doi: 10.15389/agrobiology.2024.2.237eng
UDC: 636.52/.58:636.084.412
Acknowledgements:
Supported by funding from the Russian Science Foundation grant No. 23-16-00165, https://rscf.ru/project/23-16-00165/
CALCIUM: PHYSIOLOGICAL ROLE, SOURCES AND DOSES IN DIETS OF COMMERCIAL POULTRY (review)
K.A. Kazaev1 ✉, T.N. Kholodilina1, 2, E.A. Sizova1, 2,
S.V. Lebedev1, E.V. Salnikova2
1Federal Research Centre of Biological Systems and Agrotechnologies RAS, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia, e-mail kazaevk970@gmail.com (✉ corresponding author), xolodilina@rambler.ru, Sizova.L78@yandex.ru, lsv74@list.ru;
2Orenburg State University, 13, prosp. Pobedy, Orenburg, 460018 Russia, e-mail him@mail.osu.ru
ORCID:
Kazaev K.A. orcid.org/0000-0002-0443-6990
Lebedev S.V. orcid.org/0000-0001-9485-7010
Kholodilina T.N. orcid.org/0000-0002-3946-8247
Salnikova E.V. orcid.org/0000-0002-8901-1798
Sizova E.A. orcid.org/0000-0002-6518-3632
Final revision received August 16, 2023
Accepted October 10, 2023
Calcium is extremely important in the nutrition of farm animals and poultry, so a search is underway for optimal calcium-containing ingredients with high bioavailability and low cost. The physiological effects of calcium extend to all organs and systems (G.S. Baird, 2011). In the body, 99 % of calcium are bones, and 1 % is accumulated in soft tissues (D. Oberlis et al., 2008). Nowadays, fundamental and clinical research proves that the role of calcium in physiological processes is not limited to the formation of bone structure and eggshells. The secretion and action of hormones, the permeability of cell membranes, nerve conduction, and muscle contractions depend on blood calcium concentration (R. Stehle et al., 2007; E.T. Kavalali, 2015). Calcium increases collagen synthesis, which accelerates wound healing (J. Zhang et al., 2021). Calcium ions as cofactors, affect the functions of proteins (C. Umerah et al., 2023). Apoptosis and its intensity, as well as the intercellular adhesion in connective tissue formation are calcium-dependent (D. Goll et al., 2003). The bone mass in the body is genetically programmed. If there is a lack of calcium during the growth period, the body will not reach the required parameters (K. Okuyama et al., 2022). It is logical that one of the most important pathognomonic causes of a wide range of pathologies may be calcium deficiency, impaired absorption, and low bioavailability. Generally recognized sources of calcium are its salts, e.g., carbonate, citrate, lactate, dicalcium phosphate, gluconate, sulfate and their combinations with vitamin D3, trace elements, estrogens (F. Zhang et al., 2018; B.L. Damron et al., 1995; N.S. Strelkov et al., 2008; L.P. Yang et al., 2018). The significant difference between these forms is their bioavailability. The mechanism of calcium availability from salts is known and depends on several factors, primarily the dose, the simultaneous levels of synergists and antagonists, the acidity of gastric juice, and the mode of consumption (F. Bronner, 2023; S. Christakos, 2012; R. Alexander et al., 2023). Therefore, it is necessary to carefully select the diet composition with regard to multiple interactions between its components in the gastrointestinal tract. The review covers the issues of calcium metabolism in animals and birds, the approved dietary calcium levels in Russia and abroad, the mechanisms of calcium absorption in the gastrointestinal tract, synergistic and antagonistic interactions of calcium ions with other elements, organic compounds, and metabolic pathways of calcium transformation in various body systems.
Keywords: calcium, laying hens, broiler chickens, receptors, synergists, antagonists, diet rationing.
REFERENCES
- Bohrer B.M. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends in Food Science & Technology, 2017, 65: 103-112 CrossRef
- Fisinin V.I. Ptitsevodstvo, 2023, 4: 4-8 (in Russ.).
