PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.2.237eng

UDC: 636.52/.58:636.084.412

Acknowledgements:
Supported by funding from the Russian Science Foundation grant No. 23-16-00165, https://rscf.ru/project/23-16-00165/

 

CALCIUM: PHYSIOLOGICAL ROLE, SOURCES AND DOSES IN DIETS OF COMMERCIAL POULTRY (review)

K.A. Kazaev, T.N. Kholodilina1, 2, E.A. Sizova1, 2,
S.V. Lebedev1, E.V. Salnikova2

1Federal Research Centre of Biological Systems and Agrotechnologies RAS, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia, e-mail kazaevk970@gmail.com (✉ corresponding author), xolodilina@rambler.ru, Sizova.L78@yandex.ru, lsv74@list.ru;
2Orenburg State University, 13, prosp. Pobedy, Orenburg, 460018 Russia, e-mail him@mail.osu.ru

ORCID:
Kazaev K.A. orcid.org/0000-0002-0443-6990
Lebedev S.V. orcid.org/0000-0001-9485-7010
Kholodilina T.N. orcid.org/0000-0002-3946-8247
Salnikova E.V. orcid.org/0000-0002-8901-1798
Sizova E.A. orcid.org/0000-0002-6518-3632

Final revision received August 16, 2023
Accepted October 10, 2023

Calcium is extremely important in the nutrition of farm animals and poultry, so a search is underway for optimal calcium-containing ingredients with high bioavailability and low cost. The physiological effects of calcium extend to all organs and systems (G.S. Baird, 2011). In the body, 99 % of calcium are bones, and 1 % is accumulated in soft tissues (D. Oberlis et al., 2008). Nowadays, fundamental and clinical research proves that the role of calcium in physiological processes is not limited to the formation of bone structure and eggshells. The secretion and action of hormones, the permeability of cell membranes, nerve conduction, and muscle contractions depend on blood calcium concentration (R. Stehle et al., 2007; E.T. Kavalali, 2015). Calcium increases collagen synthesis, which accelerates wound healing (J. Zhang et al., 2021). Calcium ions as cofactors, affect the functions of proteins (C. Umerah et al., 2023). Apoptosis and its intensity, as well as the intercellular adhesion in connective tissue formation are calcium-dependent (D. Goll et al., 2003). The bone mass in the body is genetically programmed. If there is a lack of calcium during the growth period, the body will not reach the required parameters (K. Okuyama et al., 2022). It is logical that one of the most important pathognomonic causes of a wide range of pathologies may be calcium deficiency, impaired absorption, and low bioavailability. Generally recognized sources of calcium are its salts, e.g., carbonate, citrate, lactate, dicalcium phosphate, gluconate, sulfate and their combinations with vitamin D3, trace elements, estrogens (F. Zhang et al., 2018; B.L. Damron et al., 1995; N.S. Strelkov et al., 2008; L.P. Yang et al., 2018). The significant difference between these forms is their bioavailability. The mechanism of calcium availability from salts is known and depends on several factors, primarily the dose, the simultaneous levels of synergists and antagonists, the acidity of gastric juice, and the mode of consumption (F. Bronner, 2023; S. Christakos, 2012; R. Alexander et al., 2023). Therefore, it is necessary to carefully select the diet composition with regard to multiple interactions between its components in the gastrointestinal tract. The review covers the issues of calcium metabolism in animals and birds, the approved dietary calcium levels in Russia and abroad, the mechanisms of calcium absorption in the gastrointestinal tract, synergistic and antagonistic interactions of calcium ions with other elements, organic compounds, and metabolic pathways of calcium transformation in various body systems.

Keywords: calcium, laying hens, broiler chickens, receptors, synergists, antagonists, diet rationing.

 

REFERENCES

  1. Bohrer B.M. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends in Food Science & Technology, 2017, 65: 103-112 CrossRef
