doi: 10.15389/agrobiology.2017.2.223eng

UDC 636.2:576.08:577.29



S. Uzbekova

Laboratory «Integrative Ovarian Biology», Research Unit «Physiology of Reproduction and Behavior», UMR INRA 85-CNRS 7247-Université de Tours, Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research (INRA), Centre Val de Loire 37380 Nouzilly France, e-mail

The authors declare no conflict of interests

Uzbekova S.

Received December 30, 2016


Oocyte quality is a capacity to be fertilized and to develop into viable embryo and this is crucial for reproductive biotechnologies in farm animals.  Technical progress and possible miniaturization of «omics» technologies made possible application of transcriptomic, proteomic and lipidomic methodologies to single oocyte, and thus to search molecular factors representing possible markers of oocyte quality. Oocyte quality is determined by its follicular environment and affects transcript, protein and lipid composition of an oocyte, which has to progress through maturation — a final step before fertilization, crucial for the acquisition of oocyte developmental competence. Here we describe the examples of «omics» analysis performed on single bovine oocytes and their neighboring cumulus cells through the comparison of the oocytes with different competence to maturate and to develop blastocyst in vitro. In particular, we focus to original technologies of proteomics and lipidomics based on mass spectrometry phenotyping of intact cells and identification of molecular biomarkers.

Keywords: «omics» technologies, single oocyte, bovine.


Full article (Rus)

Full text (Eng)



