doi: 10.15389/agrobiology.2015.3.288eng

UDC 631.522/.524:577.21:575.224.46

Supported by Russian Foundation for Fundamental Research (grants 14-04-32289-mol_a and 14-04-01442-a).

TILLING: THE MODERN TECHNOLOGY IN «REVERSE» GENETIC
OF PLANTS (review)

A.S. Sulima, V.A. Zhukov

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail: sulan555@mail.ru

Received March 30, 2015

 

There are two basic approaches in genetic studies called «forward» and «reverse» genetics. While the «forward» genetics studies the inheritance of traits (phenotype) in living organisms and identifies genetic factors that influence the expression of these traits (working on the principle of «from phenotype to genotype»), the «reverse» genetics reveals the function of gene by changing its structure or activity with subsequent analysis of the associated changes in phenotype (the «from genotype to phenotype» principle). With the development of large-scale genomic sequencing technologies the «reverse» genetics received substantial support, taking the leading position both in scientific and applied fields. Basic principles underlying the novel method of «reverse» genetics called TILLING (for Targeting Induced Local Lesions IN Genomes) are reviewed in this paper. TILLING combines the classic mutation analysis with modern approaches to detecting the nucleotide substitutions in a target locus in genome. The method is highly effective and is applicable to a wide range of biological objects, thereby winning a world-wide recognition. The key stages of preparation for TILLING analysis are described: obtaining of mutagenized population and development of TILLING platform, which includes the organized collection of mutants and database with information about the collection. The main approaches to the detection of point mutations currently used worldwide, including new approaches based on NGS methods (Next Generation Sequencing), are presented. The technical requirements crucial for the successful conducting of TILLING-analysis, as well as variations and modifications of existing techniques designed to solve various scientific tasks, are highlighted. The results obtained using the TILLING method by the group of authors in their research of specificity of partners recognition during the development of mutualistic symbiosis between the garden pea (Pisum sativum L.) and nodule bacteria Rhizobium leguminosarum bv. viciae are also presented. Authors were able to identify a number of mutants in pea receptor kinase gene LykX, which is the most likely candidate for the determinant of plant’s increased selectivity toward bacterial microsymbionts. Further study of obtained mutants will help to reveal the function of LykX and its role in symbiosis between pea and nodule bacteria.

