy zhurnal genetiki i selektsii, 2021, 25(7): 740-745 CrossRef (in Russ.).
  18. Goncharova Yu.K., Goncharov S.V., Kharitonov E.M. Fotev Yu.V., Simonova V.V., Ochkas N.A. Plant antioxidants and their non-traditional sources (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2024, 59(1): 39-53 CrossRef
  19. Gordeeva E., Badaeva E., Yudina R., Shchukina L., Shoeva O., Khlestkina E. Marker-assisted development of a blue-grained substitution line carrying the Thinopyrum ponticum chromosome 4Th (4D) in the spring bread wheat Saratovskaya 29 background. Agronomy, 2019, 9(11): 723 CrossRef
  20. Koyshybaev M., Shamanin V.P., Morgunov A.I. Skrining pshenitsy na ustoychivost’ k osnovnym boleznyam [Screening wheat for resistance to major diseases]. Ankara, 2014 (in Russ.).
  21. Gul’tyaeva E.I. Metody identifikatsii genov ustoychivosti pshenitsy k buroy rzhavchine s ispol’zovaniem DNK-markerov i kharakteristika effektivnosti Lr-genov: metodicheskie ukazaniya [Methods for identifying wheat resistance genes to leaf rust using DNA markers and characterizing the effectiveness of Lr genes: guidelines]. St. Petersburg, 2012 (in Russ.).
  22. Gultyaeva E., Shaydayuk E., Gannibal Ph.  Leaf rust resistance genes in wheat cultivars registered in Russia and their influence on adaptation processes in pathogen populations. Agriculture, 2021, 11: 319 CrossRef
  23. Gul’tyaeva E.I., Shaydayuk E.L., Rsaliev A. Vestnik zashchity rasteniy, 2019, 3(101): 41-49 CrossRef (in Russ.).
  24. Morgunov A., Pozherukova V., Kolmer J., Gultyaeva E., Abugalieva A., Chudinov V., Kuzmin O., Rasheed A., Rsymbetov A., Shepelev S., Ydyrys A., Yessimbekova M., Shamanin V. Genetic basis of spring wheat resistance to leaf rust in Kazakhstan and Russia. Euphytica, 2020, 216(11): Article 170 CrossRef
  25. Adom K.K., Liu R.H. Antioxidant activity of grains. J. Agric. Food Chem., 2002, 50(21): 6182-6187 CrossRef
  26. Brand-Williams W., Cuvelier M.E., Berse C. Use of a free radical method to evaluate antioxidant activity. LWT — Food Science and Technology, 1995, 28(1): 25-30 CrossRef
  27. Koshelev B.S., Astashova E.A. Ekonomicheskie nauki, 2021, 12(205): 296-303 CrossRef (in Russ.).
  28. Dospekhov B.A. Metodika polevogo opyta (s osnovami statisticheskoy obpabotki pezul’tatov issledovaniy) [Methods of field trials]. Moscow, 1985 (in Russ.).
  29. Gordeeva E., Shamanin V., Shoeva O., Kukoeva T., Morgounov A., Khlestkina E. The strategy for marker-assisted breeding of anthocyanin-rich spring bread wheat (Triticum aestivum L.) cultivars in Western Siberia. Agronomy, 2020, 10(10): 1603 CrossRef
  30. Rosseeva L.P., Meshkova L.V., Belan I.A., Popolzukhin P.V., Vasilevskiy V.D., Gaydar A.A., Parshutkin Yu.Yu. Vestnik Altayskogo GAU, 2019, 5(175): 5-11 (in Russ.).
  31. Shamanin V., Salina E., Wanyera R., Zelenskiy Yu., Morgounov A. Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. Euphytica, 2016, 12: 287-296. CrossRef
  32. Kel’bin V.N., Skolotneva E.S., Salina E.A. Vavilovskiy zhurnal genetiki i selektsii, 2020, 24(8): 821-828 CrossRef (in Russ.).
  33. Singh R.P., Hodson D.P., Jin Y., Lagudah E.S., Ayliffe M.A., Bhavani S., Rouse M.N., Pretorius Z.A., Szabo L.J., Huerta-Espino J., Basnet B.R., Lan C., Hovmøller M.S. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology, 2015, 105(7) CrossRef
  34. Draz I.S., Ashmawy M.A., Shahin A.A., Omar H.A. Hereditary and molecular validity of pleiotropic resistance to rusts and powdery mildew in hexaploid wheat. Archives of Phytopathology and Plant Protection, 2021, 54(19-20): 2110-2129 CrossRef
  35. Shamanin V.P., Pototskaya I.V., Shepelev S.S., Pozherukova V.E., Salina E.A., Skolotneva E.S., Hodson D., Hovmøller M., Patpour M., Morgunov A.I. Vavilovskiy zhurnal genetiki i selektsii, 2020, 24(2): 131-138 CrossRef (in Russ.).