  2. Fisinin V.I. Ptitsevodstvo, 2023, 4: 4-8 (in Russ.).
  3. Maharjan P., Martinez D.A., Weil J., Suesuttajit N., Umberson C., Mullenix G., Hilton K.M., Beitia A., Coon C.N. Review: Physiological growth trend of current meat broilers and dietary protein and energy management approaches for sustainable broiler production. Animal, 2021, 15(Suppl. 1): 100284 CrossRef
  4. Toscano M.J., Dunn I.C., Christensen J.-P., Petow S., Kittelsen K., Ulrich R. Explanations for keel bone fractures in laying hens: are there explanations in addition to elevated egg production. Poultry Science, 2020, 99(9): 4183-4194 CrossRef
  5. Korver D.R. Review: Current challenges in poultry nutrition, health, and welfare. Animal, 2023, 17(Suppl. 1): 100755 CrossRef
  6. Opengart K., Bilgili S.F., Warren G.L., Baker K.T., Moore J.D. Incidence, severity, and relationship of broiler footpad lesions and gait scores of market-age broilers raised under commercial conditions in the southeastern United States. Poultry Science, 2018, 27(3): 424-432 CrossRef
  7. Pritchard A., Robison C., Nguyen T., Nielsen B.D. Silicon supplementation affects mineral metabolism but not bone density or strength in male broilers. PLoS One, 2020, 15(12): e0243007 CrossRef
  8. Muir W.I., Akter Y., Bruerton K., Groves P.J. The role of hen body weight and diet nutrient density in an extended laying cycle. Poultry Science, 2023, 102(2): 102338 CrossRef
  9. Wang H., Gao W., Huang L., Shen J.J., Liu Y., Mo C.H., Yang L., Zhu Y.W. Mineral requirements in ducks: an update. Poultry Science, 2020, 99(12): 6764-6773 CrossRef
  10. Araújo C.S.S., Hermes R.G., Bittencourt L.C., Silva C.C., Araújo L.F., Granghelli C.A., Pelissari P.H., Roque F.A., Leite B.G.S. Different dietary trace mineral sources for broiler breeders and their progenies. Poultry Science, 2019, 98(10): 4716-4721 CrossRef
  11. De Matos R. Calcium metabolism in birds. Veterinary Clinics of North America: Exotic Animal Practice,2008, 11(1): 59-82 CrossRef
  12. Baird G.S. Ionized calcium. Clinica Chimica Acta, 2011, 412(9-10): 696-701 CrossRef
  13. Wu S., Zhang F., Tang Y. A novel calcium-ion battery based on dual-carbon configuration with high working voltage and long cycling life. Adv. Sci., 2018, 5(8): 1701082 CrossRef
  14. Zhang J., Ji Y., Jiang S., Shi M., Cai W., Miron R.J., Zhang Y. Calcium-Collagen Coupling is Vital for Biomineralization Schedule. Adv. Sci., 2021, 8(15): e2100363 CrossRef
  15. Stehle R., Iorga B., Pfitzer G. Calcium regulation of troponin and its role in the dynamics of contraction and relaxation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2007, 292(3): R1125-R1128 CrossRef
  16. Kavalali E.T. The mechanisms and functions of spontaneous neurotransmitter release. Nat. Rev. Neurosci., 2015, 16(1): 5-16 CrossRef
  17. Sundararaman S.S., van der Vorst E.P.C. Calcium-Sensing Receptor (CaSR), its impact on inflammation and the consequences on cardiovascular health. Int. J. Mol. Sci., 2021, 22(5): 2478 CrossRef
  18. Klein G.L., Castro S.M., Garofalo R.P. The calcium-sensing receptor as a mediator of inflammation. Seminars in Cell & Developmental Biology, 2016, 49: 52-56 CrossRef
  19. Umerah C.O., Momodu II. Anticoagulation. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL, 2023. Available: https://pubmed.ncbi.nlm.nih.gov/32809486/. No date.
  20. Weisel J.W. Fibrinogen and fibrin. In: Advances in protein chemistry. Academic Press, 2005, vol. 70: 247-299 CrossRef
  21. Hogan P.G. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium, 2017, 63: 66-69 CrossRef
  22. Baba Y. Store-operated calcium entry into B cells regulates autoimmune inflammation. Yakugaku Zasshi, 2016, 136(3): 473-478 CrossRef
  23. Okuyama K., Shiwaku Y., Hamai R., Mizoguchi T., Tsuchiya K., Takahashi T., Suzuki O. Differentiation of committed osteoblast progenitors by octacalcium phosphate compared to calcium-deficient hydroxyapatite in Lepr-cre/Tomato mouse tibia. Acta Biomaterialiaialia, 2022, 142: 332-344 CrossRef
  24. Ganjigohari S., Ziaei N., Ramzani Ghara A., Tasharrofi S. Effects of nanocalcium carbonate on egg production performance and plasma calcium of laying hens. J. Anim. Physiol. Anim. Nutr., 2018, 102(1): e225-e232 CrossRef
