doi: 10.15389/agrobiology.2024.3.473eng

UDC: 633.1:632.112:911.6(1-924.8)

Funded by the Russian Science Foundation (RSF 23-16-00247)



M.V. Nikolaev

Agrophysical Research Institute, 14, Grazhdanskii prosp., St. Petersburg, 195220 Russia, e-mail (✉ corresponding author)

Nikolaev M.V.

Final revision received April 01, 2024
Accepted  May 05, 2024

Long-term deficits of atmospheric moisture cause droughts, which, in case of their large-scale spread and exceptional severity, are hazardous natural disasters. Therefore, identifying the causes of drought, the driving mechanisms of its spread, and assessing droughts by the time of their onset, duration, intensity and frequency are the focus of attention of researchers around the world in the context of increasing climate change. In such studies, the analysis of spatiotemporal changes in precipitation deficit comes to the fore, and its changes are associated with the manifestation of climate variability and intensified anthropogenic impact on the climate. Their relevance is due to very large contribution of semiarid regions to the world production of high-quality grain, since the world food supply depends on the stability of the final yields. The Dry Farming Cropland (DFC), an agricultural region with an unstable precipitation regime, is located in the middle part of European Russia and covers the Central Black Earth region, the Middle Volga region and the south of the Urals where valuable cultivars of spring small grain cereals are grown. The novelty of our study lies in the fact that the boundaries of vulnerable grain-producing territories in the eastern part of the DFC are delineated based on a set of quantitative criteria and qualitative characteristics of which agro climatic indicators of extreme aridity are of paramount importance. This paper is the first to submit data on the delineation we obtained. For the first time, we have quantitatively shown that in a changing climate, more northern and moist grain-producing territories become comparable to more southern and drier grain-producing territories in terms of susceptibility to extreme moisture deficiency. In addition, the greatest decrease in the precipitation absolute minimum with an increasing frequency of years with sharp deficits is characteristic of low-relief landscapes. Our goal was to develop the DFC meso-zoning for identification of areas vulnerable to atmospheric moisture deficiency under climate change to provide effective management of the risks during final yield formation in early spring crops. Geographic coordinates and altitude above sea level were indicated for 32 agrometeorological stations with homogeneous data series from 1945 to 2021 located in the unstable moisture zone of European Russia. The boundaries of the unstable moisture zone were determined based on the agro climatic conditions, data on crop location and concentration, and on indicators of weather and climatic variability of yields. Time intervals were selected for both a long sequence of years and periods during the growing season. Based on the characterization of anomalies in globally averaged surface air temperature from 1880 to 2021, two periods identified were 1945-1980 and 1981-2021. The sowingheading dates were chosen as the period during which weather conditions directly affect the final yield of spring grain crops. For all stations, these periods closely coincided, covering May and June. Soil criteria included qualitative characteristics and quantitative indicators. Landscape criteria included latitudinal zonation which determines the change in landscape types, longitudinal component which influences some northward shift of steppe landscapes as we move deeper into the continent, and the altitude layers of landscapes. Mesozonation is based on the transition from zonal schemes to subregional levels based on their agro climatic, soil and landscape features. Initially, this provides dividing the DFC into two parts with the opposite trends in changes of aridity, the less vulnerable western part and the more vulnerable eastern part. In 1946 and 1981, extreme precipitation deficits occurred in areas west of the middle Volga, as influenced by the zonal type of atmospheric circulation. In 1975, 1998 and 2010, it covered a very vast territory, including areas east of the middle Volga, where the influence of the meridional type of atmospheric circulation occurred. Since 1975 belongs to the first period, and 1998 and 2010 belong to the second, the ratio of such years by period was 1:2. This indicates that in the future, we cannot exclude an increase in large-scale sharp deficits of atmospheric moisture, leading to catastrophic droughts, which requires the development of measures to mitigate drought consequences. These results also draw to conclusion that in the unstable moisture zone of European Russia, shifts to a northern direction occur, involving more humid areas of vulnerable grain-producing territories. Globally, this is consistent with the general trend of severe droughts spreading towards the poles. Since spring-summer droughts are becoming more severe and frequent in the Urals, Trans-Volga region and the south of the Urals, attention should be focused on the effective management of moisture supply and crop productivity, which can be achieved by choosing the optimal agro technics, forest reclamation, anti-erosion and watering measures or their combination. Effective productivity management closely depends on use of breeding achievements and zonal growing of varieties and crops. It is convenient to differentiate methods and strategies for adaptation based on the degree of aridity, soil characteristics and landscape type of vulnerable grain-producing areas.

