PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi:10.15389/agrobiology.2024.2.328eng

UDC: 636.2:619:575:579

Acknowledgements:
Authors would like to thank Marsel Kabilov for sample sequencing and raw data preprocessing (Institute of Chemical Biology and Fundamental Medicine SB RAS)
Carried out within the framework of the Russian Foundation for Basic Research (grant № 20-416-660004) “Molecular genetic and phenotypic characteristics of the reproductive tract microbiota of cattle”

 

SEQUENCING OF THE 16S rRNA GENE V3-V4 REGION TO DETERMINE THE COMPOSITION AND RELATIONSHIPS OF THE MICROBIOTA DURING INFLAMMATION OF THE UDDER AND REPRODUCTIVE TRACT IN COWS (Bos taurus)

O.V. Sokolova , N.A. Bezborodova, M.V. Bytov, V.D. Zubareva,
I.A. Shkuratova, O.S. Zaitseva, N.A. Martynov

Ural Federal Agrarian Scientific Research Centre, Ural Branch RAS, 112a, ul. Belinskogo, Ekaterinburg, 620142 Russia, е-mail: nauka_sokolova@mail.ru (✉ corresponding author), n-bezborodova@mail.ru, bytovmaks@mail.ru, zzub97@mail.ru, info@urnivi.ru, bodrova-zaizeva@mail.ru, martynov_kolya98@mail.ru

ORCID:
Sokolova O.V. orcid.org/0000-0002-1169-4090
Zubareva V.D. orcid.org/0000-0003-0284-0276
Bezborodova N.A. orcid.org/0000-0003-2793-5001
Shkuratova I.A. orcid.org/0000-0003-0025-3545
Bytov M.V. orcid.org/0000-0002-3622-3770
Martynov N.A. orcid.org/0000-0001-9251-0056

Final revision received June 14, 2022
Accepted July 8, 2022

 

Inflammatory diseases of the mammary gland and reproductive tract of cattle cause the greatest economic damage to dairy industry. 16S rRNA gene sequencing has significantly expanded the knowledge of microbiomes and uncultured in vitro bacteria that were not previously known to exist. This paper aims to expand the understanding of the composition of the microbiota of the reproductive tract and mammary gland of cattle with the identification of non-culturable microorganisms. New etiologically significant pathogens were identified for the first time. The role of microbiota of these animal loci in the development of inflammatory diseases was established. Our goal was to determine the common bacterial etiology of the inflammatory process in the mammary gland and reproductive tract of cattle. 16S rRNA gene variable regions sequencing was carried out in order to compare the composition of microbiota in mammary gland and the reproductive tract of cattle with inflammation. Four experimental groups were formed from each farm in five districts of the Sverdlovsk Province, animals without signs of inflammation of the mammary gland and reproductive tract (NP, group 1); animals with inflammation of the mammary gland, but without inflammation of the reproductive tract (M, group 2); animals with inflammation of the reproductive tract, but without inflammation of the mammary gland (E, group 3); animals with inflammation of the mammary gland and reproductive tract (EM, group 4). Samples of biological material (mammary gland secretion, cervical swabs) were obtained from each cow of all experimental groups; 16S rRNA gene sequencing was used for further studies. Sequence analysis of the 16S rRNA variable regions showed that the vast majority of identified ОТU belong to the Bacteria domain, the rest belong to the Euryarchaeota type of the Archaea domain (0.38 % in mammary gland secretion samples, 0.44 % in cervical swabs samples). In mammary gland secretions, we reveled 19 bacterial types, including 43 classes, 85 orders, 165 families, and 484 genera. Half of the bacterial ОТU are the Firmicutes phylum (680 ОТU, 51.7 %), while Actinobacteria and Bacteroidetes are the second and third largest phyla (14.5 % and 11.3 %, respectively). Members of 22 bacterial phyla were found in cervical swabs, including 50 classes, 93 orders, 172 families and 365 genera. The predominant bacterial phylum is the Firmicutes phylum (876 ОТU, 55.3 %), the second and third largest phyla are the Bacteroidetes (13.3 %) and the Actinobacteria (11.6 %), respectively. By the 16S rRNA gene sequencing, we revealed bacteria of the class Clostridia and the genus Facklamia not detectable by cultural methods. This confirms clinical significance of the 16S rRNA gene sequencing method for clarifying etiological agents in the case of unculturable or difficult-to-culture bacteria. We revealed the interrelation between the microbiota of the mammary gland and the reproductive tract during inflammatory processes. The data contribute to a deeper understanding of the role of bacterial microbiota in the etiology and pathogenesis of inflammatory diseases of the mammary gland and the reproductive tract of animals.  