  36. Lapochkina I.F., Baranova O.A., Gaynullin N.R., Volkova G.V., Gladkova E.V., Kovaleva E.O., Osipova A.V. Vavilovskiy zhurnal genetiki i selektsii, 2018, 22(6): 676-684 CrossRef (in Russ.).
  37. Kota R., Spielmeyer W., McIntosh R.A., Lagudah E.S. Fine genetic mapping fails to dissociate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticum aestivum L.). Theor. Appl. Genet., 2006, 112: 492-499 CrossRef
  38. Vishwakarma G., Sanyal R.P., Shitre A., Gadekar D.A., Saini A., Das B.K.,Validation and Marker-assisted selection of stem rust resistance gene Sr2 in Indian wheat using gel-based and gel-free methods. J. Crop Sci. Biotech., 2019, 22(4): 309-315 CrossRef
  39. Paznocht L., Kotíková Z., Burešová B., Lachman J., Martinek P. Phenolic acids in kernels of different coloured-grain wheat genotypes. Plant Soil Environ., 2020, 66(2): 57-64 CrossRef
  40. Liu J., Yu L.L., Wu Y. Bioactive components and health beneficial properties of whole wheat foods. J. Agric. Food Chem, 2020, 68(46): 12904-12915 CrossRef
  41. Sharma S., Kapoor P., Kaur S., Kumari A., Sharma N., Kumar A., Chunduri V., Gard M. Changing nutrition scenario: colored wheat — a new perspective. In: Physiological, molecular, and genetic perspectives of wheat improvement. S.H. Wani, A. Mohan, G.P. Singh (eds). Springer, Cham, 2020: 71-88 CrossRef
  42. Liu J., Zhou H., Song L., Yang Z., Qiu M., Wang J., Shi S. Anthocyanins: promising natural products with diverse pharmacological activities. Molecules, 2021, 26(13): 3807 CrossRef
  43. Liu R.H. Whole grain phytochemicals and health. Journal of Cereal Science, 2007, 46: 207-219 CrossRef
  44. Gordeeva E., Shamanin V., Shoeva O., Kukoeva T., Morgounov A., Khlestkina E. The strategy for marker-assisted breeding of anthocyanin-rich spring bread wheat (Triticum aestivum L.) cultivars in Western Siberia. Agronomy, 2020, 10(10): 1603 CrossRef
  45. Garg M., Kaur S., Sharma A., Kumari A., Tiwari V., Sharma S., Kapoor P., Sheoran B., Goyal A., Krishania M. Rising demand for healthy foods-anthocyanin biofortified colored wheat is a new research trend. Front. Nutr, 2022, 9: 878221 CrossRef
  46. Loskutov I.G., Khlestkina E.K. Wheat, barley, and oat breeding for health benefit components in grain. Plants,2021, 10(1): 86 CrossRef
  47. Nigro D., Grausgruber H., Guzmán C., Laddomada B. Phenolic compounds in wheat kernels: genetic and genomic studies of biosynthesis and regulations. In: Wheat quality for improving processing and human health. G. Igrejas, T. Ikeda, C. Guzmán (eds). Springer, Cham, 2020: 225-253 CrossRef
  48. Yu L., Beta T. Identification and antioxidant properties of phenolic compounds during production of bread from purple wheat grains. Molecules, 2015, 20(9): 15525-15549 CrossRef
  49. Liu J., Zhou H., Song L., Yang Z., Qiu M., Wang J., Shi S. Anthocyanins: promising natural products with diverse pharmacological activities. Molecules, 2021, 26(13): 3807 CrossRef
  50. Ivanišová E., Ondrejovič M., Chmelová D., Maliar T., Havrlentová M., Rückschloss L’. Antioxidant activity and polyphenol content in milling fractions of purple wheat. Cereal Research Communications, 2014, 42(4): 578-588 CrossRef
  51. Ficco D.B.M., Borrelli G.M., Giovanniello V., Platani C., De Vitaa P. Production of anthocyanin-enriched flours of durum and soft pigmented wheats by air-classification, as a potential ingredient for functional bread. Journal of Cereal Science, 2018, 79(1): 118-126 CrossRef







Full article PDF (Rus)