  1. Wiltbank M.C., Baez G.M., Garcia-Guerra A., Toledo M.Z., Monteiro P.L., Melo L.F., Ochoa J.C., Santos J.E., Sartori R. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology, 2016, 86(1): 239-53 CrossRef
  2. Lonergan P., Fair T., Forde N., Rizos D. Embryo development in dairy cattle. Theriogenology, 2016, 86(1): 270-277 CrossRef
  3. Sirard M.A., Gilbert I. Omics as tools for oocyte selection, in Biology and pathology of the oocyte. A. Trounson, R. Gosden, E.-R. Ursula (eds.). Cambridge University Press, 2013: 297-304.
  4. Sirard M.A., Richard F., Blondin P., Robert C. Contribution of the oocyte to embryo quality. Theriogenology, 2006, 65(1): 126-136 CrossRef
  5. Dalbies-Tran R., Mermillod P. Use of heterologous complementary DNA array screening to analyze bovine oocyte transcriptome and its evolution during in vitro maturation. Biol. Reprod., 2003, 68(1): 252-261.
  6. Angulo L., Guyader-Joly C., Auclair S., Hennequet-Antier C., Papillier P., Boussaha M., Fritz S., Hugot K., Moreews F., Ponsart C., Humblot P., Dalbies-Tran R. An integrated approach to bovine oocyte quality: from phenotype to genes. Reprod. Fertil. Dev., 2015, 28(9): 1276-1287 CrossRef
  7. Labrecque R., Fournier E., Sirard M.A. Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis. Mol. Reprod. Dev., 2016. 83(6): 558-69 CrossRef
  8. Auclair S., Uzbekov R., Elis S., Sanchez L., Kireev I., Lardic L., Dalbies-Tran R., Uzbekova S. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. American Journal of Physiology: Endocrinology and Metabolism, 2013, 304(6): E599-E613 CrossRef
  9. Misirlioglu M., Page G.P., Sagirkaya H., Kaya A., Parrish J.J., First N.L., Memili E. Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. PNAS USA, 2006, 103(50): 18905-18910 CrossRef
  10. Thelie A., Papillier P., Pennetier S., Perreau C., Traverso J.M., Uzbekova S., Mermillod P., Joly C., Humblot P., Dalbies-Tran R. Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo. BMC Developmental Biology, 2007, 7: 125 CrossRef
  11. Uzbekova S., Arlot-Bonnemains Y., Dupont J., Dalbies-Tran R., Papillier P., Pennetier S., Thelie A., Perreau C., Mermillod P., Prigent C., Uzbekov R. Spatio-temporal expression patterns of aurora kinases a, B, and C and cytoplasmic polyadenylation-element-binding protein in bovine oocytes during meiotic maturation. Biol. Reprod., 2008, 78(2): 218-233 CrossRef
  12. Bhojwani M., Rudolph E., Kanitz W., Zuehlke H., Schneider F., Tomek W. Molecular analysis of maturation processes by protein and phosphoprotein profiling during in vitro maturation of bovine oocytes: a proteomic approach. Cloning Stem Cells, 2006, 8(4): 259-274 CrossRef
  13. Arnold G.J., Frohlich T. Dynamic proteome signatures in gametes, embryos and their maternal environment. Reprod. Fertil. Dev., 2011, 23(1): 81-93 CrossRef
  14. Virant-Klun I., Leicht S., Hughes C., Krijgsveld J. Identification of maturation-specific proteins by single-cell proteomics of human oocytes. Mol. Cell. Proteomics, 2016, 15(8): 2616-2627 CrossRef
  15. Holland R.D., Wilkes J.G., Rafii F., Sutherland J.B., Persons C.C., Voorhees K.J., Lay J.O., Jr. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 1996, 10(10): 1227-1232 CrossRef
  16. Labas V., Spina L., Belleannee C., Teixeira-Gomes A.P., Gargaros A., Dacheux F., Dacheux J.L. Analysis of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry. J. Proteomics, 2015, 113: 226-243 CrossRef
  17. Labas V., Grasseau I., Cahier K., Gargaros A., Harichaux G., Teixeira-Gomes A.-P., Alves S., Bourin M., Gérard N., Blesbois E. Qualitative and quantitative peptidomic and proteomic approaches to phenotyping chicken semen. J. Proteomics, 2015, 112: 313-335 CrossRef
  18. Labas V., Spina L., Uzbekova S. Single cell MALDI-TOF mass spectrometry analysis: mammalian oocyte profiling could reflect its quality. Proc. 10th World Congress HUPO 2011. Genève, 2011: 1.
  19. Kellie J.F., Tran J.C., Lee J.E., Ahlf D.R., Thomas H.M., Ntai I., Cather-
    man A.D., Durbin K.R., Zamdborg L., Vellaichamy A., Thomas P.M., Kelleher N.L. The emerging process of Top Down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput. Mol. Biosyst., 2010, 6(9): 1532-1539 CrossRef
  20. Uzbekova S. Mass spectrometry approaches for characterization of fertility biomarkers: from tissue to single cell. Proc. 2nd Int. Symp. on Microgenomics 2016. Paris, 2016: 1.
  21. Dunning K., Russell D.L., Robker R. Lipids and oocyte developmental competence: the role of fatty acids and B-oxidation. Reproduction, 2014, 148: R15-R27 CrossRef
  22. Sanchez-Lazo L., Brisard D., Elis S., Maillard V., Uzbekov R., Labas V., Desmarchais A., Papillier P., Monget P., Uzbekova S. Fatty acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine. Mol. Endocrinol., 2014, 28(9): 1502-1521 CrossRef
  23. Ferreira C.R., Saraiva S.A., Catharino R.R., Garcia J.S., Gozzo F.C., Sanvido G.B., Santos L.F., Lo Turco E.G., Pontes J.H., Basso A.C., Bertolla R.P., Sartori R., Guardieiro M.M., Perecin F., Meirelles F.V., Sangalli J.R., Eberlin M.N. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res., 2010, 51(5): 1218-1227 CrossRef
  24. Bertevello P., Ghazouani O., Elis S., Banliat C., Teixeira Gomes A.-P., Maillard V., Labas V., Uzbekova S. MALDI-TOF mass spectrometry analysis of lipids in single bovine oocytes during IVM. Proc. 32nd Scientific meeting of the Association of Embryo Technology in Europe (AETE). Barcelona, Spain, 2016: 213.
  25. Lonergan P., Fair T. Maturation of oocytes in vitro. Annu. Rev. Anim. Biosci., 2016, 4: 255-268 CrossRef
  26. Matoba S., Fair T., Lonergan P. Maturation, fertilisation and culture of bovine oocytes and embryos in an individually identifiable manner: a tool for studying oocyte developmental competence. Reprod. Fertil. Dev., 2010, 22(5): 839-851 CrossRef
  27. Bunel A., Jorssen E.P., Merckx E., Leroy J.L., Bols P.E., Sirard M.A. Individual bovine in vitro embryo production and cumulus cell transcriptomic analysis to distinguish cumulus-oocyte complexes with high or low developmental potential. Theriogenology, 2015, 83(2): 228-237 CrossRef