Keywords: Holstein cattle, 16S rRNA, microbiota, mammary gland, reproductive tract.

 

REFERENCES

  1. Owens C.E., Daniels K.M., Ealy A.D., Knowlton K.F., Cockrum R.R. Graduate student literature review: potential mechanisms of interaction between bacteria and the reproductive tract of dairy cattle. Journal of Dairy Science, 2020, 103(11): 10951-10960 CrossRef
  2. Taponen S., McGuinness D., Hiitiö H., Simojoki H., Zadoks R., Pyörälä S. Bovine milk microbiome: a more complex issue than expected. Veterinary Research, 2019, 50(1): 44 CrossRef
  3. Derakhshani H., Fehr K.B., Sepehri S., Francoz D., De Buck J., Barkema H.W., Plaizier J.C., Khafipour E. Invited review: Microbiota of the bovine udder: contributing factors and potential implications for udder health and mastitis susceptibility. Journal of Dairy Science, 2018, 101(12): 10605-10625 CrossRef
  4. Sokolova O.V., Bezborodova N.A., Lysova Y.Y., Pechura E.V. Characteristics of species composition, biochemical and pathogenic nature of the microbiota of mammary gland and the reproductive tract in dairy cows. E3S Web of Conferences, 2021, 282: 03017 CrossRef
  5. Vakkamäki J., Taponen S., Heikkilä A-M., Pyörälä S. Bacteriological etiology and treatment of mastitis in Finnish dairy herds. Acta Veterinaria Scandinavica, 2017, 59(1): 33 CrossRef
  6. Ault T.B., Clemmons B.A., Reese S.T., Dantas F.G., Franco G.A., Smith T.P.L., Edwards J.L., Myer P.R., Pohler K.G. Bacterial taxonomic composition of the postpartum cow uterus and vagina prior to artificial insemination. Journal of Animal Science, 2019, 97(10): 4305-4313 CrossRef
  7. Santos T.M., Gilbert R.O., Bicalho R.C. Metagenomic analysis of the uterine bacterial microbiota in healthy and metritic postpartum dairy cows. Journal of Dairy Science, 2011, 94(1): 291-302 CrossRef
  8. Jeon S.J., Vieira-Neto A., Gobikrushanth M., Daetz R., Mingoti R.D., Parize A.C., de Freitas S.L., da Costa A.N., Bicalho R.C., Lima S., Jeong K.C., Galvao K.N. Uterine microbiota progression from calving until establishment of metritis in dairy cows. Applied and Environmental Microbiology, 2015, 81(18): 6324-6332 CrossRef
  9. Bicalho M.L.S., Santin T., Rodrigues M.X., Marques C.E., Lima S.F., Bicalho R.C. Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: associations with uterine diseases and reproductive outcome. Journal of Dairy Science, 2017, 100(4): 3043-3058 CrossRef
  10. Shkuratova I.A., Shilova E.N., Sokolova O.V., Ryaposova M.V. Veterinariya i kormlenie, 2020, 2: 54-57 CrossRef (in Russ.).
  11. Laptev G.Yu., Novikova N.I., Il’ina L.A., Yyldyrym E.A., Dumova V.A., Plemyashov K.V., Korochkina E.A. Veterinariya, 2014, 8: 33-37 (in Russ.).
  12. Oikonomou G., Addis M.F., Chassard C., Nader-Macias M.E.F., Grant I., Delbès C., Bogni C.I., Le Loir Y., Even S. Milk microbiota: what are we exactly talking about? Frontiers in Microbiology, 2020, 11: 60 CrossRef
  13. Fursova K., Sorokin A., Sokolov S., Dzhelyadin T., Shulcheva I., Shchannikova M., Nikanova D., Artemieva O., Zinovieva N., Brovko F. Virulence factors and phylogeny of Staphylococcus aureus associated with bovine mastitis in Russia based on genome sequences. Frontiers in Veterinary Science, 2020, 7: 135 CrossRef
  14. Gruninger R.J., Ribeiro G.O., Cameron A., McAllister T.A. Invited review: application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal, 2019, 13(9): 1843-1854 CrossRef
  15. Gharechahi J., Vahidi M.F., Bahram M., Han J.L., Ding X.Z., Salekdeh G.H. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. The ISME Journal, 2021, 15(4): 1108-1120 CrossRef
  16. Ong C.T., Turni C., Blackall P.J., Boe-Hansen G., Hayes B.J., Tabor A.E. Interrogating the bovine reproductive tract metagenomes using culture-independent approaches: a systematic review. Animal Microbiome, 2021, 3(1): 41 CrossRef