  25. Rodríguez-Navarro A.B., Marie P., Nys Y., Hincke M.T., Gautron J. Amorphous calcium carbonate controls avian eggshell mineralization: a new paradigm for understanding rapid eggshell calcification. Journal of Structural Biology, 2015, 190(3): 291-303 CrossRef
  26. Ali N.S.M., Salleh A.B., Rahman R.N.Z.R.A., Leow T.C., Ali M.S.M. Calcium-induced activity and folding of a repeat in toxin lipase from antarctic pseudomonas fluorescens strain AMS8. Toxins, 2020, 12(1): 27 CrossRef
  27. Eijsink V.G., Matthews B.W., Vriend G. The role of calcium ions in the stability and instability of a thermolysin-like protease. Protein Science, 2011, 20(8): 1346-1355 CrossRef
  28. Satin L.S. Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of langerhans. Endocrine, 2000, 13(3): 251-262 CrossRef
  29. Quarles L.D. Extracellular calcium-sensing receptors in the parathyroid gland, kidney, and other tissues. Current Opinion in Nephrology and Hypertension, 2003, 12(4): 349-355 CrossRef
  30. Hardie R.C. Photosensitive TRPs. In:  Mammalian transient receptor potential (TRP) cation channels. Handbook of experimental pharmacology, vol. 223. B. Nilius, V. Flockerz  (eds.). Springer, Cham, 2014, 223: 795-826 CrossRef
  31. Riley P.A., Stratford M.R. Oxidative calcium release from catechol. Bioorganic & Medicinal Chemistry Letters, 2015, 25(7): 1453-1454 CrossRef
  32. Finkelstein M., Etkovitz N., Breitbart H. Ca2+ signaling in mammalian spermatozoa. Molecular and Cellular Endocrinology, 2020, 516: 110953 CrossRef
  33. Goll D.E., Thompson V.F., Li H., Wei W., Cong J. The calpain system. Physiological Reviews, 2003, 83(3): 731-801 CrossRef
  34. Bronner F. Mechanisms of intestinal calcium absorption.  J. Cell. Biochem., 2003, 88(2): 387-393 CrossRef
  35. Christakos S. Mechanism of action of 1,25-dihydroxyvitamin D3 on intestinal calcium absorption. Reviews in Endocrine and Metabolic Disorders, 2012, 13(1): 39-44 CrossRef
  36. Alexander R.T., Dimke H. Effects of parathyroid hormone on renal tubular calcium and phosphate handling. Acta Physiol., 2023, 238(1): e13959 CrossRef
  37. Hirata Y., Funato Y., Takano Y., Miki H. Mg2+-dependent interactions of ATP with the cystathionine-β-synthase (CBS) domains of a magnesium transporter. Journal of Biological Chemistry, 2014, 289(21): 14731-14739 CrossRef
  38. Chen Y.S., Kozlov G., Fakih R., Yang M., Zhang Z., Kovrigin E.L., Gehring K. Mg2+-ATP sensing in CNNM, a putative magnesium transporter. Structure, 2020, 28(3): 324-335.e4 CrossRef
  39. Kronbauer M., Metz V.G., Roversi K., Milanesi L.H., Rubert Rossato D., da Silva Barcelos R.C., Burger M.E. Influence of magnesium supplementation and L-type calcium channel blocker on haloperidol-induced movement disturbances. Behavioural Brain Researchearch, 2019, 374: 112119 CrossRef
  40. Houillier P. Calcium-sensing in the kidney. Current Opinion in Nephrology and Hypertension, 2013, 22(5): 566-571 CrossRef
  41. Lu S.-Y., Huang Z.-M., Huang W.-K., Liu X.-Y., Chen Y.-Y., Shi T., Zhang J. How calcium inhibits the magnesium-dependent kinase gsk3β: a molecular simulation study. Proteins, 2013, 81(5): 740-753 CrossRef
  42. Yang L.P., Dong Y.P., Luo W.T., Zhu T, Li Q.W., Zhang L.J., Kong J, Yuan Z.W., Zhao Q. Calbindin-D28K mediates 25(OH)D3/VDR-regulated bone formation through MMP13 and DMP1.  J. Cell. Biochem., 2018, 119(10): 8035-8047 CrossRef
  43. Sooy K., Kohut J., Christakos S. The role of calbindin and 1,25dihydroxyvitamin D3 in the kidney. Current Opinion in Nephrology and Hypertension, 2000, 9(4): 341-347 CrossRef
  44. Ryan J.W., Reinke D, Kogawa M, Turner A.G., Atkins G.J., Anderson P.H., Morris H.A. Novel targets of vitamin D activity in bone: action of the vitamin D receptor in osteoblasts, osteocytes and osteoclasts. Current Drug Targets, 2013, 14(14): 1683-1688 CrossRef
  45. Kiefer-Hecker B., Kienzle E., Dobenecker B. Effects of low phosphorus supply on the availability of calcium and phosphorus, and musculoskeletal development of growing dogs of two different breeds. J. Anim. Physiol. Anim. Nutr., 2018, 102(3): 789-798 CrossRef
  46. Goyal R., Jialal I. Hyperphosphatemia. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL, 2023. Available:  https://www.ncbi.nlm.nih.gov/books/NBK551586/. No date.