Keywords: plant genetics, «reverse» genetics, TILLING, detection of mutations, pea, «Afghan» phenotype.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Eisenberg D., Marcotte E.M., Xenarios I., Yeates T.O. Protein function in the post-genomic era. Nature, 2000, 405(6788): 823-826 CrossRef
  2. Griffiths P.E., Stotz K. Genes in the postgenomic era. Theor. Med. Bioeth., 2006, 27(6): 499-521 CrossRef
  3. Hsiao A., Kuo M.D. High-throughput biology in the postgenomic era. J. Vasc. Interv. Radiol., 2009, 20(7 Suppl.): S488-496 CrossRef
  4. Mendel' G. Opyty nad rastitel'nymi gibridami /Pod redaktsiei A.E. Gaisinovicha [Experiments on Plant Hybrids. A.E. Gaisinovicha (ed.)]. Moscow, 1965.
  5. Lutova L.A., Ezhova T.A., Dodueva I.E., Osipova M.A. Genetika razvitiya rastenii: dlya biologicheskikh spetsial'nostei universitetov /Pod redaktsiei S.G. Inge-Vechtomova [Genetics of plant development. S.G. Inge-Vechtomova (ed.)]. St. Petersburg, 2010.
  6. Inge-Vechtomov S.G. Genetika s osnovami selektsii [Genetics and the basic breeding principles]. St. Petersburg, 2010.
  7. Struhl K. The new yeast genetics. Nature, 1983, 305: 391-397 CrossRef
  8. Reski R. Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends Plant Sci, 1998, 3(6):  209-210 CrossRef
  9. Alonso J.M., Ecker J.R. Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat. Rev. Genet., 2006, 7: 524-536 CrossRef
  10. Small I. RNAi for revealing and engineering plant gene functions. Curr. Opin. Biotechnol., 2007, 18: 148-153 CrossRef
  11. Boutros M., Ahringer J. The art and design of genetic screens: RNA interference. Nat. Rev. Genet., 2008, 9: 554-566 CrossRef
  12. Hirochika H. Insertional mutagenesis with Tos17 for functional analysis of rice genes. Breed. Sci., 2010, 60: 486-492 CrossRef
  13. Bolle C., Schneider A., Leister D. Perspectives on systematic analyses of gene function in Arabidopsis thaliana: new tools, topics and trends. Curr. Genomics, 2011, 12(1): 1-14 CrossRef
  14. Upadhyaya N.M., Zhu Q.-H., Bhat R.S. Transposon insertional mutagenesis in rice. In: Plant reverse genetics, methods and protocols, methods in molecular biology. A. Pereira (ed.). Springer Science + Business Media, LLC, 2011 CrossRef
  15. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712 CrossRef
  16. Liu L., Fan X.D. CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol. Biol., 2014, 85(3): 209-218 CrossRef
  17. McCallum C.M., Comai L., Greene E.A., Henikoff S. Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol., 2000, 123: 439-442 CrossRef
  18. Till B.J., Reynolds S.H., Greene E.A., Codomo C.A., Enns L.C., Johnson J.E., Burtner C., Odden A.R., Young K., Taylor N.E., Henikoff J.G., Comai L., Henikoff S. Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res., 2003, 13: 524-530 CrossRef
  19. Greene E.A., Codomo C.A., Taylor N.E., Henikoff J.G., Till B.J., Reynolds S.H., Enns L.C., Burtner C., Johnson J.E., Odden A.R., Comai L., Henikoff S. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics, 2003, 164(2): 731-740.
  20. Alonso J.M., Stepanova A.N., Leisse T.J., Kim C.J., Chen H., Shinn P., Stevenson D.K., Zimmerman J., Barajas P., Cheuk R., Gadrinab C., Heller C., Jeske A., Koesema E., Meyers C.C., Parker H., Prednis L., Ansari Y., Choy N., Deen H., Geralt M., Hazari N., Hom E., Karnes M., Mulholland C., Ndubaku R., Schmidt I., Guzman P., Aguilar-Henonin L., Schmid M., Weigel D., Carter D.E., Marchand T., Risseeuw E., Brogden D., Zeko A., Crosby W.L., Berry C.C., Ecker J.R. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301: 653-657 CrossRef
  21. Kurowska M., Daszkowska-Golec A., Gruszka D., Marzec M., Szurman M., Szarejko I., Maluszynski M. TILLING — a shortcut in functional genomics. J. Appl. Genet., 2011, 52(4): 371-390 CrossRef
  22. Henikoff S., Comai L. Single-nucleotide mutations for plant functional genomics. Annu. Rev. Plant Biol., 2003, 54: 375-401 CrossRef
  23. Talamè V., Bovina R., Sanguineti M.C., Tuberosa R., Lundqvist U., Salvi S. TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol. J., 2008, 6: 477-485 CrossRef
  24. Caldwell D.G., McCallum N., Shaw P., Muehlbauer G.J., Marshall D.F., Waugh R. A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J., 2004, 40: 143-150 CrossRef
  25. Sadiq M.F., Owais W.M. Mutagenicity of sodium azide and its metabolite azidoalanine in Drosophila melanogaster. Mutat. Res., 2000, 469: 253-257 CrossRef
  26. Rogers C., Wen J., Chen R., Oldroyd G. Deletion-based reverse genetics in Medicago truncatula. Plant Physiol., 2009, 151: 1077-1086 CrossRef
  27. Li X., Song Y., Century K., Straight S., Ronald P., Dong X., Lassner M., Zhang Y. A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J., 2001, 27: 235-242 CrossRef
  28. Achaz G., Netter P., Coissac E. Study of intrachromosomal duplications among the eukaryote genomes. Mol. Biol. Evol., 2001, 18: 2280-2288 CrossRef