  17. Dahlberg J., Sun L., Persson Waller K., Östensson K., McGuire M., Agenäs S., Dicksved J. Microbiota data from low biomass milk samples is markedly affected by laboratory and reagent contamination. PLoS ONE, 2019, 14(6): e0218257 CrossRef
  18. Hoque M.N., Istiaq A., Rahman M.S., Islam M.R., Anwar A., Siddiki A.M.A.M.Z., Sultana M., Crandall K.A., Hossain M.A. Microbiome dynamics and genomic determinants of bovine mastitis. Genomics, 2020, 112(6): 5188-5203 CrossRef
  19. Ong C.T., Ross E.M., Boe-Hansen G., Turni C., Hayes B.J., Fordyce G., Tabor A.E. Adaptive sampling during sequencing reveals the origins of the bovine reproductive tract microbiome across reproductive stages and sexes. Scientific Reports, 2022, 12(1): 15075 CrossRef
  20. Anahtar M.N., Bowman B.A., Kwon D.S. Efficient nucleic acid extraction and 16S rRNA gene sequencing for bacterial community characterization. Journal of Visualized Experiments: JoVE, 2016, (110): 53939 CrossRef
  21. Edgar R.C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10): 996-998 CrossRef
  22. Edgar R.C. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv, 2016: 074161 CrossRef
  23. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: architecture and applications. BMC Bioinformatics, 2019, 10: 421 CrossRef
  24. Calle M.L. Statistical analysis of metagenomics data. Genomics & Informatics, 2019, 17(1): e6 CrossRef
  25. Gryaznova M.V., Syromyatnikov M.Y., Dvoretskaya Y.D., Solodskikh S.A., Klimov N.T., Mikhalev V.I., Zimnikov V.I., Mikhaylov E.V., Popov V.N. Microbiota of cow’s milk with udder pathologies. Microorganisms, 2021, 9(9): 1974 CrossRef
  26. Liu K., Deng Z., Zhang L., Gu X., Liu G., Liu Y., Chen P., Gao J., Han B., Qu W. Biological characteristics and pathogenicity of Helcococcus ovis isolated from clinical bovine mastitis in a Chinese dairy herd. Frontiers in Veterinary Science, 2022, 8: 756438 CrossRef
  27. Wang M.L., Liu M.C., Xu J., An L.G., Wang J.F., Zhu Y.H. Uterine microbiota of dairy cows with clinical and subclinical endometritis. Frontiers in Microbiology, 2018, 9: 2691 CrossRef
  28. Kanoe M., Nouka K., Toda M. Isolation of obligate anaerobic bacteria from bovine abscesses in sites other than the liver. Journal of Medical Microbiology, 1984, 18(3): 365-369 CrossRef
  29. Francis A.M., Jeon S.J., Cunha F., Jeong K.C., Galvão K.N. Draft genome sequences of two Fusobacterium necrophorum strains isolated from the uterus of dairy cows with metritis. Microbiology Resource Announcements, 2019, 8(17): e00201-19 CrossRef
  30. Tadepalli S., Narayanan S.K., Stewart G.C., Chengappa M.M., Nagaraja T.G. Fusobacterium necrophorum: a ruminal bacterium that invades liver to cause abscesses in cattle. Anaerobe, 2009, 15(1-2): 36-43 CrossRef
  31. Polveiro R.C., Vidigal P.M.P., Mendes T.A.O., Yamatogi R.S., Lima M.C., Moreira M.A.S. Effects of enrofloxacin treatment on the bacterial microbiota of milk from goats with persistent mastitis. Scientific Reports, 2020, 10(1): 4421 CrossRef
  32. Tosaki K., Kojima H., Akama S., Ootake Y., Inoue K., Katsuda K., Shibahara T. Bovine esophageal and glossal ulceration associated with Pseudomonas aeruginosa and Fusobacterium spp. in a 10-month-old Holstein heifer. The Journal of Veterinary Medical Science, 2018, 80(7): 1174-1178 CrossRef
  33. Staton G.J., Sullivan L.E., Blowey R.W., Carter S.D., Evans N.J. Surveying bovine digital dermatitis and non-healing bovine foot lesions for the presence of Fusobacterium necrophorum, Porphyromonas endodontalis and Treponema pallidum. The Veterinary Record, 2020, 186(14): 450 CrossRef
  34. Kano R., Kobayashi Y., Nishikawa A., Murata R., Itou T., Ito T., Suzuki K., Kamata H. Next-generation sequencing analysis of bacterial flora in bovine prototheca mastitic milk. Medical Mycology Journal, 2018, 59(3): E41-E46 CrossRef
