doi: 10.15389/agrobiology.2015.3.361eng

UDC 632.937:579.64:579.26

Supported by the Ministry of Education and Sciences of the Russian Federation (Agreement № 14.604.21.0024, RFMEFI60414X0024).

EFFICIENCY OF BATSIKOL BASED ON A NEW STRAIN
Bacillus thuringiensis var. darmstadiensis № 25 FOR BIOCONTROL
OF PHYTOPHAGOUS PESTS AND PHYTOPATHOGENS

S.D. Grishechkina, V.P. Ermolova

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail: svetagrishechkina@mail.ru

Received March 30, 2015

 

Environmentally friendly products are one of the most important tasks in agriculture. Microorganisms of different origin are used for the production of biological preparations pathogenic to pests. The preparations based on entomopathogenic bacteria Bacillus thuringiensis (Bt) are of the most interest due to their selective action, safety for humans, warm-blooded animals, beneficial insects and the environment. The departmental collection of beneficial microorganisms for agricultural purposes (RCAM collection, St. Petersburg) stores B. thuringiensis with known cultural, morphological, physiological, biochemical, technological, insecticidal and other properties. One of the priorities of collection strains is B. thuringiensis var. darmstadiensis (BtH10) № 25, which bases the preparation Batsikol and has a specific effect on Coleoptera and antifungal activity against a number of pathogenic fungi. Strain BtH10 № 25 deposited in the RCAM collection under registration number 01490 RCAM (patent № 2514023, 2014). To obtain qualitative preparation with a maximum accumulation of exotoxin and high titer we need to create optimal conditions for cultivation and improve the formulation of nutrient media for microorganisms-producers of biological preparations. The objective of our research was to choose nutrient medium, work out cultivation regimes (aeration, temperature, pH, dosage, form, and age of inoculum) of strain BtH10 № 25, and to determine its technological effectiveness, insecticidal and antifungal activity as well as the extent of exotoxin formation in test objects. The best results were obtained in the pea flour medium, instead of soy flour: spores titer in liquid culture was 4×109/ml, activity to housefly (exotoxin content) was LC50 3.1 mkl/g feed, the inhibitory activity was 70.0 % to Fusarium oxysporum and 75.0 % to Botrytis cinerea. It was found that barley, oat flour, and mixtures of soybean and barley flour could be used for the preparation production. The optimal development of the culture was observed at a ratio of medium volume-to-air from 1:30 to 1:15, and pH of the nutrient medium 6.65-7.20. Liquid culture media and the spore culture rinse can be used as an inoculum. Laboratory and field evaluation of preparation revealed its high efficiency against phytophagous pests (79-100 %) and plant pathogens(70-90 %).Thus, the activity of the strain B. thuringiensis var. darmstadiensis № 25 against the larvae of beetles on different crops is 1.3-1.4 times higher than the activity of strain B. thuringiensis var. darmstadiensis № 109.