  47. Kazama J.J., Wakasugi M. Parathyroid hormone and bone in dialysis patients. Ther Apher Dial, 2018, 22(3): 229-235 CrossRef
  48. Portales-Castillo I., Simic P. PTH, FGF-23, Klotho and Vitamin D as regulators of calcium and phosphorus: Genetics, epigenetics and beyond. Front. Endocrinol., 2022, 13: 992666 CrossRef
  49. Beulens J.W., Booth S.L., van den Heuvel E.G., Stoecklin E., Baka A., Vermeer C. The role of menaquinones (vitamin K₂) in human health. British Journal of Nutrition, 2013, 110(8): 1357-1368 CrossRef
  50. Li W., Zhang S., Liu J., Liu Y., Liang Q. Vitamin K2 stimulates MC3T3‑E1 osteoblast differentiation and mineralization through autophagy induction. Molecular Medicine Report, 2019, 19(5): 3676-3684 CrossRef
  51. Ma M.L., Ma Z.J., He Y.L., Sun H, Yang B, Ruan B.J., Zhan W.D., Li S.X., Dong H, Wang Y.X. Efficacy of vitamin K2 in the prevention and treatment of postmenopausal osteoporosis: A systematic review and meta-analysis of randomized controlled trials. Front. Public Health, 2022, 10: 979649 CrossRef
  52. Ma H., Zhang B.L., Liu B.Y., Shi S., Gao D.Y., Zhang T.C., Shi H.J., Li Z., Shum W.W. Vitamin K2-dependent GGCX and MGP are required for homeostatic calcium regulation of sperm maturation. iScience, 2019, 14: 210-225 CrossRef
  53. Karieb S., Fox S.W. Zinc modifies the effect of phyto-oestrogens on osteoblast and osteoclast differentiation in vitro. British Journal of Nutrition, 2012, 108(10): 1736-1745 CrossRef
  54. Park K.H., Park B., Yoon D.S., Kwon S.-H., Shin D.M., Lee J.W., Lee H.G., Shim J.-H., Park J.H., Lee J.M. Zinc inhibits osteoclast differentiation by suppression of Ca2+-calcineurin-NFATc1 signaling pathway. Cell Commun. Signal., 2013, 11: 74 CrossRef
  55. You L., Chen L., Pan L., Gu W.S., Chen J.Y. Zinc finger protein 467 regulates Wnt signaling by modulating the expression of sclerostin in adipose derived stem cells. Biochemical and Biophysical Research Communications, 2015, 456(2): 598-604 CrossRef
  56. Yang X., Chen S., Zhang S., Shi S., Zong R., Gao Y., Guan B., Gamper N., Gao H. Intracellular zinc protects Kv7 K+ channels from Ca2+/calmodulin-mediated inhibition. Journal of Biological Chemistry, 2023, 299(2): 102819, CrossRef
  57. Heng M.K., Song M.K., Heng M.C. Reciprocity between tissue calmodulin and cAMP levels: modulation by excess zinc. British Journal of Dermatology, 1993, 129(3): 280-285 CrossRef
  58. Leroy C., Manen D., Rizzoli R., Lombès M., Silve C. Functional importance of Myc-associated zinc finger protein for the human parathyroid hormone (PTH)/PTH-related peptide receptor-1 P2 promoter constitutive activity. Journal of Molecular Endocrinology, 2004, 32(1): 99-113 CrossRef
  59. Minagawa M., Watanabe T., Kohno Y., Mochizuki H., Hendy G.N., Goltzman D., White J.H., Yasuda T. Analysis of the P3 promoter of the human parathyroid hormone (PTH)/PTH-related peptide receptor gene in pseudohypoparathyroidism type 1b. The Journal of Clinical Endocrinology & Metabolism, 2001, 86(3): 1394-1397 CrossRef
  60. Hegsted M., Keenan M.J., Siver F., Wozniak P. Effect of boron on vitamin D deficient rats.  Biological Trace Element Research, 1991, 28(3): 243-255 CrossRef
  61. Dupre J.N., Keenan M.J., Hegsted M, Brudevold A.M. Effects of dietary boron in rats fed a vitamin D-deficient diet. Environmental Health Perspectives, 1994, 102: 55-58 CrossRef
  62. Capati M.L.F., Nakazono A., Igawa K., Ookubo K., Yamamoto Y., Yanagiguchi K., Kubo S., Yamada S., Hayashi Y. Boron accelerates cultured osteoblastic cell activity through calcium flux.  Biological Trace Element Research, 2016, 174(2): 300-308 CrossRef
  63. Scorei I.D., Scorei R.I. Calcium fructoborate helps control inflammation associated with diminished bone health.  Biological Trace Element Research, 2013, 155(3): 315-321 CrossRef
  64. Liu A.C., Heinrichs B.S., Leach R.M. Jr. Influence of manganese deficiency on the characteristics of proteoglycans of avian epiphyseal growth plate cartilage. Poultry Science, 1994, 73(5): 663-669 CrossRef
  65. Mukhopadhyay S., Bachert C., Smith D.R., Linstedt A.D. Manganese-induced trafficking and turnover of the cis-Golgi glycoprotein GPP130. Molecular Biology of the Cell, 2010, 21(7): 1282-1292 CrossRef
  66. Vásquez-Procopio J., Osorio B., Cortés-Martínez L., Hernández-Hernández F., Medina-Contreras O., Ríos-Castro E., Comjean A., Li F., Hu Y., Mohr S., Perrimon N., Missirlis F. Intestinal response to dietary manganese depletion in Drosophila. Metallomics, 2020, 12(2): 218-240 CrossRef
  67. Fukushi J.-i., Inatani M., Yamaguchi Y., Stallcup W.B. Expression of NG2 proteoglycan during endochondral and intramembranous ossification. Dev. Dyn., 2003, 228(1): 143-148 CrossRef