- Maharjan P., Martinez D.A., Weil J., Suesuttajit N., Umberson C., Mullenix G., Hilton K.M., Beitia A., Coon C.N. Review: Physiological growth trend of current meat broilers and dietary protein and energy management approaches for sustainable broiler production. Animal, 2021, 15(Suppl. 1): 100284 CrossRef
- Toscano M.J., Dunn I.C., Christensen J.-P., Petow S., Kittelsen K., Ulrich R. Explanations for keel bone fractures in laying hens: are there explanations in addition to elevated egg production. Poultry Science, 2020, 99(9): 4183-4194 CrossRef
- Korver D.R. Review: Current challenges in poultry nutrition, health, and welfare. Animal, 2023, 17(Suppl. 1): 100755 CrossRef
- Opengart K., Bilgili S.F., Warren G.L., Baker K.T., Moore J.D. Incidence, severity, and relationship of broiler footpad lesions and gait scores of market-age broilers raised under commercial conditions in the southeastern United States. Poultry Science, 2018, 27(3): 424-432 CrossRef
- Pritchard A., Robison C., Nguyen T., Nielsen B.D. Silicon supplementation affects mineral metabolism but not bone density or strength in male broilers. PLoS One, 2020, 15(12): e0243007 CrossRef
- Muir W.I., Akter Y., Bruerton K., Groves P.J. The role of hen body weight and diet nutrient density in an extended laying cycle. Poultry Science, 2023, 102(2): 102338 CrossRef
- Wang H., Gao W., Huang L., Shen J.J., Liu Y., Mo C.H., Yang L., Zhu Y.W. Mineral requirements in ducks: an update. Poultry Science, 2020, 99(12): 6764-6773 CrossRef
- Araújo C.S.S., Hermes R.G., Bittencourt L.C., Silva C.C., Araújo L.F., Granghelli C.A., Pelissari P.H., Roque F.A., Leite B.G.S. Different dietary trace mineral sources for broiler breeders and their progenies. Poultry Science, 2019, 98(10): 4716-4721 CrossRef
- De Matos R. Calcium metabolism in birds. Veterinary Clinics of North America: Exotic Animal Practice,2008, 11(1): 59-82 CrossRef
- Baird G.S. Ionized calcium. Clinica Chimica Acta, 2011, 412(9-10): 696-701 CrossRef
- Wu S., Zhang F., Tang Y. A novel calcium-ion battery based on dual-carbon configuration with high working voltage and long cycling life. Adv. Sci., 2018, 5(8): 1701082 CrossRef
- Zhang J., Ji Y., Jiang S., Shi M., Cai W., Miron R.J., Zhang Y. Calcium-Collagen Coupling is Vital for Biomineralization Schedule. Adv. Sci., 2021, 8(15): e2100363 CrossRef
- Stehle R., Iorga B., Pfitzer G. Calcium regulation of troponin and its role in the dynamics of contraction and relaxation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2007, 292(3): R1125-R1128 CrossRef
- Kavalali E.T. The mechanisms and functions of spontaneous neurotransmitter release. Nat. Rev. Neurosci., 2015, 16(1): 5-16 CrossRef
- Sundararaman S.S., van der Vorst E.P.C. Calcium-Sensing Receptor (CaSR), its impact on inflammation and the consequences on cardiovascular health. Int. J. Mol. Sci., 2021, 22(5): 2478 CrossRef
- Klein G.L., Castro S.M., Garofalo R.P. The calcium-sensing receptor as a mediator of inflammation. Seminars in Cell & Developmental Biology, 2016, 49: 52-56 CrossRef
- Umerah C.O., Momodu II. Anticoagulation. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL, 2023. Available: https://pubmed.ncbi.nlm.nih.gov/32809486/. No date.
- Weisel J.W. Fibrinogen and fibrin. In: Advances in protein chemistry. Academic Press, 2005, vol. 70: 247-299 CrossRef
- Hogan P.G. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium, 2017, 63: 66-69 CrossRef
- Baba Y. Store-operated calcium entry into B cells regulates autoimmune inflammation. Yakugaku Zasshi, 2016, 136(3): 473-478 CrossRef
- Okuyama K., Shiwaku Y., Hamai R., Mizoguchi T., Tsuchiya K., Takahashi T., Suzuki O. Differentiation of committed osteoblast progenitors by octacalcium phosphate compared to calcium-deficient hydroxyapatite in Lepr-cre/Tomato mouse tibia. Acta Biomaterialiaialia, 2022, 142: 332-344 CrossRef
- Ganjigohari S., Ziaei N., Ramzani Ghara A., Tasharrofi S. Effects of nanocalcium carbonate on egg production performance and plasma calcium of laying hens. J. Anim. Physiol. Anim. Nutr., 2018, 102(1): e225-e232 CrossRef