Keywords: Dry Farming Cropland, meso-zoning, climate change, precipitation deficit, vulnerability, adaptation.



  1. Dai A. Drought under global warming: a review. WIREs Clim. Change,2011, 2(1): 45-65 CrossRef
  2. Pachauri R.K., Allen M.R., Barros V.R., Broome J., Cramer W., Christ R., Church J.A., Clarke L., Dahe Q., Dasgupta P., Dubash N.K., Edenhofer O., Elgizouli I., Field C.B., Forster P., Friedlingstein P., Fuglestvedt J., Gomez-Echeverri L., Hallegatte S., Hegerl G., Howden M., Jiang K., Cisneros B.J., Kattsov V., Lee H., Mach K.J., Marotzke J., Mastrandrea M.D., Meyer L., Minx J., Mulugetta Y., O'Brien K., Oppenheimer M., Pereira J.J., Pichs-Madruga R., Plattner G.-K., Pörtner H.-O., Power S.B., Preston B., Ravindranath N.H., Reisinger A., Riahi K., Rusticucci M., Scholes R., Seyboth K., Sokona Y., Stavins R., Stocker T.F., Tschakert P., van Vuuren D., van Ypersele J.-P. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. R.K. Pachauri, L.A. Meyer (eds.). IPCC, Geneva, Switzerland, 2014.
  3. Mukherjee S., Mirsha A.K. Increase in compound drought and heatwaves in a warming world. Geophysical Research Letters, 2021, 48(1): e2020GLO90617 CrossRef
  4. Chandrosekara S.S., Known H.H., Vithanage M., Obeysekera J., Kim T.-W. Drought in South Asia: a review of drought assessment and prediction in South Asia countries. Atmosphere, 2021, 12(3): 369 CrossRef
  5. Wang L., Chen W., Fu Q., Huang C., Wang Q., Chotamanonsan C., Limsacul A. Super drought over East Asia since 1960 under the impacts of global warming and decadal variability. International Journal of Climatology, 2022, 42(9): 4508-4521 CrossRef
  6. Kesgin E., Yaldiz S.G., Güçlü Y.S. Spatiotemporal variability and trends of droughts in the Mediterranean costal region of Turkiye. International Journal of Climatology, 2024, 44(4): 1035-1057 CrossRef
  7. Jha V.D., Gujrati A., Singh R.P. Complex network theoretic assessment of precipitation-driven meteorological drought in India: past and future. International Journal of Climatology, 2022, 42(6): 3274-3289 CrossRef
  8. Zang Y., Hao Z., Feng S., Zang X., Hao F. Comparison of changes in compound dry and hot events in China based on different drought indicators. International Journal of Climatology, 2022, 42(16): 8133-8145 CrossRef
  9. Mateus N.P.A., Marengo J.A., Cunha A.P.M.A, Diogo A.M., António J.F. Spatial-temporal characterization of droughts in Angola. International Journal of Climatology, 2023, 44(2): 370-392 CrossRef
  10. Hoell F., Magadzire T., McNally A., Eisheid J. Multiyear dry periods in Southern Africa. International Journal of Climatology, 2023, 43(7): 3225-3246 CrossRef
  11. Aryal Y., Zhu J. Spatial and temporal variability of drought patterns over the Central United States from observations and regional climate models. Journal of Meteorological Research, 2021, 35(2): 295-312 CrossRef
  12. Asong Z.E., Wheater H.S., Bonsal B., Rozavi S., Kurkute S. Historical drought patterns over Canada and their teleconnections with large-scale climate signals. Hydrology and Earth System Sciences, 2018, 22(6): 3105-3124 CrossRef
  13. Andrade-Gómez L., Cavozos T. Historical meteorological droughts over the CORDEX-CAM (Central America, Caribbean and Mexico) domain. Evaluating the simulation of dry-hot spots with RegCM4. International Journal of Climatology, 2024, 44(4): 1110-1134 CrossRef
  14. Sgzoi L.C., Lovino M.A., Berbery E.H., Muller G.V. Characteristics of droughts in Argentina’s Core Crop Region. Hydrology and Earth System Sciences, 2021, 25(5): 2475-2490 CrossRef
