doi: 10.15389/agrobiology.2017.2.232eng

UDC 636.082:591.463.1:57.086/.087



C. Soler1, 2, A. Valverde1, 3, D. Bompart2, S. Fereidounfar2,
M. Sancho2, J.L. Yániz4, A. García-Molina1, 2,
Yu.A. Korneenko-Zhilyaev5

1Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, Spain;
2Departament d'Investigació Biològica de Proiser R+D, S.L., Parc Científic de la Universitat de València, 46980 Paterna, Spain; 
3Technological Institute of Costa Rica, San Carlos Campus, School of Agronomy, 223-21001 Alajuela, Costa Rica;
4Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte S/N 22071 Huesca, Spain,
e-mail: (corresponding author);
5ООО «Venera-Vet», 7А, ul. Kashtanovaya, pos. Bykovo, Podolsk Region, Moscow Province, 142143 Russia, e-mail

The authors declare no conflict of interests

Received December 30, 2016


Semen analysis constitutes the base for the establishment of fertility of a male. In addition, the number of insemination doses to produce from an ejaculate depends on the defined sperm characteristics. As soon as image analysis techniques were applied to biological problems the andrology was one of the first fields benefited both in the evaluation of genital track and sperm function. The improvement of image analysis expands possibilities of using developed systems in medical practice and animal husbandry. In ISAS®PBos («PROISER — Projectes i Serveis R+D S.L.», Spain) the semen analysis done includes concentration, motility and morphology. The systems with optimal rate of frame capture and transmission at images processing are developed for a two-dimensional analysis of spermatozoa motility in different species with regard to the spermatozoa sizes. ISAS®PBos calculates the percentage of morpho-abnormalities analysing the presence of cytoplasmic droplets and coiled tails base on the images used for motility analysis, and allows calculation of the optimal number of doses to produce from a particular ejaculate. Breed-dependent morphological diversity of spermatozoa found in different species, and a disclosure of structured subpolations of spermatozoa in the ejaculate, lead reproductive biology to the next level and open new prospects for the practice of animal breeding. In the study of spermatozoa at the subpopulation level the multivariate statistics which is based on an analysis of the principal components is applicable. In statistical estimation and mathematical modeling, it is proposed to use the Bayesian approach, on the basis of which a mathematical toolkit for estimating sperm quality will be developed in the near future. Essentially, the shortcomings of the early methods used for semen analysis are due to modifications of real motility of germ cells in counting chambers and the real shape and size of the spermatozoa under dehydration, fixation, staining and mounting. ISAS® 3DTrack and Trumorph® for estimation of sperm motility and morphology, respectively, avoid the limitations. ISAS® 3DTrack device, a lensless laser microscope, allows the analysis in a depth around 100 μm. Moreover, the analysis of the correspondent hologram allows the analysis of track in three dimensions what is also a big novelty. Trumorph® technique offers the maximum projection of the cells making it possible to obtain images of high resolution and definition of cells components in a wide range of species, including bull. ISAS® 3Fun with ISAS®3Fun kit and the correspondent software for automatic analysis is a new method enables a clear distinction of spermatozoa with intact plasmalemma and acrosome which are essential for sperm function.

Keywords: spermatozoa, motility, morphology, fertility, subpopulations, computer-assisted sperm analysis, statistical analysis.


Full article (Rus)

Full text (Eng)