- Rodríguez-Navarro A.B., Marie P., Nys Y., Hincke M.T., Gautron J. Amorphous calcium carbonate controls avian eggshell mineralization: a new paradigm for understanding rapid eggshell calcification. Journal of Structural Biology, 2015, 190(3): 291-303 CrossRef
- Ali N.S.M., Salleh A.B., Rahman R.N.Z.R.A., Leow T.C., Ali M.S.M. Calcium-induced activity and folding of a repeat in toxin lipase from antarctic pseudomonas fluorescens strain AMS8. Toxins, 2020, 12(1): 27 CrossRef
- Eijsink V.G., Matthews B.W., Vriend G. The role of calcium ions in the stability and instability of a thermolysin-like protease. Protein Science, 2011, 20(8): 1346-1355 CrossRef
- Satin L.S. Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of langerhans. Endocrine, 2000, 13(3): 251-262 CrossRef
- Quarles L.D. Extracellular calcium-sensing receptors in the parathyroid gland, kidney, and other tissues. Current Opinion in Nephrology and Hypertension, 2003, 12(4): 349-355 CrossRef
- Hardie R.C. Photosensitive TRPs. In: Mammalian transient receptor potential (TRP) cation channels. Handbook of experimental pharmacology, vol. 223. B. Nilius, V. Flockerz (eds.). Springer, Cham, 2014, 223: 795-826 CrossRef
- Riley P.A., Stratford M.R. Oxidative calcium release from catechol. Bioorganic & Medicinal Chemistry Letters, 2015, 25(7): 1453-1454 CrossRef
- Finkelstein M., Etkovitz N., Breitbart H. Ca2+ signaling in mammalian spermatozoa. Molecular and Cellular Endocrinology, 2020, 516: 110953 CrossRef
- Goll D.E., Thompson V.F., Li H., Wei W., Cong J. The calpain system. Physiological Reviews, 2003, 83(3): 731-801 CrossRef
- Bronner F. Mechanisms of intestinal calcium absorption. J. Cell. Biochem., 2003, 88(2): 387-393 CrossRef
- Christakos S. Mechanism of action of 1,25-dihydroxyvitamin D3 on intestinal calcium absorption. Reviews in Endocrine and Metabolic Disorders, 2012, 13(1): 39-44 CrossRef
- Alexander R.T., Dimke H. Effects of parathyroid hormone on renal tubular calcium and phosphate handling. Acta Physiol., 2023, 238(1): e13959 CrossRef
- Hirata Y., Funato Y., Takano Y., Miki H. Mg2+-dependent interactions of ATP with the cystathionine-β-synthase (CBS) domains of a magnesium transporter. Journal of Biological Chemistry, 2014, 289(21): 14731-14739 CrossRef
- Chen Y.S., Kozlov G., Fakih R., Yang M., Zhang Z., Kovrigin E.L., Gehring K. Mg2+-ATP sensing in CNNM, a putative magnesium transporter. Structure, 2020, 28(3): 324-335.e4 CrossRef
- Kronbauer M., Metz V.G., Roversi K., Milanesi L.H., Rubert Rossato D., da Silva Barcelos R.C., Burger M.E. Influence of magnesium supplementation and L-type calcium channel blocker on haloperidol-induced movement disturbances. Behavioural Brain Researchearch, 2019, 374: 112119 CrossRef
- Houillier P. Calcium-sensing in the kidney. Current Opinion in Nephrology and Hypertension, 2013, 22(5): 566-571 CrossRef
- Lu S.-Y., Huang Z.-M., Huang W.-K., Liu X.-Y., Chen Y.-Y., Shi T., Zhang J. How calcium inhibits the magnesium-dependent kinase gsk3β: a molecular simulation study. Proteins, 2013, 81(5): 740-753 CrossRef
- Yang L.P., Dong Y.P., Luo W.T., Zhu T, Li Q.W., Zhang L.J., Kong J, Yuan Z.W., Zhao Q. Calbindin-D28K mediates 25(OH)D3/VDR-regulated bone formation through MMP13 and DMP1. J. Cell. Biochem., 2018, 119(10): 8035-8047 CrossRef
- Sooy K., Kohut J., Christakos S. The role of calbindin and 1,25dihydroxyvitamin D3 in the kidney. Current Opinion in Nephrology and Hypertension, 2000, 9(4): 341-347 CrossRef
- Ryan J.W., Reinke D, Kogawa M, Turner A.G., Atkins G.J., Anderson P.H., Morris H.A. Novel targets of vitamin D activity in bone: action of the vitamin D receptor in osteoblasts, osteocytes and osteoclasts. Current Drug Targets, 2013, 14(14): 1683-1688 CrossRef
- Kiefer-Hecker B., Kienzle E., Dobenecker B. Effects of low phosphorus supply on the availability of calcium and phosphorus, and musculoskeletal development of growing dogs of two different breeds. J. Anim. Physiol. Anim. Nutr., 2018, 102(3): 789-798 CrossRef
- Goyal R., Jialal I. Hyperphosphatemia. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL, 2023. Available: https://www.ncbi.nlm.nih.gov/books/NBK551586/. No date.