  15. Brito S.S.B., Cunha A.P.M.A., Cunningham C.C., Alvalá R.C., Marengo J.A., Carvalho M.A. Frequency, duration and severity of drought in the Semiarid Northeast Brazil region. International Journal of Climatology, 2018, 38(2): 517-529 CrossRef
  16. Possega M., Ojeda M.G.-V., Gámiz-Fortis S.R. Multi-scale analysis of agricultural drought propagation on the Iberian peninsula using non-parametric indices. Water, 2023, 15(11): 2032 CrossRef
  17. Romano E., Petrangelli A.B., Salerno F., Guyennon N. Do recent meteorological drought events in central Italy result from long-term trends or increasing variability? International Journal of Climatology, 2022, 42(7): 4111-4128 CrossRef
  18. Srdjevic B., Srdjevic Z., Benka P. Extreme rainless periods in Pannonian Basin. International Journal of Climatology, 2022, 42(16): 8568-8590 CrossRef
  19. Tall M., Sylla M.B., Dajuma A., Almazrou M., Houteta D.K., Klutse N.A.B., Dosio A., Lennard C., Drioutch F., Diethiou A., Giorgi F. Drought variability, changes and hot spots across to African continent during the historical period (1928-2017). International Journal of Climatology, 2023, 43(16): 7795-7818 CrossRef
  20. Rashid M.M., Beecham S. Characterization of meteorological droughts across South Australia. Meteorological Applications RMetS. Science and Technology for Weather and Climate, 2019, 26(4): 556-568 CrossRef
  21. Depsky N., Pons D. Meteorological droughts are projected to worsen in Central America’s dry corridor throughout the 21st century. Environmental Research Letters, 2020, 16(1): 014001 CrossRef
  22. Zahradníček P., Trnka M., Brázdil R., Možný M., Štěpánek P., Hlavinka P., Žalud Z., Malý A., Semerádová D., Dobrovolný P., Reznickova L. The extreme drought episode of August 2011—May 2012 in the Czech Republic. Journal of Climatology, 2015, 35(11): 3335-3352 CrossRef
  23. Caloiero T., Veltri S., Caloiero P., Frustaci F. Drought analysis in Europe and in the Mediterranean basin using standardized precipitation index. Water, 2018, 10(8): 1043 CrossRef
  24. Naumann G., Podestá G., Marengo J., Luterbacher J., Bavera D., Acosta Navarro J., Arias Muñoz C., Barbosa P., Cammalleri C., Cuartas A., de Estrada M., de Felice M., de Jager A., Escobar C., Fioravanti G., Giordano L., Harst Essenfelder A., Hidalgo C., Leal de Moraes O., Maetens W., Magni D., Masante D., Mazzeschi M., Osman M., Rossi L., Seluchi M., de los Milagros Skansi M., Spennemann P., Spinoni J., Toreti A., Vera C.A. Extreme and long-term drought in the La Plata Basin: event evolution and impact assessment until September 2023. Publications Office of the Europe Union, Luxembourg, 2022 CrossRef
  25. Lesk C., Rowhani P., Ramankutty N. Influence of extreme weather disasters on global crop production. Nature, 2016, 529(7584): 84-87 CrossRef
  26. Zhang Y., Hao Z., Jiang T., Sing V.P. Global warming increases risk from compound dry-hot events to human and agricultural systems. International Journal of Climatology, 2023, 43(14): 6706-6719 CrossRef
  27. Meza I., Siebert S., Doll P., Kusche J., Herbert C., Rezae E.E., Nouri H., Gerdener H., Popat E., Frischen J., Naumann G., Vogt J.V., Walz Y., Sebesvari Z., Hagenlocheret M. Global-scale drought risk assessment for agricultural systems. Natural Hazards and Earth Sciences, 2020, 20(2): 695-712 CrossRef
  28. Ribeiro A.F.S., Russo A., Gouveia C.M., Páscoa P., Zscheischler J. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences, 2020, 17(19): 4815-4830 CrossRef
  29. He Y., Fang J., Xu W., Shi P. Substantial increase of compound droughts and heatwaves in wheat growing seasons worldwide. International Journal of Climatology, 2022, 42(10): 5038-5054 CrossRef