  68. Dupuis Y., Porembska Z., Tardivel S., Fournier A., Fournier P. Intestinal transfer of manganese: resemblance to and competition with calcium. Reprod. Nutr. Dev., 1992, 32(5-6): 453-460 CrossRef
  69. del Carmen Toca M., Fernández A., Orsi M., Tabacco O., Vinderola G. Lactose intolerance: myths and facts. An update. Arch. Argent. Pediatr., 2022, 120(1): 59-66 CrossRef
  70. Burgos-Rubio C.N., Okos M.R., Wankat P.C. Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Biotechnol. Progress, 2000, 16(3): 305-314 CrossRef
  71. Alexandre V., Even P.C., Larue-Achagiotis C., Blouin J.M., Blachier F., Benamouzig R., Tomé D., Davila A.M. Lactose malabsorption and colonic fermentations alter host metabolism in rats. British Journal of Nutrition, 2013, 110(4): 625-631 CrossRef
  72. Canfora E.E., Jocken J.W., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, 11(10): 577-591 CrossRef
  73. Ricard-Blum S. The collagen family. Cold Spring Harbor Perspectives in Biology, 2011, 3(1): a004978 CrossRef
  74. Yu L, Wei M. Biomineralization of collagen-based materials for hard tissue repair. Int. J. Mol. Sci., 2021, 22(2): 944 CrossRef
  75. Stock S.R. The mineral-collagen interface in bone. Calcified Tissue International, 2015, 97(3): 262-280 CrossRef
  76. Kim J.-M., Lin C, Stavre Z, Greenblatt M.B., Shim J.-H. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9): 2073 CrossRef
  77. Udagawa N., Koide M., Nakamura M., Nakamichi Y., Yamashita T., Uehara S., Kobayashi Y., Furuya Y., Yasuda H., Fukuda C., Tsuda E. Osteoclast differentiation by RANKL and OPG signaling pathways. Journal of Bone and Mineral Metabolism, 2021, 39(1): 19-26 CrossRef
  78. Chappard D., Bizot P., Mabilleau G., Hubert L. Aluminum and bone: review of new clinical circumstances associated with Al3+ deposition in the calcified matrix of bone. Morphologie, 2016, 100(329): 95-105 CrossRef
  79. Sun X., Cao Z., Zhang Q., Li M., Han L., Li Y. Aluminum trichloride inhibits osteoblast mineralization via TGF-β1/Smad signaling pathway. Chemico-Biological Interactions, 2016, 244: 9-15 CrossRef
  80. Spencer H., Kramer L. Osteoporosis: calcium, fluoride, and aluminum interactions. Journal of the American College of Nutrition, 1985, 4(1): 121-128 CrossRef
  81. Morrissey J., Rothstein M., Mayor G., Slatopolsky E. Suppression of parathyroid hormone secretion by aluminum. Kidney International, 1983, 23(5): 699-704 CrossRef
  82. Moon J. The role of vitamin D in toxic metal absorption: a review. Journal of the American College of Nutrition, 1994, 13(6): 559-564 CrossRef
  83. Yang F., Pei R., Zhang Z., Liao J., Yu W., Qiao N., Han Q., Li Y., Hu L., Guo J., Pan J., Tang Z. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol in Vitro, 2019, 54: 310-316 CrossRef
  84. Yang F., Liao J., Yu W., Pei R., Qiao N., Han Q., Hu L., Li Y., Guo J., Pan J., Tang Z. Copper induces oxidative stress with triggered NF-κB pathway leading to inflammatory responses in immune organs of chicken. Ecotoxicology and Environmental Safety, 2020, 200: 110715 CrossRef
  85. Zofkova I., Davis M., Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol. Res., 2017, 66(3): 391-402 CrossRef
  86. Lutz W., Burritt M.F., Nixon D.E., Kao P.C., Kumar R. Zinc increases the activity of vitamin D-dependent promoters in osteoblasts. Biochemical and Biophysical Research Communications, 2000, 271(1): 1-7 CrossRef
  87. Arnesano F., Banci L., Bertini I., Fantoni A., Tenori L., Viezzoli M.S. Structural interplay between calcium (II) and copper (II) binding to S100A13 protein. Angewandte Chemie International Edition, 2005, 44(39): 6341-6344 CrossRef
  88. Lertsuwan K., Wongdee K., Teerapornpuntakit J., Charoenphandhu N. Intestinal calcium transport and its regulation in thalassemia: interaction between calcium and iron metabolism. J. Physiol. Sci., 2018, 68(3): 221-232 CrossRef
  89. González-Domínguez Á., Visiedo-García F.M., Domínguez-Riscart J., González-Domínguez R., Mateos R.M., Lechuga-Sancho A.M. Iron metabolism in obesity and metabolic syndrome. Int. J. Mol. Sci., 2020, 21(15): 5529 CrossRef
  90. Blumenthal N.C., Cosma V., Skyler D., LeGeros J., Walters M. The effect of cadmium on the formation and properties of hydroxyapatite in vitro and its relation to cadmium toxicity in the skeletal system. Calcified Tissue International, 1995, 56(4): 316-322 CrossRef
  91. Gong Z.-G., Zhao Y., Wang Z.-Y., Fan R.-F., Liu Z.-P., Wang L. Epigenetic regulator BRD4 is involved in cadmium-induced acute kidney injury via contributing to lysosomal dysfunction, autophagy blockade and oxidative stress. Journal of Hazardous Materials, 2022, 423(Pt A): 127110, CrossRef