  1. Yeung C.H., Cooper T.G., Nieschlag E. A technique for standardization and quality control of subjective sperm motility assessments in semen analysis. Fertil. Steril., 1997, 67: 1156-1158 CrossRef
  2. Hallap T., Haard M., Larsson B., Rodríguez-Martínez H. Does cleansing of frozen-thawed bull semen before assessment provide samples that relate better to potential fertility? Theriogenology, 2004, 62: 702-713 CrossRef
  3. Barth A.D., Oko R.J. Abnormal morphology of bovine spermatozoa. Iowa State University Press, Iowa, 1989.
  4. Frenau G.E., Chenoweth P.J., Elis R., Rupp G. Sperm morphology of beef bulls evaluated by two different methods. Anim. Reprod. Sci., 2010, 118: 176-181 CrossRef
  5. Revell S. Assessment of the morphology of frozen-thawed bull sperm in relation to its cryopreservation for artificial insemination. Vet. Rec., 2003, 152: 765-767.
  6. Phillps N.J., Mcgowan M.R., Johnston S.D., Mayer D.G. Relationship between thirty post-thaw spermatozoal characteristics and the field fertility of 11 high-use Australian dairy AI sires. Anim. Reprod. Sci., 2004, 81: 47-61 CrossRef
  7. Mossman J., Slate J., Humphriess S., Birkhead T. Sperm morphology and velocity are genetically codetermined in the zebra finch. Evolution, 2009, 63: 2730-2737 CrossRef
  8. Soler C., Pérez-Sánchez F., Schulze H., Bergmann M., Oberpenning F., Yeung C.-H., Cooper T.G. Objective evaluation of the morphology of human epididymal sperm heads. Int. J. Androl., 2000, 23: 77-84 CrossRef
  9. Soler C., Yeung C.-H., Cooper T.G. Development of sperm motility patterns in the murine epididymis. Int. J. Androl., 1994, 17: 271-278 CrossRef
  10. Amann R.P., Hammerstedt R.H. Validation of a system for computerized measurement of spermatozoal velocity and percentage of motile sperm. Biol. Reprod., 1980, 23: 647-656 CrossRef
  11. Katz D., Overstreet J. Sperm motility assessment by videomicrography. Fertil. Steril., 1981, 35: 188-193 CrossRef
  12. Katz D.F., Davis R.O., Delandmeter B.A., Overstreet J.W. Real-time analysis of sperm motion using automatic video image digitization. Computer Methods and Programs in Biomedicine, 1985, 21: 173-182 CrossRef
  13. Ginsburg K.A., Armant D.R. The influence of chamber characteristics on the reliability of sperm concentration and movement measurements obtained by manual and videomicrographic analysis. Fertil. Steril., 1990, 53: 882-887.
  14. Knuth U.A., Nieschlag E. Comparison of computerized semen analysis with the conventional procedure in 322 patients. Fertil. Steril., 1988, 49: 881-885 CrossRef
  15. Stephens D.T., Hickman R., Hoskins D.D. Description, validation, and performance characteristics of a new computer-automated sperm motility analysis system. Biol. Reprod., 1988, 38: 577-586.
  16. Yeung C.H., Weinbauer G.F., Nieschlag E. Movement characteristics of ejaculated sperm from cynomolgus monkeys (Macaca fascicularis) analyzed by manual and automated computerized image analysis. Journal of Medical Primatology, 1989, 18: 55-68.
  17. Schmassmann A., Mikuz G., Bartsch G., Rohr H. Quantification of human sperm morphology and motility by means of semi-automatic image analysis systems. Microscopica Acta, 1979, 82: 163-178.
  18. Pérez-Sánchez F., de Monserrat J.J., Soler C. Morphometric analysis of human sperm morphology. Int. J. Androl., 1994, 17: 248-255 CrossRef
  19. Hoidas S., Williams A.E., Tocher J.L., Hargrave T.B. Scoring sperm morphology from fertile and infertile cigarette smokers using the scanning electron microscope and image analysis. Fertil. Steril., 1985, 43: 595-598 CrossRef
  20. Chan S.Y.W., Wang C., Chan S.T.H., Ho P.C., So W.W.K., Chan Y.F., Ma H.K. Predictive value of sperm morphology and movement characteristics in the outcome of in vitro fertilization of human oocytes. Journal of in Vitro Fertilization and Embryo Transfer, 1989, 6: 142-148 CrossRef