  30. Nikolaev M.V. Sovremennyy klimat i izmenchivost’ urozhaev (zernovye regiony umerennogo poyasa) [Modern climate and yield variability (temperate cereal regions)]. St. Petersburg, 1994 (in Russ.).
  31. National Aeronautics and Space Administration Goddard Institute for Space Studies. GISS surface temperature analysis (GISTEMP v4). Available: No date.
  32. Selyaninov G.T. V sbornike: Voprosy agroklimaticheskogo rayonirovaniya SSSR [In: Issues of agroclimatic zoning of the USSR]. Moscow, 1958: 7-14 (in Russ.).
  33. Srednie mnogoletnie i veroyatnostnye kharakteristiki zapasov produktivnoy vlagi pod ozimymi i rannimi yarovymi zernovymi kul’turami: Spravochnik. Tom 1. Evropeyskaya territoriya SSSR, Sverdlovskaya, Kurganskaya i Chelyabinskaya oblasti /Pod redaktsiey L.S. Kel’chevskoy [Average long-term and probabilistic characteristics of productive moisture reserves under winter and early spring grain crops: Handbook. Volume 1. European territory of the USSR, Sverdlovsk, Kurgan and Chelyabinsk regions. L.S. Kel’chevskaya (ed.)]. Leningrad, 1979 (in Russ.).
  34. Konstantinov A.R., Khimin N.M. Primenenie splaynov i metodov ostatochnykh otkloneniy v gidrometeorologii [Application of splines and residual deviation methods in hydrometeorology]. Leningrad, 1983 (in Russ.).
  35. Dzerdzeevskiy B.L. V sbornike: Materialy meteorologicheskikh issledovaniy [In: Materials of meteorological research]. Moscow, 1968: 1- 24 (in Russ.).
  36. Kononova N.K. Klassifikatsiya tsirkulyatsionnykh mekhanizmov Severnogo polushariya po B.L. Dzerdzeevskomu [Classification of circulation mechanisms of the Northern Hemisphere according to B.L. Dzerdzeevsky]. Moscow, 2009 (in Russ.).
  37. Cherenkova E.A., Semenova I.G., Kononova N.K., Titkova T.B. Aridnye ekosistemy, 2015, 21(2/63): 5-15 (in Russ.).
  38. Li X., You Q., Ren G., Wang S., Zhang Y., Yang J., Zheng G. Concurrent droughts and hot extremes in northwest China from 1961 to 2017. International Journal of Climatology, 2019, 39(4): 2186-2196 CrossRef
  39. Kim D.-S., Jun S.-Y., Lee M.-I., Kung J.-S. Significant relationship between Arctic warming and East Asia hot summers. International Journal of Climatology, 2022, 42(16): 9530-9538 CrossRef
  40. Zhang X., Pang X., Zhang X., Wu B. Impacts of recent inter-decadal shift in the summer Arctic dipole on variability on atmospheric circulation over Eurasia. Atmosphere, 2024, 15(1): 71 CrossRef
  41. Ministerstvo sel’skogo khozyaystva SSSR — Glavnoe upravlenie zemlepol’zovaniya i zemleustroystv. Prirodno-sel’skokhozyaystvennoe rayonirovanie zemel’nogo fonda SSSR [Natural and agricultural zoning of the USSR land fund]. Moscow, 1984 (in Russ.).
  42. Silvestri L., Saraceni M., Cerlini P.B. Links between precipitation, circulation weather types and orography in Central Italy. International Journal of Climatology, 2022, 42(11): 5807-5825 CrossRef
  43. Landshaftnaya karta SSSR /Pod redaktsiey A.G. Isachenko [Landscape map of the USSR. A.G. Isachenko (ed.)]. Moscow, 1988 (in Russ.).
  44. Pochvennaya karta RSFSR /Pod redaktsiey V.M. Fridland [Soil map of the RSFSR. V.M. Fridland (ed.)]. Moscow, 1988 (in Russ.).
  45. Natsional’nyy atlas Rossii. Tom 2. Priroda. Ekologiya [National atlas of Russia. Volume 2. Nature. Ecology]. PKO «Kartografiya», 2007: 370-371 (in Russ.).
  46. Nikolaev M.V. The impact of climate change on crop farming in the drained lands of the European nonchernozem region of Russia: vulnerability and adaptation assessment. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(1): 60-74 CrossRef