  35. Mackie R.I., Aminov R.I., Hu W., Klieve A.V., Ouwerkerk D., Sundset M.A., Kamagata Y. Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Applied and Environmental Microbiology, 2003, 69(11): 6808-6815 CrossRef
  36. Verdier-Metz I., Delbès C., Bouchon M., Pradel P., Theil S., Rifa E., Corbin A., Chassard C. Influence of post-milking treatment on microbial diversity on the cow teat skin and in milk. Dairy, 2022, 3(2): 262-276 CrossRef
  37. Verdier-Metz I., Gagne G., Bornes S., Monsallier F., Veisseire P., Delbès-Paus C., Montel M.C. Cow teat skin, a potential source of diverse microbial populations for cheese production. Applied and Environmental Microbiology, 2012, 78(2): 326-333 CrossRef
  38. Petri R.M., Vahmani P., Yang H.E., Dugan M.E.R., McAllister T.A. Changes in rumen microbial profiles and subcutaneous fat composition when feeding extruded flaxseed mixed with or before hay. Frontiers in Microbiology, 2018, 9: 1055 CrossRef
  39. Dréno B., Pécastaings S., Corvec S., Veraldi S., Khammari A., Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. Journal of the European Academy of Dermatology and Venereology: JEADV, 2018, 32(Suppl 2): 5-14 CrossRef
  40. Kumar H., Jang Y.N., Kim K., Park J., Jung M.W., Park J.E. Compositional and functional characteristics of swine slurry microbes through 16S rRNA metagenomic sequencing approach. Animals, 2020, 10(8): 1372 CrossRef
  41. Jeon S.J., Cunha F., Vieira‐Neto A., Bicalho R.C., Lima S., Bicalho M.L., Galvão K.N. Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows. Microbiome, 2017, 5: 109 CrossRef
  42. Khalil A., Batool A., Arif S. Healthy cattle microbiome and dysbiosis in diseased phenotypes. Ruminants, 2022, 2(1): 134-156 CrossRef
  43. Deng F., McClure M., Rorie R., Wang X., Chai J., Wei X., Lai S., Zhao J. The vaginal and fecal microbiomes are related to pregnancy status in beef heifers. Journal of Animal Science and Biotechnology, 2019, 10: 92 CrossRef
  44. Laptev G., Yyldyrym E., Il’ina L. Zhivotnovodstvo Rossii, 2020, 4: 42-45 (in Russ.).
  45. Chen H., Fu K., Pang B., Wang J., Li H., Jiang Z., Feng Y., Tian W., Cao R. Determination of uterine bacterial community in postpartum dairy cows with metritis based on 16S rDNA sequencing. Veterinary and Animal Science, 2020, 10: 100102 CrossRef
  46. Ueno Y., Suzuki K., Takamura Y., Hoshinoo K., Takamatsu D., Katsuda K. Antimicrobial resistance and associated genetic background of Histophilus somni isolated from clinically affected and healthy cattle. Frontiers in Veterinary Science, 2022, 9: 1040266 CrossRef
  47. Maboni G., Blanchard A., Frosth S., Stewart C., Emes R., Tötemeyer S. A distinct bacterial dysbiosis associated skin inflammation in ovine footrot. Scientific Reports, 2017, 7: 45220 CrossRef
  48. Jangid A., Fukuda S., Suzuki Y., Taylor T.D., Ohno H., Prakash T. Shotgun metagenomic sequencing revealed the prebiotic potential of a grain-based diet in mice. Scientific Reports, 2022, 12: 6748 CrossRef
  49. Zhao Y., Zhao G. Decreasing ruminal methane production through enhancing the sulfate reduction pathway. Animal Nutrition (Zhongguo xu mu shou yi xue hui), 2022, 9: 320-326 CrossRef
  50. Horvat R.T., El Atrouni W., Hammoud K., Hawkinson D., Cowden S. Ribosomal RNA sequence analysis of Brucella infection misidentified as Ochrobactrum anthropi infection. Journal of Clinical Microbiology, 2011, 49(3): 1165-1168 CrossRef
  51. Wang Y., Wang J., Li H., Fu K., Pang B., Yang Y., Liu Y., Tian W., Cao R. Characterization of the cervical bacterial community in dairy cows with metritis and during different physiological phases. Theriogenology, 2018, 108: 306-313 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)