  21. Irvine D.S., Macleod I.C., Templenton A.A., Masterton A., Taylor A. Andrology: A prospective clinical study of the relationship between the computer-assisted assessment of human semen quality and the achievement of pregnancy in vivo. Hum. Reprod., 1994, 9: 2324-2334 CrossRef
  22. Soler C., Fuentes M.C., Sancho M., García A., Núñez de Murga M., Núñez de Murga J. Effect of counting chamber on seminal parameters, analyzing with the ISASv1®. Revista Internacional de Andrología, 2012, 10: 132-138.
  23. Soler C., García A., Contell J., Segervall J., Sancho M. Kinematics and subpopulations' structure definition of blue fox (Alopex lagopus) sperm motility using the ISAS®v1 CASA system. Reprod. Domest. Anim., 2014, 49: 560-567 CrossRef
  24. Del Gallego R., Sadeghi S., Blasco E., Soler C., Yániz J.L., Silvestre M.A. Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm. Anim. Reprod. Sci., 2017, 177: 97-104 CrossRef
  25. Matson P., Irving J., Zuvela E., Huges R. Delay in the application of the cover glass is a potential source with the Makler Counting Chamber. Fertil. Steril., 1999, 72: 559-561 CrossRef
  26. Castellini C., Dal Bosco A., Ruggeria S., Collodel G. What is the best frame rate for evaluation of sperm motility in different species by computer assisted sperm analysis. Fertil. Steril., 2011, 96: 24-27 CrossRef
  27. Banaszewska D., Andraszek K., Czubaszek M., Biesiada-Drzazga B. The effect of selected staining techniques on bull sperm morphometry. Anim. Reprod. Sci., 2015, 159: 17-24 CrossRef
  28. Soler C., Cooper T.G., Valverde A., Yániz J.L. Afterword to Sperm morphometrics today and tomorrow special issue in Asian Journal of Andrology. Asian Journal of Andrology, 2016, 18: 895-897 CrossRef
  29. Yániz J.L., Capistrós S., Vicente-Fiel S., Hidalgo C.O., Santolaria P. A comparative study of the morphometry sperm head components in cattle, sheep, and pigs with a computer-assisted fluorescence method. Asian Journal of Andrology, 2016, 18: 840-843 CrossRef
  30. Walczak-Jedrzejowska R., Wolski J.K., Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male fertility. Central European Journal of Urology, 2013, 66: 60-67 CrossRef
  31. Peña F., Saravia F., García-Herreros M., Núñez-Martínez I., Tapia J.A., Johanisson A., Wallgren M., Rodríguez-Martínez H. Identification of sperm morphometric subpopulations in two different portions of the boar ejaculate and its relation to postthaw quality. J. Androl., 2005, 26: 716-723 CrossRef
  32. Núñez-Martínez I., Moran J.M., Peña F.J. Sperm indexes obtained using computer-assisted morphometry provide a forecast of the freezability of canine sperm. Int. J. Androl., 2007, 30: 182-189 CrossRef
  33. Silvestre M.A., Vicente-Fiel S., Raga E., Salvador I., Soler C., Yániz J.L. Effect of genistein added to bull semen after thawing on pronuclear and sperm quality. Anim. Reprod. Sci., 2015, 163: 120-127 CrossRef
  34. Beletti M.E., Costa L.F., Viana M.P. A comparison of morphometric characteristics of sperm from fertile Bos taurus and Bos indicus bulls in Brazil. Anim. Reprod. Sci., 2005, 85: 105-116 CrossRef
  35. Rodríguez-Martínez H. Laboratory semen assessment and prediction of fertility: still utopia? Reprod. Domest. Anim., 2003, 38(4): 312-318 CrossRef
  36. Santolaria P., Vicence-Fiel S., Palacín I., Fantova E., Blasco M.E., Silvestre M., Yaniz J. Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep. Anim. Reprod. Sci., 2015, 163: 82-88 CrossRef
  37. Sellem E., Broekhuijse M.L.W.J., Chevrier L., Camugli S., Schmitt E., Schib-ler L., Koenen E.P.C. Use of combinations of in vitro quality assessments to predict fertility of bovine semen. Theriogenology, 2015, 84: 1447-1454 CrossRef
  38. Utt M.D. Prediction of bull fertility. Anim. Reprod. Sci., 2016, 169: 37-44 CrossRef
  39. Fraser L., Gorszczaruk K., Strzezek J. Relationship between motility and membrane integrity of boar spermatozoa in media varying in osmolality. Reprod. Domest. Anim., 2001, 36: 325-329 CrossRef
  40. Yaniz J.L., Santolaria P., MarcoAguadoLopez-Gatius F.Use of image analysis to assess the plasma membrane integrity of ram spermatozoa in different diluents. Theriogenology, 2008, 70(2): 192-198 CrossRef