- Kazama J.J., Wakasugi M. Parathyroid hormone and bone in dialysis patients. Ther Apher Dial, 2018, 22(3): 229-235 CrossRef
- Portales-Castillo I., Simic P. PTH, FGF-23, Klotho and Vitamin D as regulators of calcium and phosphorus: Genetics, epigenetics and beyond. Front. Endocrinol., 2022, 13: 992666 CrossRef
- Beulens J.W., Booth S.L., van den Heuvel E.G., Stoecklin E., Baka A., Vermeer C. The role of menaquinones (vitamin K₂) in human health. British Journal of Nutrition, 2013, 110(8): 1357-1368 CrossRef
- Li W., Zhang S., Liu J., Liu Y., Liang Q. Vitamin K2 stimulates MC3T3‑E1 osteoblast differentiation and mineralization through autophagy induction. Molecular Medicine Report, 2019, 19(5): 3676-3684 CrossRef
- Ma M.L., Ma Z.J., He Y.L., Sun H, Yang B, Ruan B.J., Zhan W.D., Li S.X., Dong H, Wang Y.X. Efficacy of vitamin K2 in the prevention and treatment of postmenopausal osteoporosis: A systematic review and meta-analysis of randomized controlled trials. Front. Public Health, 2022, 10: 979649 CrossRef
- Ma H., Zhang B.L., Liu B.Y., Shi S., Gao D.Y., Zhang T.C., Shi H.J., Li Z., Shum W.W. Vitamin K2-dependent GGCX and MGP are required for homeostatic calcium regulation of sperm maturation. iScience, 2019, 14: 210-225 CrossRef
- Karieb S., Fox S.W. Zinc modifies the effect of phyto-oestrogens on osteoblast and osteoclast differentiation in vitro. British Journal of Nutrition, 2012, 108(10): 1736-1745 CrossRef
- Park K.H., Park B., Yoon D.S., Kwon S.-H., Shin D.M., Lee J.W., Lee H.G., Shim J.-H., Park J.H., Lee J.M. Zinc inhibits osteoclast differentiation by suppression of Ca2+-calcineurin-NFATc1 signaling pathway. Cell Commun. Signal., 2013, 11: 74 CrossRef
- You L., Chen L., Pan L., Gu W.S., Chen J.Y. Zinc finger protein 467 regulates Wnt signaling by modulating the expression of sclerostin in adipose derived stem cells. Biochemical and Biophysical Research Communications, 2015, 456(2): 598-604 CrossRef
- Yang X., Chen S., Zhang S., Shi S., Zong R., Gao Y., Guan B., Gamper N., Gao H. Intracellular zinc protects Kv7 K+ channels from Ca2+/calmodulin-mediated inhibition. Journal of Biological Chemistry, 2023, 299(2): 102819, CrossRef
- Heng M.K., Song M.K., Heng M.C. Reciprocity between tissue calmodulin and cAMP levels: modulation by excess zinc. British Journal of Dermatology, 1993, 129(3): 280-285 CrossRef
- Leroy C., Manen D., Rizzoli R., Lombès M., Silve C. Functional importance of Myc-associated zinc finger protein for the human parathyroid hormone (PTH)/PTH-related peptide receptor-1 P2 promoter constitutive activity. Journal of Molecular Endocrinology, 2004, 32(1): 99-113 CrossRef
- Minagawa M., Watanabe T., Kohno Y., Mochizuki H., Hendy G.N., Goltzman D., White J.H., Yasuda T. Analysis of the P3 promoter of the human parathyroid hormone (PTH)/PTH-related peptide receptor gene in pseudohypoparathyroidism type 1b. The Journal of Clinical Endocrinology & Metabolism, 2001, 86(3): 1394-1397 CrossRef
- Hegsted M., Keenan M.J., Siver F., Wozniak P. Effect of boron on vitamin D deficient rats. Biological Trace Element Research, 1991, 28(3): 243-255 CrossRef
- Dupre J.N., Keenan M.J., Hegsted M, Brudevold A.M. Effects of dietary boron in rats fed a vitamin D-deficient diet. Environmental Health Perspectives, 1994, 102: 55-58 CrossRef
- Capati M.L.F., Nakazono A., Igawa K., Ookubo K., Yamamoto Y., Yanagiguchi K., Kubo S., Yamada S., Hayashi Y. Boron accelerates cultured osteoblastic cell activity through calcium flux. Biological Trace Element Research, 2016, 174(2): 300-308 CrossRef
- Scorei I.D., Scorei R.I. Calcium fructoborate helps control inflammation associated with diminished bone health. Biological Trace Element Research, 2013, 155(3): 315-321 CrossRef
- Liu A.C., Heinrichs B.S., Leach R.M. Jr. Influence of manganese deficiency on the characteristics of proteoglycans of avian epiphyseal growth plate cartilage. Poultry Science, 1994, 73(5): 663-669 CrossRef
- Mukhopadhyay S., Bachert C., Smith D.R., Linstedt A.D. Manganese-induced trafficking and turnover of the cis-Golgi glycoprotein GPP130. Molecular Biology of the Cell, 2010, 21(7): 1282-1292 CrossRef
- Vásquez-Procopio J., Osorio B., Cortés-Martínez L., Hernández-Hernández F., Medina-Contreras O., Ríos-Castro E., Comjean A., Li F., Hu Y., Mohr S., Perrimon N., Missirlis F. Intestinal response to dietary manganese depletion in Drosophila. Metallomics, 2020, 12(2): 218-240 CrossRef