  47. Edel’geriev R.S.Kh., Ivanov A.L., Donnik I.M. et al. Natsional’nyy doklad «Global’nyy klimat i pochvennyy pokrov Rossii: proyavlenie zasukhi, mery preduprezhdeniya, bor’by, likvidatsii posledstviy i adaptatsionnye meropriyatiya (sel’skoe i lesnoe khozyaystvo)». Tom 3. Kollektivnaya monografiya [National report «Global climate and soil cover in Russia: manifestations of drought, prevention, control, mitigation and adaptation measures (agriculture and forestry). Volume 3. Collective monograph]. Moscow, 2021 CrossRef (in Russ.).
  48. Vogel E., Meyer R. Chapter 3. Climate change, climate extremes, and global food production — adaptation in the agricultural sector. In: Resilience. The science of adaptation to climate change. Z. Zommers, K. Alverson (eds.). Elsevier, 2018: 31-49 CrossRef 
  49. Sisto N.P., Severinov S., Aboite S., Manrique G. Growing crops in arid, drought-prone environments: adaptation and mitigation. Hydrology, 2022, 9(8): 129 CrossRef
  50. Gulaeva N.V., Syukov V.V., Shevchenko S.N., Zueva A.A., Chernov S.E., Lovasser U., Berner A., Kocherina N.V., Chesnokov Yu.V. Otsenka linii kartiruyushchey populyatsii ITMI i kartirovanie QTL u yarovoy myagkoy pshenitsy (Triticum aestivum L.) v usloviyakh Srednego Povolzh’ya (katalog) [Assessment of the ITMI mapping population line and QTL mapping in spring bread wheat (Triticum aestivum L.) in the conditions of the Middle Volga region (catalog)]. Bezenchuk, 2020 (in Russ.).
  51. Arif M.A.R., Shokat S., Plieske J., Ganal M., Lohwasser U., Chesnokov Y.V., Kocherina N.V., Kulwal P., Kumar N., McGuire P.E., Sorrells M.E., Qualset C.O., Börner A. A SNP-based genetic dissection of versatile traits in bread wheat (Triticum aestivum L.). The Plant Journal, 2021, 108(4): 960-976 CrossRef
  52. Chesnokov Yu.V., Mirskaya G.V., Kanash E.V., Kocherina N.V., Börner A. Mapping of QTL in bread wheat (Triticum aestivum L.) grown in controlled conditions of agrobiopoligon with different doses of nitrogen supplying. V Zhuchenkovskie chteniya v ramkakh Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Razvitie ustoychivogo sel’skokhozyaystvennogo proizvodstva». Bol’shie Vyazemy, 24-36 sentyabrya 2019 goda /Pod red. V.M. Kosolapova, A.P. Glinushkina [V Zhuchenko Readings within the framework of the International Scientific and Practical Conference «Development of Sustainable Agricultural Production». V.M. Kosolapov, A.P. Glinushkin (eds.)].Bol’shie Vyazemy,2022, 1: 20-29 (in Engl.">CrossRef
  53. Canada in a changing climate: national issues report. F.J. Warren, N. Lulham (eds.). Government of Canada, Ottawa, 2021 CrossRef
  54. Kulshreshtra S. Resiliency of Prairie agriculture to climate change. In: Climate change and agriculture. S. Hussein (ed.). IntechOpen, 2018 CrossRef
  55. Poggi G.M., Corneti S., Alosi I., Ventura F. Phenotypic variability for early drought stress resistance in tetraploid wheat accessions correlates with terminal drought performance. Journal of Agronomy and Crop Sciences, 2024, 210(2): e12691 CrossRef
  56. Gokkuş M.K., Dumlupinar Z., Degirmenci H. Drought resistance, quality characteristics and water-yield relationships of some wheat (Triticum aestivum L.) lines of varieties. Journal of Agronomy and Crop Sciences, 2024, 210(1): e12678 CrossRef
  57. Marone D. Russo M.A., Mozos A., Ficco D.B.M., Laido G., Mastrangelo A.M., Borrelli G.M. Importance of landraces in cereal breeding for stress tolerance. Plant, 2021, 10(7): 1267 CrossRef
  58. Mohammadi P., Etmina A., Shoshtar L. Agro-physiological characteristics of durum wheat genotypes under drought conditions. Experimental Agriculture, 2019, 55(3): 484-499 CrossRef
  59. Sakumaran S., Reynolds M.P., Sansaloni C. Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. FrontiersinPlantScience, 2018, 9: 1-16 CrossRef







Full article PDF (Rus)