  92. Rodriguez M, Munoz-Castaneda J.R., Almaden Y. Therapeutic use of calcitriol. Current Vascular Pharmacology, 2014, 12(2): 294-299 CrossRef
  93. Ou Y.-C., Li J.-R., Wu C.-C., Yu T.-M., Chen W.-Y., Liao S.-L., Kuan Y.-H., Chen Y.-F., Chen C.-J. Cadmium induces the expression of Interleukin-6 through Heme Oxygenase-1 in HK-2 cells and Sprague-Dawley rats. Food and Chemical Toxicology, 2022, 161: 112846 CrossRef
  94. Kayama F., Yoshida T., Elwell M.R., Luster M.I. Role of tumor necrosis factor-alpha in cadmium-induced hepatotoxicity. Toxicology and Applied Pharmacology, 1995, 131(2): 224-234 CrossRef
  95. Yokota K., Sato K., Miyazaki T., Aizaki Y., Tanaka S., Sekikawa M., Kozu N., Kadono Y., Oda H., Mimura T. Characterization and function of tumor necrosis factor and interleukin-6-induced osteoclasts in rheumatoid arthritis. Arthritis Rheumatol., 2021, 73(7): 1145-1154 CrossRef
  96. Liu J., Zhang L., Feng L., Xu M., Gao Y., Zhou P., Yu Z., Zhu B., An Y., Zhang H. Association between single nucleotide polymorphism (rs4252424) in TRPV5 calcium channel gene and lead poisoning in Chinese workers. Mol. Genet. Genomic Med., 2019, 7(3): e562 CrossRef
  97. Nagata K., Huang C.-S., Song J.-H., Narahashi T. Lead modulation of the neuronal nicotinic acetylcholine receptor in PC12 cells. Brain Research, 1997, 754(1-2): 21-27 CrossRef
  98. Shi J., Xue W., Zhao W.-j., Li K.-x. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats. Acta Pharmacol. Sin., 2013, 34(2): 214-220 CrossRef
  99. Kasten-Jolly J., Lawrence D.A. The cationic (calcium and lead) and enzyme conundrum. Journal of Toxicology and Environmental Health, Part B, 2018, 21(6-8): 400-413 CrossRef
  100. Liu S., Zhou H., Liu H., Ji H., Fei W., Luo E. Fluorine-contained hydroxyapatite suppresses bone resorption through inhibiting osteoclasts differentiation and function in vitro and in vivo. Cell Prolif, 2019, 52(3): e12613 CrossRef
  101. Grigorenko V.K., Bachinskiĭ P.P., Grebennikova V.F. Effect of fluorine on enzyme activity in the small intestine mucosa during absorption of sodium, potassium, monosaccharides and amino acids. Ukr. Biokhim. Zh., 1987, 59(3): 23-8.
  102. Irurre J. Jr, Casas J., Ramos I., Messeguer A. Inhibition of rat liver microsomal lipid peroxidation elicited by 2,2-dimethylchromenes and chromans containing fluorinated moieties resistant to cytochrome P-450 metabolism. Bioorganic & Medicinal Chemistry, 1993, 1(3): 219-225 CrossRef
  103. Ohyama Y., Yamasaki T. Eight cytochrome P450s catalyze vitamin D metabolism. Front. Biosci., 2004, 1(9): 3007-3018 CrossRef
  104. Tuason M.M., Arocena J.M. Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus. Applied and Environmental Microbiology, 2009, 75(22): 7079-7085 CrossRef
  105. Worcester E.M. Urinary calcium oxalate crystal growth inhibitors. Journal of the American Society of Nephrology, 1994, S46- S53 CrossRef
  106. Bertinato J., Griffin P., Huliganga E., Matias F.M.G., Dam D., Brooks S.P.J. Calcium exacerbates the inhibitory effects of phytic acid on zinc bioavailability in rats. Journal of Trace Elements in Medicine and Biology, 2020, 62: 126643 CrossRef
  107. Milman N.T. A review of nutrients and compounds, which promote or inhibit intestinal iron absorption: making a platform for dietary measures that can reduce iron uptake in patients with genetic haemochromatosis. Journal of Nutrition and Metabolism, 2020, 2020: 7373498 CrossRef
  108. Cloutier M.M., Guernsey L., Sha'afi R.I. Tannin inhibits cAMP pathways in bovine airway epithelium. American Journal of Respiratory Cell and Molecular Biology, 1994, 10(1): 106-112 CrossRef
  109. Ittah Y. Titration of tannin via alkaline phosphatase activity. Analytical Biochemistry, 1991, 192(2): 277-280 CrossRef
  110. Wang X., Wang M., Cui X., Li Z., Guo S., Gao F., Ma M., Wang Z. Antiosteoporosis effect of geraniin on ovariectomy-induced osteoporosis in experimental rats. J. Biochem. Mol. Toxicol., 2021, 35(6): 1-8 CrossRef
  111. Yin J.-Y., Nie S.-P., Li J., Li C., Cui S.-W., Xie M.-Y. Mechanism of interactions between calcium and viscous polysaccharide from the seeds of Plantago asiatica L. J. Agric. Food Chem., 2012, 60(32): 7981-7987 CrossRef
  112. Oberlis D., Kharland B.F., Skal’nyy A.V. Biologicheskaya rol’ makro- i mikroelementov u cheloveka i zhivotnykh. /Pod redaktsiey A.V. Skal’nogo [Biological role of macro- and microelements in humans and animals. A.V. Skal’nyy (ed.)]. St. Petersburg, 2008 (in Russ.).