- Fukushi J.-i., Inatani M., Yamaguchi Y., Stallcup W.B. Expression of NG2 proteoglycan during endochondral and intramembranous ossification. Dev. Dyn., 2003, 228(1): 143-148 CrossRef
- Dupuis Y., Porembska Z., Tardivel S., Fournier A., Fournier P. Intestinal transfer of manganese: resemblance to and competition with calcium. Reprod. Nutr. Dev., 1992, 32(5-6): 453-460 CrossRef
- del Carmen Toca M., Fernández A., Orsi M., Tabacco O., Vinderola G. Lactose intolerance: myths and facts. An update. Arch. Argent. Pediatr., 2022, 120(1): 59-66 CrossRef
- Burgos-Rubio C.N., Okos M.R., Wankat P.C. Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Biotechnol. Progress, 2000, 16(3): 305-314 CrossRef
- Alexandre V., Even P.C., Larue-Achagiotis C., Blouin J.M., Blachier F., Benamouzig R., Tomé D., Davila A.M. Lactose malabsorption and colonic fermentations alter host metabolism in rats. British Journal of Nutrition, 2013, 110(4): 625-631 CrossRef
- Canfora E.E., Jocken J.W., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, 11(10): 577-591 CrossRef
- Ricard-Blum S. The collagen family. Cold Spring Harbor Perspectives in Biology, 2011, 3(1): a004978 CrossRef
- Yu L, Wei M. Biomineralization of collagen-based materials for hard tissue repair. Int. J. Mol. Sci., 2021, 22(2): 944 CrossRef
- Stock S.R. The mineral-collagen interface in bone. Calcified Tissue International, 2015, 97(3): 262-280 CrossRef
- Kim J.-M., Lin C, Stavre Z, Greenblatt M.B., Shim J.-H. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9): 2073 CrossRef
- Udagawa N., Koide M., Nakamura M., Nakamichi Y., Yamashita T., Uehara S., Kobayashi Y., Furuya Y., Yasuda H., Fukuda C., Tsuda E. Osteoclast differentiation by RANKL and OPG signaling pathways. Journal of Bone and Mineral Metabolism, 2021, 39(1): 19-26 CrossRef
- Chappard D., Bizot P., Mabilleau G., Hubert L. Aluminum and bone: review of new clinical circumstances associated with Al3+ deposition in the calcified matrix of bone. Morphologie, 2016, 100(329): 95-105 CrossRef
- Sun X., Cao Z., Zhang Q., Li M., Han L., Li Y. Aluminum trichloride inhibits osteoblast mineralization via TGF-β1/Smad signaling pathway. Chemico-Biological Interactions, 2016, 244: 9-15 CrossRef
- Spencer H., Kramer L. Osteoporosis: calcium, fluoride, and aluminum interactions. Journal of the American College of Nutrition, 1985, 4(1): 121-128 CrossRef
- Morrissey J., Rothstein M., Mayor G., Slatopolsky E. Suppression of parathyroid hormone secretion by aluminum. Kidney International, 1983, 23(5): 699-704 CrossRef
- Moon J. The role of vitamin D in toxic metal absorption: a review. Journal of the American College of Nutrition, 1994, 13(6): 559-564 CrossRef
- Yang F., Pei R., Zhang Z., Liao J., Yu W., Qiao N., Han Q., Li Y., Hu L., Guo J., Pan J., Tang Z. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol in Vitro, 2019, 54: 310-316 CrossRef
- Yang F., Liao J., Yu W., Pei R., Qiao N., Han Q., Hu L., Li Y., Guo J., Pan J., Tang Z. Copper induces oxidative stress with triggered NF-κB pathway leading to inflammatory responses in immune organs of chicken. Ecotoxicology and Environmental Safety, 2020, 200: 110715 CrossRef
- Zofkova I., Davis M., Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol. Res., 2017, 66(3): 391-402 CrossRef
- Lutz W., Burritt M.F., Nixon D.E., Kao P.C., Kumar R. Zinc increases the activity of vitamin D-dependent promoters in osteoblasts. Biochemical and Biophysical Research Communications, 2000, 271(1): 1-7 CrossRef
- Arnesano F., Banci L., Bertini I., Fantoni A., Tenori L., Viezzoli M.S. Structural interplay between calcium (II) and copper (II) binding to S100A13 protein. Angewandte Chemie International Edition, 2005, 44(39): 6341-6344 CrossRef
- Lertsuwan K., Wongdee K., Teerapornpuntakit J., Charoenphandhu N. Intestinal calcium transport and its regulation in thalassemia: interaction between calcium and iron metabolism. J. Physiol. Sci., 2018, 68(3): 221-232 CrossRef
- González-Domínguez Á., Visiedo-García F.M., Domínguez-Riscart J., González-Domínguez R., Mateos R.M., Lechuga-Sancho A.M. Iron metabolism in obesity and metabolic syndrome. Int. J. Mol. Sci., 2020, 21(15): 5529 CrossRef
- Blumenthal N.C., Cosma V., Skyler D., LeGeros J., Walters M. The effect of cadmium on the formation and properties of hydroxyapatite in vitro and its relation to cadmium toxicity in the skeletal system. Calcified Tissue International, 1995, 56(4): 316-322 CrossRef
- Gong Z.-G., Zhao Y., Wang Z.-Y., Fan R.-F., Liu Z.-P., Wang L. Epigenetic regulator BRD4 is involved in cadmium-induced acute kidney injury via contributing to lysosomal dysfunction, autophagy blockade and oxidative stress. Journal of Hazardous Materials, 2022, 423(Pt A): 127110, CrossRef