  41. Brito L.F.C., Barth A.D., Bilodeau-Goeseels S., Panich P.L., Kastelic J.P. Com-
    parison of methods to evaluate the plasmalemma of bovine sperm and their relationship with in vitro fertilization rate. Theriogenology, 2003, 60: 1539-1551 CrossRef
  42. Quintero-Moreno A., Rigau T., Rodríguez-Gil J.E. Multivariate cluster analysis regression procedures as tools to identify motile sperm subpopulations in rabbit semen and to predict semen fertility and litter size. Reprod. Domest. Anim., 2007, 42: 312-319 CrossRef
  43. Rubio-Guillén J., González D., Garde J.J., Esteso M.C., Fernández-San-
    tos M.R., Rodríguez-Gil J.E., Madrid-Bury N., Quintero-Molina A. Effects of cryopreservation on bull spermatozoa in morphometrically distinct subpopulations. Reprod. Domest. Anim., 2007, 42: 354-357 CrossRef
  44. Muiño R., Tamargo C., Hidalgo C.O., Peña A.I. Identification of sperm subpopulations with defined motility characteristics in ejaculates from Holstein bulls: effects of cryopreservation and between-bull variation. Anim. Reprod. Sci., 2008, 109: 27-39 CrossRef
  45. Martínez-Pastor F., Tizado E.J., Garde J.J., Anel L., de Paz P. Statistical series: opportunities and challenges of sperm motility subpopulation analysis. Theriogenology, 2011, 75: 783-795 CrossRef
  46. Yániz J.L., Soler C., Santolaria P. Computer assisted sperm morphometry in mammals: A review. Anim. Reprod. Sci., 2015, 156: 1-12 CrossRef
  47. Soler C., Alambiaga A., Martí M.A., García-Molina A., Valverde A., Contell J., Campos M. Dog sperm head morphometry: its diversity and evolution. Asian Journal of Andrology, 2017, 19(2): 149-153 CrossRef
  48. Valverde A., Areán H., Sancho M., Contell J., Yániz J.L., Fernández A., Soler C. Morphometry and subpopulation structure of Holstein bull spermatozoa: variations in ejaculates and cryopreservation straws. Asian Journal of Andrology, 2016, 18: 851-857 CrossRef
  49. Jones B., Clark A.G. Bayesian sperm competition estimates. Genetics, 2003, 163: 1193-1199.
  50. Thompson J.A., Love C.C., Stich K.L., Brinsko S.P., Blanchard T.L., Varner D.D. A Bayesian approach to prediction of stallion daily sperm output. Theriogenology, 2004, 62: 1607-1617 CrossRef
  51. Gil Anaya M.C., Calle F., Pérez C.J., Martín-Hidalgo D., Fallola C., Bragado M.J., García-Marín L.J., Oropesa A.L. A new Bayesian network-based approach to the analysis of sperm motility: application in the study of tench (Tinca tinca) semen. Andrology, 2015, 3: 956-966 CrossRef
  52. Soler C., Gadea B., Soler A.J., Fernández-Santos M.R., Esteso M.C., Núñez J., Moreira P.N., Núñez M., Gutiérrez R., Sancho M., Garde J.J. Comparison of three different staining methods for the assessment of epididymal red deer sperm morphometry by computerized analysis with ISAS. Theriogenology, 2005, 64: 1236-1243 CrossRef
  53. Soler C., García-Molina A., Sancho M., Contell J., Núñez M., Cooper T.G. A new technique for analysis of human sperm morphology in unstained cells from raw semen. Reprod. Fert. Develop., 2014, 28: 428-433 CrossRef
  54. Soler C., García-Molina A., Contell J., Silvestre M.A., Sancho M. The Trum-
    orph® system: the new universal technique for the observation and analysis of the morphology of living sperm. Anim. Reprod. Sci., 2015, 158: 1-10 CrossRef
  55. Martinez-Pastor F., Mata-Campuzano M., Alvarez-Rodriguez M., Alva-
    rez M., Anel L., de Paz P. Probes and techniques for sperm evaluation by flow cytometry. Reprod. Domest. Anim., 2010, 45: 67-78 CrossRef
  56. Robles V., Martinez-Pastor F. Flow cytometric methods for sperm assessment. Methods in Molecular Biology, 2013, 927: 175-186 CrossRef
  57. Yániz J., Capistrós S., Vicente-Fiel S., Soler C., Nunez de Murga M., Santolaria P. Use of Relief Contrast® objective to improve sperm morphometric analysis by Isas® casa system in the ram. Reprod. Domest. Anim., 2013, 48: 1019-1024 CrossRef