Keywords: Bacillus thuringiensis, strain, batcikol, nutrient solutions, efficiency.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Kandybin N.V., Patyka T.I., Ermolova V.P., PatykaV.F. Mikrobiokontrol' chislennosti nasekomykh i ego dominanta Bacillus thuringiensis [Microbiocontrol of insects and Bacillus thuringiensis as its dominant]. St. Petersburg—Pushkin, 2009.
  2. Smirnov O.V., Grishechkina S.D. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 3: 123-126 (http://www.agrobiology.ru/3-2011smirnov-eng.html).
  3. Zhong C.H., Ellar D.J., Bishop A., Jonson C., Lin S.S., Hart E.R. Characterization of Bacillus thuringiensis delta-endotoxin which is toxic to insects in three orders. J. Invertebrate Pathol., 2000, 76: 131-139.
  4. Yoshida S., Hiradate S., Tsukamoto T., Hatakeda K., Shirata A. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens Rc-2 isolated from mulberry leaves. Phythopathol., 2001, 91: 181-187 CrossRef
  5. Knaak N., Rohr A., Fiuza L. In vitro effect of Bacillus thuringiensis strains and Cry proteins in phytopathogenic fungi of paddy rice-field. Brazil. J. Microbiol., 2007, 38(3): 526-530 CrossRef
  6. Mojica-Marin V., Luna-Olvera H., Sandoval-Coronado C., Pereyra-Abferer B., Moreles-Ramos L., Hernandez-Luna C., Alvardo-Gomez O. Antagonistic activity of selected strains of Bacillus thuringiensis against Rhizoctonia solani of chili pepper. Afr. J. Biotechnol., 2008, 7(9): 1271-1276.
  7. Heydari A., Pessarakli M. A review on biological control of fungal plant pathogens using microbial antagonists. J. Biol. Sci., 2010, 1(4): 273-290 CrossRef
  8. Pane C., Villecco D., Campanile F., Zaccardelli M. Novel strains of Bacillus, isolated from compost and compost-amended soils, as biological control agents against soil-borne phytopathogenic fungi. Biol. Sci. Technol., 2012, 22(12): 1373-1388 CrossRef
  9. Akram W., Mahboot A., Javed A. Bacillus thuringiensis strain 199 can induce systemic resistance in tomato agains Fusarium wilt. Eur. J. Microbiol. Immunol., 2013, 3: 275-280 CrossRef
  10. Tao A., Pang F., Huang S., Yu G., Li B., Wang T. Characterisation of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Sci. Tecnol., 2014, 24(8): 901-924 CrossRef
  11. Arora N., Agrawal N., Yerramilli V., Bhatnagar R.K. Biology and applications of Bacillus thuringiensis in intergrated pest anagement. Integated Management of Plant Pest and Distasis, 2007, 01: 227-244 CrossRef
  12. Liu Q., Roh J.Y., Wang Y., Choi J.Y., Tao X.Y., Kim J.S., Je Y.H. Construction and characterisation of an antifungal recombinant Bacillus thuringiensis with an expanded host spectrum. J. Microbiol., 2012, 50(5): 874-877 CrossRef
  13. Raddadi N., Cherif A., Ouzari H., Marzorati M., Brusetti L., Boudabous A., Daffonchio D. Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Annals of Microbiology, 2007, 57(4): 481-494 CrossRef
  14. Narayanasamy P. Mechanisms of action of bacterial biological control agents. In: Biological management of diseases of crops. Progress in Biological Control (Book 15). Springer, 2013: 295-429 CrossRef
  15. Gulii V.V., Leskova A.Ya., Murza V.I. Shternshis M.V., Ivanov G.M. Informatsionnyi byulleten' VPS MOBB, 1986, 7: 17-45.
  16. Rakhmanin Yu.A., Novikov S.M., Rumyantsev G.I., Ivanov S.I. Gigiena i sanitariya, 2006, 5: 10-13.
  17. Siegel J.P. The mammalian safety Bacillus thuringiensis based insecticides. J. Invertebrate Pathol., 2001, 77: 13-21 CrossRef
  18. Kandybin N.V., Smirnov O.V., Barbashova N.M. Materialy Vserossiiskogo nauchno-proizvodstvennogo soveshchaniya (Krasnodar, 1994) [Proc. All-Russian Meeting (Krasnodar, 1994). Part 2]. Pushchino, 1994, chast' 2: 179-181.
  19. Grishechkina S.D., Smirnov O.V., Kandybin N.V. Mikologiya i fitopatologiya, 2002, 36(1): 58-62.
  20. Ermolova V.P., Kandybin N.V. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Biologicheskaya zashchita rastenii — osnova stabilizatsii agroekosistem» [Proc. Int. Conf. «Biological protection of plants as a basic approach to stabilization of agro-ecosystems». Issue 4]. Krasnodar, 2006, vypusk 4: 255-256.
  21. Kandybin N.V., Ermolova V.P., Stus' A.A. Materialy Vsesoyuznoi konferentsii po mikrobnym sredstvam zashchity rastenii [Proc. All-Union Conf. on microbial biologicals for plant protection]. Velegozh, 1989: 310.
  22. Tikhonovich I.A., Grishechkina S.D., Ermolova V.P., Romanova T.A. Shtamm Bacillus thuringiensis var. darmstadiensis № 25 v kachestve sredstva kompleksnogo vozdeistviya na vrednykh zhestkokrylykh nasekomykh i fitopatogennye griby. Patent. St. Petersburg, GNU VNII sel'skokhozyaisvtennoi mikrobiologii RU № 2514023 S1, 2014. Zayavl. 26.12.12. Opubl. 27.04.14. Byul. № 12 [Bacillus thuringiensis var. darmstadiensis strain № 25 as a biologicals for complex control of Coleoptera harmful insects and harmful fungi. Patent RU № 2514023 С1, 2014. Appl. 26.12.12. Publ. 27.04.14. Bul. № 12].
  23. Grishechkina S.D., Ermolova V.P., Minina G.N., Safronova V.I., Bologova E.V. Metodika. Kollektsiyashtammovbakteriisimbiontovvrednykhnasekomykhigryzunov, prigodnykhdlyabiokontrolyachislennostivrediteleisel'skokhozyaistvennykhrastenii[Collection of bacterial symbionts of harmful insects and rodents, suitable for biocontrol of crop pests]. St. Petersburg, 2014.
  24. Metody eksperimental'noi mikologii /Pod redaktsiei V.I. Bilai [Methods of experimental mycology. V.I. Bilai (ed.)]. Kiev, 1982.
  25. Abbott W.S. A method for computing the effectiveness of insecticide. Econom.Entomol., 1925, 18: 265-287 CrossRef
  26. Dospekhov B.A. Metodika polevogo opyta [Methods of field trials]. Moscow, 1973.
  27. Dregval' O.A., Cherevach N.V., Vinnikov A.I. Visnik Dnipropetrovs'kogo universitetu. Biologiya, ekologiya, 2010, 1(18): 15-19.
  28. Icgen Y., Icgen B., Ozcengiz G. Regulation of crystal protein biosynthesis by Bacillus thuringiensis: I. Effects of mineral elements and pH. Res. Microbiol., 2002, 153(9): 599-604.
  29. Barbashova N.M., Cheverda M.G. V sbornike: Bakterial'nye sredstva i metody bor'by s nasekomymi i gryzunami [In: Bacterial biologicals and methods for controlling insects and rodents]. Leningrad, 1972: 37-41.

back