- Rodriguez M, Munoz-Castaneda J.R., Almaden Y. Therapeutic use of calcitriol. Current Vascular Pharmacology, 2014, 12(2): 294-299 CrossRef
- Ou Y.-C., Li J.-R., Wu C.-C., Yu T.-M., Chen W.-Y., Liao S.-L., Kuan Y.-H., Chen Y.-F., Chen C.-J. Cadmium induces the expression of Interleukin-6 through Heme Oxygenase-1 in HK-2 cells and Sprague-Dawley rats. Food and Chemical Toxicology, 2022, 161: 112846 CrossRef
- Kayama F., Yoshida T., Elwell M.R., Luster M.I. Role of tumor necrosis factor-alpha in cadmium-induced hepatotoxicity. Toxicology and Applied Pharmacology, 1995, 131(2): 224-234 CrossRef
- Yokota K., Sato K., Miyazaki T., Aizaki Y., Tanaka S., Sekikawa M., Kozu N., Kadono Y., Oda H., Mimura T. Characterization and function of tumor necrosis factor and interleukin-6-induced osteoclasts in rheumatoid arthritis. Arthritis Rheumatol., 2021, 73(7): 1145-1154 CrossRef
- Liu J., Zhang L., Feng L., Xu M., Gao Y., Zhou P., Yu Z., Zhu B., An Y., Zhang H. Association between single nucleotide polymorphism (rs4252424) in TRPV5 calcium channel gene and lead poisoning in Chinese workers. Mol. Genet. Genomic Med., 2019, 7(3): e562 CrossRef
- Nagata K., Huang C.-S., Song J.-H., Narahashi T. Lead modulation of the neuronal nicotinic acetylcholine receptor in PC12 cells. Brain Research, 1997, 754(1-2): 21-27 CrossRef
- Shi J., Xue W., Zhao W.-j., Li K.-x. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats. Acta Pharmacol. Sin., 2013, 34(2): 214-220 CrossRef
- Kasten-Jolly J., Lawrence D.A. The cationic (calcium and lead) and enzyme conundrum. Journal of Toxicology and Environmental Health, Part B, 2018, 21(6-8): 400-413 CrossRef
- Liu S., Zhou H., Liu H., Ji H., Fei W., Luo E. Fluorine-contained hydroxyapatite suppresses bone resorption through inhibiting osteoclasts differentiation and function in vitro and in vivo. Cell Prolif, 2019, 52(3): e12613 CrossRef
- Grigorenko V.K., Bachinskiĭ P.P., Grebennikova V.F. Effect of fluorine on enzyme activity in the small intestine mucosa during absorption of sodium, potassium, monosaccharides and amino acids. Ukr. Biokhim. Zh., 1987, 59(3): 23-8.
- Irurre J. Jr, Casas J., Ramos I., Messeguer A. Inhibition of rat liver microsomal lipid peroxidation elicited by 2,2-dimethylchromenes and chromans containing fluorinated moieties resistant to cytochrome P-450 metabolism. Bioorganic & Medicinal Chemistry, 1993, 1(3): 219-225 CrossRef
- Ohyama Y., Yamasaki T. Eight cytochrome P450s catalyze vitamin D metabolism. Front. Biosci., 2004, 1(9): 3007-3018 CrossRef
- Tuason M.M., Arocena J.M. Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus. Applied and Environmental Microbiology, 2009, 75(22): 7079-7085 CrossRef
- Worcester E.M. Urinary calcium oxalate crystal growth inhibitors. Journal of the American Society of Nephrology, 1994, S46- S53 CrossRef
- Bertinato J., Griffin P., Huliganga E., Matias F.M.G., Dam D., Brooks S.P.J. Calcium exacerbates the inhibitory effects of phytic acid on zinc bioavailability in rats. Journal of Trace Elements in Medicine and Biology, 2020, 62: 126643 CrossRef
- Milman N.T. A review of nutrients and compounds, which promote or inhibit intestinal iron absorption: making a platform for dietary measures that can reduce iron uptake in patients with genetic haemochromatosis. Journal of Nutrition and Metabolism, 2020, 2020: 7373498 CrossRef
- Cloutier M.M., Guernsey L., Sha'afi R.I. Tannin inhibits cAMP pathways in bovine airway epithelium. American Journal of Respiratory Cell and Molecular Biology, 1994, 10(1): 106-112 CrossRef
- Ittah Y. Titration of tannin via alkaline phosphatase activity. Analytical Biochemistry, 1991, 192(2): 277-280 CrossRef
- Wang X., Wang M., Cui X., Li Z., Guo S., Gao F., Ma M., Wang Z. Antiosteoporosis effect of geraniin on ovariectomy-induced osteoporosis in experimental rats. J. Biochem. Mol. Toxicol., 2021, 35(6): 1-8 CrossRef
- Yin J.-Y., Nie S.-P., Li J., Li C., Cui S.-W., Xie M.-Y. Mechanism of interactions between calcium and viscous polysaccharide from the seeds of Plantago asiatica L. J. Agric. Food Chem., 2012, 60(32): 7981-7987 CrossRef
- Oberlis D., Kharland B.F., Skal’nyy A.V. Biologicheskaya rol’ makro- i mikroelementov u cheloveka i zhivotnykh. /Pod redaktsiey A.V. Skal’nogo [Biological role of macro- and microelements in humans and animals. A.V. Skal’nyy (ed.)]. St. Petersburg, 2008 (in Russ.).