  29. Jander G., Barth C. Tandem gene arrays: a challenge for functional genomics. Trends Plant Sci., 2007, 12: 203-210 CrossRef
  30. Gottwald S., Bauer P., Komatsuda T., Lundqvist U., Stein N. TILLING in the two-rowed barley cultivar «Barke» reveals preferred sites of functional diversity in the gene HvHox1. BMC Res. Notes, 2009, 2: 258 CrossRef
  31. Perry J.A., Wang T.L., Welham T.J., Gardner S., Pike J.M., Yoshida S., Parniske M. A TILLING reverse genetics tool and a web accessible collection of mutants of the legume Lotus japonicus. Plant Physiol., 2003, 131: 866-871 CrossRef
  32. Stephenson P., Baker D., Girin T., Perez A., Amoah S., King G.J., Østergaard L. A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol., 2010, 10: 62 CrossRef
  33. Dalmais M., Schmidt J., Le Signor C., Moussy F., Burstin J., Savois V., Aubert G., Brunaud V., de Oliveira Y., Guichard C., Thompson R., Bendahmane A. UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol., 2008, 9: R43 CrossRef
  34. Till B.J., Cooper J., Tai T.H., Colowit P., Greene E.A., Henikoff S., Comai L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol., 2007, 7: 19 CrossRef
  35. Chawade A., Sikora P., Bräutigam M., Larsson M., Vivekanand V., Nakash M.A., Chen T., Olsson O. Development and characterization of an oat TILLING-population and identification of mutations in lignin and b-glucan biosynthesis genes. BMC Plant Biol., 2010, 10: 86 CrossRef
  36. Himelblau E., Gilchrist E.J., Buono K., Bizzell C., Mentzer L., Vogelzang R., Osborn T., Amasino R.M., Parkin I.A., Haughn G.W. Forward and reverse genetics of rapid-cycling Brassica oleracea. Theor. Appl. Genet., 2009, 118: 953-961 CrossRef
  37. Underhill P.A., Jin L., Lin A.A., Mehdi S.Q., Jenkins T., Vollrath D., Davis R.W., Cavalli-Sforza L.L., Oefner P.J. Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res., 1997, 7(10): 996-1005 CrossRef
  38. Colbert T., Till B.J., Tompa R., Reynolds S., Steine M.N., Yeung A.T., McCallum C.M., Comai L., Henikoff S. High-throughput screening for induced point mutations. Plant Physiol., 2001, 126: 480-484 CrossRef
  39. Oleykowski C.A., Bronson Mullins C.R., Godwin A.K., Yeung A.T. Mutation detection using a novel plant endonuclease. Nucl. Acids Res., 1998, 26: 4597-4602 CrossRef
  40. Till B.J., Burtner C., Comai L., Henikoff S. Mismatch cleavage by single-strand specific nucleases. Nucl. Acids Res., 2004, 32: 2632-2641 CrossRef
  41. Triques K., Sturbois B., Gallais S., Dalmais M., Chauvin S., Clepet C., Aubourg S., Rameau C., Caboche M., Bendahmane A. Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant J., 2007, 51(6): 1116-1125 CrossRef
  42. Triques K., Piednoir E., Dalmais M., Schmidt J., Le Signor C., Sharkey M., Caboche M., Sturbois B., Bendahmane A. Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and Eco-TILLING in plants. BMC Mol. Biol., 2008, 9: 42 CrossRef
  43. Minoia S., Petrozza A., D’Onofrio O., Piron F., Mosca G., Sozio G., Cellini F., Bendahmane A., Carriero F. A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res. Notes, 2010, 3: 69 CrossRef
  44. Niedringhaus T.P., Milanova D., Kerby M.B., Snyder M.P., Barron A.E. Landscape of next-generation sequencing technologies. Anal. Chem., 2011, 83: 4327-4341 CrossRef
  45. Pareek C.S., Smoczynski R., Tretyn A. Sequencing technologies and genome sequencing. J. Appl. Genet., 2011, 52: 413-435 CrossRef
  46. Radutoiu S., Madsen L.H., Madsen E.B., Felle H.H., Umehara Y., Grønlund M., Sato S., Nakamura Y., Tabata S., Sandal N., Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003, 425: 585-592 CrossRef
  47. Limpens E., Franken C., Smit P., Willemse J., Bisseling T., Geurts R. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 2003, 302(5645): 630-633 CrossRef
  48. Zhukov V., Radutoiu S., Madsen L.H., Rychagova T., Ovchinnikova E., Borisov A., Tikhonovich I., Stougaard J. The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development. Mol. Plant Microbe Interact., 2008, 21(12): 1600-1608 CrossRef
  49. Razumovskaya Z.G. Mikrobiologiya, 1937, 6(3): 321-328.
  50. Lie T.A. Temperature-dependent root-nodule formation in pea cv. Iran. Plant Soil, 1971, 34: 751-752 CrossRef
  51. Kozik A., Geurts R., Heidstra R., Kulikova O., Ellis T.H.N., Bisseling T., LaRue T., Weeden N. Detailed map of the sym2 region of pea linkage group I. In: Fine mapping of the sym2 locus of pea linkage group I. PhD thesis. Wageningen University. Wageningen, 1996.
  52. Zhukov V.A., Sulima A.S., Porozov Y.B., Borisov A.Y., Tikhonovich I.A. Polymorphism in gene sequence of LysM receptor kinase is associated with Sym2-controlled nodulation in pea (Pisum sativum L.). Proc. 18thInt. Conf. on Nitrogen Fixation. Myazaki, Japan, 2013: 76.
  53. Sim N.-L., Kumar P., Hu J., Henikoff S., Schneider G., Pauline C. Ng. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucl. Acids Res., 2012, 40(Web Server issue): W452-W457 CrossRef

back