  113. Olgun O, Aygun A. Nutritional factors affecting the breaking strength of bone in laying hens. World's Poultry Science Journal, 2016, 72(4): 821-832 CrossRef
  114. Zhao S.C., Teng X.Q., Xu D.L., Chi X., Ge M., Xu S.W. Influences of low level of dietary calcium on bone characters in laying hens. Poultry Science, 2020, 99(12): 7084-7091 CrossRef
  115. Molnar A., Maertens L., Ampe B., Buyse J., Zoons J., Delezie E. Supplementation of fine and coarse limestone in different ratios in a split feeding system: Effects on performance, egg quality, and bone strength in old laying hens. Poultry Science, 2017, 96(6): 1659-1671 CrossRef
  116. Peebles E.D. In ovo applications in poultry: a review. Poultry Science, 2018, 97(7): 2322-2338 CrossRef
  117. Matuszewski A., Łukasiewicz M., Niemiec J., Kamaszewski M., Jaworski S., Domino M., Jasiński T., Chwalibog A., Sawosz E. Calcium carbonate nanoparticles-toxicity and effect of in ovo inoculation on chicken embryo development, broiler performance and bone status. Animals, 2021, 11(4): 932 CrossRef
  118. Olgun O., Yıldız A.Ö., Cufadar Y. The effects of eggshell and oyster shell supplemental as calcium sources on performance, eggshell quality and mineral excretion in laying hens. Indian Journal of Animal Research, 2015, 49(2): 205-209 CrossRef
  119. Barshan S., Khalaji S., Hedayati M., Yari M. Influence of bone meal degelatinisation and calcium source and particle size on broiler performance, bone characteristics and digestive and plasma alkaline phosphatase activity. British Poultry Science, 2019, 60(3): 297-308 CrossRef
  120. Zhang F., Adeola O. True ileal digestibility of calcium in limestone and dicalcium phosphate are additive in diets of broiler chickens. Poultry Science, 2018, 97(12): 4290-4296 CrossRef
  121. Strelkov N.S., Konygin G.N., Rybin D.S., Pozdeev V.V., Kir’yanov N.A., Yakovenko O.V., Maksimov P.N., Elsukov E.P., Efremov Yu.Ya., Sharafutdinova D.R., Petukhov V.Yu., Gumarov G.G. Al’manakh klinicheskoy meditsiny, 2008, 17-2: 366-370 (in Russ.).
  122. Astrakhantsev A.A., Kosarev K.V., Astrakhantseva T.N. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Nauchno obosnovannye tekhnologii intensifikatsii sel’skokhozyaystvennogo proizvodstva» [Proc. Conf. «Science-based technologies for intensifying agricultural production»]. Izhevsk, 2017, vol. 3: 3-5 (in Russ.).
  123. Md Ramli S.H., Wong T.W., Naharudin I., Bose A. Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment. Carbohydrate Polymers, 2016, 152: 370-381 CrossRef
  124. Mikulenok V.G., Zhalnerovskaya A.V., Kakhnovich A.V. Polnoratsionnye kombikorma v usloviyakh promyshlennogo svinovodstva [Complete feeds for industrial pig farming]. Vitebsk, 2018 (in Russ.).
  125. Izat A.L., Adams M.H., Cabel M.C., Colberg M., Reiber M.A., Skinner J.T., Waldroup P.W. Effects of formic acid or calcium formate in feed on performance and microbiological characteristics of broilers. Poultry Science, 1990, 69(11): 1876-1882 CrossRef
  126. Song M., Jiao H., Zhao J., Wang X., Li H., Wang P., Ma B., Sun S., Lin H. Dietary supplementation of calcium propionate and calcium butyrate improves eggshell quality of laying hens in the late phase of production. The Journal of Poultry Science, 2022, 59(1): 64-74 CrossRef
  127. Alam S., Shah H.U., Khan N.A., Zeb A., Shah A.S., Magan N. Water availability and calcium propionate affect fungal population and aflatoxins production in broiler finisher feed during storage. Food Additives & Contaminants: Part A, 2014, 31(11): 1896-1903 CrossRef
  128. Hosseini E., Grootaert C., Verstraete W., Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutrition Reviews, 2011, 69(5): 245-258 CrossRef
  129. Damron B.L., Flunker L.K. Calcium supplementation of hen drinking water. Poultry Science, 1995, 74(5): 784-787 CrossRef
  130. Romijn J.A., Chinkes D.L., Schwarz J.M., Wolfe R.R. Lactate-pyruvate interconversion in blood: implications for in vivo tracer studies. American Journal of Physiology-Endocrinology and Metabolism, 1994, 266(3 Pt 1): E334-E340 CrossRef
  131. Kadyrova R.G., Kabirov G.F., Mullakhmetov R.R. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy meditsiny im. N.E. Baumana, 2013, 216: 157-164 (in Russ.).