- Olgun O, Aygun A. Nutritional factors affecting the breaking strength of bone in laying hens. World's Poultry Science Journal, 2016, 72(4): 821-832 CrossRef
- Zhao S.C., Teng X.Q., Xu D.L., Chi X., Ge M., Xu S.W. Influences of low level of dietary calcium on bone characters in laying hens. Poultry Science, 2020, 99(12): 7084-7091 CrossRef
- Molnar A., Maertens L., Ampe B., Buyse J., Zoons J., Delezie E. Supplementation of fine and coarse limestone in different ratios in a split feeding system: Effects on performance, egg quality, and bone strength in old laying hens. Poultry Science, 2017, 96(6): 1659-1671 CrossRef
- Peebles E.D. In ovo applications in poultry: a review. Poultry Science, 2018, 97(7): 2322-2338 CrossRef
- Matuszewski A., Łukasiewicz M., Niemiec J., Kamaszewski M., Jaworski S., Domino M., Jasiński T., Chwalibog A., Sawosz E. Calcium carbonate nanoparticles-toxicity and effect of in ovo inoculation on chicken embryo development, broiler performance and bone status. Animals, 2021, 11(4): 932 CrossRef
- Olgun O., Yıldız A.Ö., Cufadar Y. The effects of eggshell and oyster shell supplemental as calcium sources on performance, eggshell quality and mineral excretion in laying hens. Indian Journal of Animal Research, 2015, 49(2): 205-209 CrossRef
- Barshan S., Khalaji S., Hedayati M., Yari M. Influence of bone meal degelatinisation and calcium source and particle size on broiler performance, bone characteristics and digestive and plasma alkaline phosphatase activity. British Poultry Science, 2019, 60(3): 297-308 CrossRef
- Zhang F., Adeola O. True ileal digestibility of calcium in limestone and dicalcium phosphate are additive in diets of broiler chickens. Poultry Science, 2018, 97(12): 4290-4296 CrossRef
- Strelkov N.S., Konygin G.N., Rybin D.S., Pozdeev V.V., Kir’yanov N.A., Yakovenko O.V., Maksimov P.N., Elsukov E.P., Efremov Yu.Ya., Sharafutdinova D.R., Petukhov V.Yu., Gumarov G.G. Al’manakh klinicheskoy meditsiny, 2008, 17-2: 366-370 (in Russ.).
- Astrakhantsev A.A., Kosarev K.V., Astrakhantseva T.N. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Nauchno obosnovannye tekhnologii intensifikatsii sel’skokhozyaystvennogo proizvodstva» [Proc. Conf. «Science-based technologies for intensifying agricultural production»]. Izhevsk, 2017, vol. 3: 3-5 (in Russ.).
- Md Ramli S.H., Wong T.W., Naharudin I., Bose A. Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment. Carbohydrate Polymers, 2016, 152: 370-381 CrossRef
- Mikulenok V.G., Zhalnerovskaya A.V., Kakhnovich A.V. Polnoratsionnye kombikorma v usloviyakh promyshlennogo svinovodstva [Complete feeds for industrial pig farming]. Vitebsk, 2018 (in Russ.).
- Izat A.L., Adams M.H., Cabel M.C., Colberg M., Reiber M.A., Skinner J.T., Waldroup P.W. Effects of formic acid or calcium formate in feed on performance and microbiological characteristics of broilers. Poultry Science, 1990, 69(11): 1876-1882 CrossRef
- Song M., Jiao H., Zhao J., Wang X., Li H., Wang P., Ma B., Sun S., Lin H. Dietary supplementation of calcium propionate and calcium butyrate improves eggshell quality of laying hens in the late phase of production. The Journal of Poultry Science, 2022, 59(1): 64-74 CrossRef
- Alam S., Shah H.U., Khan N.A., Zeb A., Shah A.S., Magan N. Water availability and calcium propionate affect fungal population and aflatoxins production in broiler finisher feed during storage. Food Additives & Contaminants: Part A, 2014, 31(11): 1896-1903 CrossRef
- Hosseini E., Grootaert C., Verstraete W., Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutrition Reviews, 2011, 69(5): 245-258 CrossRef
- Damron B.L., Flunker L.K. Calcium supplementation of hen drinking water. Poultry Science, 1995, 74(5): 784-787 CrossRef
- Romijn J.A., Chinkes D.L., Schwarz J.M., Wolfe R.R. Lactate-pyruvate interconversion in blood: implications for in vivo tracer studies. American Journal of Physiology-Endocrinology and Metabolism, 1994, 266(3 Pt 1): E334-E340 CrossRef
- Kadyrova R.G., Kabirov G.F., Mullakhmetov R.R. Uchenye zapiski Kazanskoy gosudarstvennoy akademii veterinarnoy meditsiny im. N.E. Baumana, 2013, 216: 157-164 (in Russ.).
- Henry M.H., Pesti G.M. An investigation of calcium citrate-malate as a calcium source for young broiler chicks. Poultry Science, 2002, 81(8): 1149-1155 CrossRef
- Elmore A.R. Final report of the safety assessment of L-ascorbic acid, calcium ascorbate, magnesium ascorbate, magnesium ascorbyl phosphate, sodium ascorbate, and sodium ascorbyl phosphate as used in cosmetics. International Journal of Toxicology, 2005, 24: 51-111 CrossRef
- Rowe D.J., Ko S, Tom X.M., Silverstein S.J., Richards D.W. Enhanced production of mineralized nodules and collagenous proteins in vitro by calcium ascorbate supplemented with vitamin C metabolites. Journal of Periodontology, 1999, 70(9): 992-999 CrossRef
- Cai J., Zhang Q., Wastney M.E., Weaver C.M. Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats. Experimental Biology and Medicine, 2004, 229(1): 40-45 CrossRef
- Weaver C.M., Martin B.R., Costa N.M., Saleeb F.Z., Huth P.J. Absorption of calcium fumarate salts is equivalent to other calcium salts when measured in the rat model. J. Agric. Food Chem., 2002, 50(17): 4974-4975 CrossRef
- Fernández M., Rodríguez A., Fulco M., Soteras T., Mozgovoj M., Cap M. Effects of lactic, malic and fumaric acids on Salmonella spp. counts and on chicken meat quality and sensory characteristics. Journal of Food Science and Technology, 2021, 58(10): 3817-3824 CrossRef
- Kholodilina T.N., Kondakova K.S., Kurilkina M.Ya., Vanshin V.V. Vestnik myasnogo skotovodstva, 2013, 4(82): 95-99 (in Russ.).
- Shatenshteyn A.I. Teorii kislot i osnovaniy: istoriya i sovremennoe sostoyanie: uchebnik [Theories of acids and bases: history and current state: textbook]. Moscow, 1949 (in Russ.).
- Hartwell J., Gill A., Nimmo G.A., Wilkins M.B., Jenkins G.I., Nimmo H.G. Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. The Plant Journal, 1999, 20(3): 333-342.
- Calatroni M., Moroni G., Reggiani F., Ponticelli C. Renal sarcoidosis. Journal of Nephrology rol, 2023, 36(1): 5-15 CrossRef
- Feldman D. Vitamin D, parathyroid hormone, and calcium: a complex regulatory network. The American Journal of Medicine, 1999, 107(6): 637-639 CrossRef
- Sakhaee K., Bhuket T., Adams-Huet B., Rao D.S. Meta-analysis of calcium bioavailability: a comparison of calcium citrate with calcium carbonate. Am. J. Ther., 1999, 6(6): 313-321 CrossRef
- Kovalevskiy V.V., Kislyakova E.M. Dostizheniya nauki i tekhniki APK, 2013, 8: 43-45 (in Russ.).
- Bao S.F., Windisch W., Kirchgessner M. Calcium bioavailability of different organic and inorganic dietary Ca sources (citrate, lactate, acetate, oyster-shell, eggshell, β-tri-Ca phosphate). Journal of Animal Physiology and Animal Nutrition, 1997, 78(1-5): 154-160 CrossRef
- Hanzlik R.P., Fowler S.C., Fisher D.H. Relative bioavailability of calcium from calcium formate, calcium citrate, and calcium carbonate. Journal of Pharmacology and Experimental Therapeutics, 2005, 313(3): 1217-1222 CrossRef
- Tsugawa N, Yamabe T, Takeuchi A, Kamao M, Nakagawa K, Nishijima K, Okano T. Intestinal absorption of calcium from calcium ascorbate in rats. Journal of Bone and Mineral Metabolism, 1999, 17(1): 30-36 CrossRef
- Fisinin V.I., Egorov I.A., Draganov I.F. F63 Kormlenie sel’skokhozyaystvennoy ptitsy [Feeding poultry]. Moscow, 2011 (in Russ.).
- National Research Council. Nutrient requirements of poultry: Ninth revised edition. The National Academies Press, Washington, DC, 1994 CrossRef
- Leeson S., Summers J.D. Commercial poultry nutrition. Third Edition. Nottingham University Press, Nottingham, 2005.
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2019 Zoonoses Report. EFSA Journal, 2021, 19(2): 6406 CrossRef
- Feeding standard of chicken. Agriculture Industry Standard (Recommended). Chinese Academy of Agricultural Science, 2004. Available: http://down.foodmate.net/standard/yulan.php?itemid=7410. No date.
- Georgievskiy V.I., Annenkov B.N., Samokhin V.T. Mineral’noe pitanie zhivotnykh [Mineral nutrition of animals]. Moscow, 1985 (in Russ.).
- Okolelova T.M. Kormlenie sel’skokhozyaystvennoy ptitsy [Feeding poultry]. Moscow, 1990 (in Russ.).
- Egorov I.A., Manukyan V.A., Lenkova T.N., Egorova T.A., Okolelova T.M., Andrianova E.N., Shevyakov A.N., Egorova T.V., Baykovskaya E.Yu., Gogina N.N., Krivoruchko L.I., Sysoeva I.G., Panin I.G., Grechishnikov V.V., Panin A.I., Kustova S.V., Afanas’ev V.A., Ponomarenko Yu.A. Rukovodstvo po kormleniyu sel’skokhozyaystvennoy ptitsy /Pod redaktsiey V.I. Fisinina, I.A. Egorova [Guide to feeding poultry. V.I. Fisinin, I.A. Egorov (eds.)]. Moscow, 2019 (in Russ.).