  132. Henry M.H., Pesti G.M. An investigation of calcium citrate-malate as a calcium source for young broiler chicks. Poultry Science, 2002, 81(8): 1149-1155 CrossRef
  133. Elmore A.R. Final report of the safety assessment of L-ascorbic acid, calcium ascorbate, magnesium ascorbate, magnesium ascorbyl phosphate, sodium ascorbate, and sodium ascorbyl phosphate as used in cosmetics. International Journal of Toxicology, 2005, 24: 51-111 CrossRef
  134. Rowe D.J., Ko S, Tom X.M., Silverstein S.J., Richards D.W. Enhanced production of mineralized nodules and collagenous proteins in vitro by calcium ascorbate supplemented with vitamin C metabolites. Journal of Periodontology, 1999, 70(9): 992-999 CrossRef
  135. Cai J., Zhang Q., Wastney M.E., Weaver C.M. Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats. Experimental Biology and Medicine, 2004, 229(1): 40-45 CrossRef
  136. Weaver C.M., Martin B.R., Costa N.M., Saleeb F.Z., Huth P.J. Absorption of calcium fumarate salts is equivalent to other calcium salts when measured in the rat model. J. Agric. Food Chem., 2002, 50(17): 4974-4975 CrossRef
  137. Fernández M., Rodríguez A., Fulco M., Soteras T., Mozgovoj M., Cap M. Effects of lactic, malic and fumaric acids on Salmonella spp. counts and on chicken meat quality and sensory characteristics. Journal of Food Science and Technology, 2021, 58(10): 3817-3824 CrossRef
  138. Kholodilina T.N., Kondakova K.S., Kurilkina M.Ya., Vanshin V.V. Vestnik myasnogo skotovodstva, 2013, 4(82): 95-99 (in Russ.).
  139. Shatenshteyn A.I. Teorii kislot i osnovaniy: istoriya i sovremennoe sostoyanie: uchebnik [Theories of acids and bases: history and current state: textbook]. Moscow, 1949 (in Russ.).
  140. Hartwell J., Gill A., Nimmo G.A., Wilkins M.B., Jenkins G.I., Nimmo H.G. Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. The Plant Journal, 1999, 20(3): 333-342.
  141. Calatroni M., Moroni G., Reggiani F., Ponticelli C. Renal sarcoidosis. Journal of Nephrology rol, 2023, 36(1): 5-15 CrossRef
  142. Feldman D. Vitamin D, parathyroid hormone, and calcium: a complex regulatory network. The American Journal of Medicine, 1999, 107(6): 637-639 CrossRef
  143. Sakhaee K., Bhuket T., Adams-Huet B., Rao D.S. Meta-analysis of calcium bioavailability: a comparison of calcium citrate with calcium carbonate. Am. J. Ther., 1999, 6(6): 313-321 CrossRef
  144. Kovalevskiy V.V., Kislyakova E.M. Dostizheniya nauki i tekhniki APK, 2013, 8: 43-45 (in Russ.).
  145. Bao S.F., Windisch W., Kirchgessner M. Calcium bioavailability of different organic and inorganic dietary Ca sources (citrate, lactate, acetate, oyster-shell, eggshell, β-tri-Ca phosphate). Journal of Animal Physiology and Animal Nutrition, 1997, 78(1-5): 154-160 CrossRef
  146. Hanzlik R.P., Fowler S.C., Fisher D.H. Relative bioavailability of calcium from calcium formate, calcium citrate, and calcium carbonate. Journal of Pharmacology and Experimental Therapeutics, 2005, 313(3): 1217-1222 CrossRef
  147. Tsugawa N, Yamabe T, Takeuchi A, Kamao M, Nakagawa K, Nishijima K, Okano T. Intestinal absorption of calcium from calcium ascorbate in rats. Journal of Bone and Mineral Metabolism, 1999, 17(1): 30-36 CrossRef
  148. Fisinin V.I., Egorov I.A., Draganov I.F. F63 Kormlenie sel’skokhozyaystvennoy ptitsy [Feeding poultry]. Moscow, 2011 (in Russ.).
  149. National Research Council. Nutrient requirements of poultry: Ninth revised edition. The National Academies Press, Washington, DC, 1994 CrossRef
  150. Leeson S., Summers J.D. Commercial poultry nutrition. Third Edition. Nottingham University Press, Nottingham, 2005.
  151. EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2019 Zoonoses Report. EFSA Journal, 2021, 19(2): 6406 CrossRef
  152. Feeding standard of chicken. Agriculture Industry Standard (Recommended). Chinese Academy of Agricultural Science, 2004. Available: http://down.foodmate.net/standard/yulan.php?itemid=7410. No date.
  153. Georgievskiy V.I., Annenkov B.N., Samokhin V.T. Mineral’noe pitanie zhivotnykh [Mineral nutrition of animals]. Moscow, 1985 (in Russ.).
  154. Okolelova T.M. Kormlenie sel’skokhozyaystvennoy ptitsy [Feeding poultry]. Moscow, 1990 (in Russ.).
  155. Egorov I.A., Manukyan V.A., Lenkova T.N., Egorova T.A., Okolelova T.M., Andrianova E.N., Shevyakov A.N., Egorova T.V., Baykovskaya E.Yu., Gogina N.N., Krivoruchko L.I., Sysoeva I.G., Panin I.G., Grechishnikov V.V., Panin A.I., Kustova S.V., Afanas’ev V.A., Ponomarenko Yu.A. Rukovodstvo po kormleniyu sel’skokhozyaystvennoy ptitsy /Pod redaktsiey V.I. Fisinina, I.A. Egorova [Guide to feeding poultry. V.I. Fisinin, I.A. Egorov (eds.)]. Moscow, 2019 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)