doi: 10.15389/agrobiology.2017.2.306eng

UDC 636.2:591.463.1:57.086.13



N.V. Shishova1, N.A. Kombarova2, Yu.S. Tarakhovsky3, G.A. Davydova3,
L.V. Zalomova1, O.Yu. Seraya3, A.I. Abilov4

1Institute of Cell Biophysics RAS, Federal Agency of Scientific Organizations, 3, ul. Institutskaya, Pushchino, Moscow Province, Russia 142290;
2Head Center for Reproduction of Farm Animals, 3, ul. Tsentralnaya, pos. Bykovo, Podolsk Region, Moscow Province, 142143 Russia, e-mail (corresponding author);
3Institute of Theoretical and Experimental Biophysics RAS, Federal Agency of Scientific Organizations, 3, ul. Institutskaya, Pushchino, Moscow Province, Russia 142290;
4L.K. Ernst All-Russian Research Institute of Animal Husbandry, Federal Agency of Scientific Organizations, 60, pos. Dubrovitsy, Podolsk Region, Moscow Province, 142132 Russia, e-mail: (corresponding author)

The authors declare no conflict of interests

Received December 30, 2016


Design of plant phospholipid based extenders free of animal-derived components is urgent in farm animal semen cryopreservation. However, a complex of plant lipids, unlike the yolk complex, lacks cholesterol which plays an important role in cryoresistance of spermatozoa. Enriching spermatozoa membranes with cholesterol improves their cryotolerance (E. Mocé et al., 2010; E. Mocé et al., 2014; M.H. Fayyaz et al., 2016). We first estimated the impact of different cholesterol concentrations (0, 8, 18, 33 and 50 %) in soybean phospholipid mixtures both on morphology of obtained liposomes or lipid particles, and on their cryoprotective property as judged by the effect on motility when added to the extender at bull sperm cryopreservation. Liposome suspensions were prepared from commercial lecithin LeciPRO 90 («Unite-chem Co., Ltd», China) and purified cholesterol form lanolin («Sigma-Aldrich Co.», USA) by sonication at an ultrasound disintegrator UZDN-2T (NPP «Academpribor», Russia; 22 kHz, 60 W/cm2, 5 min). It was found that cholesterol did not notably influence the obtained liposomes at low concentration (8 %). At 18 and 33 % cholesterol in the lipid mixture the size of the liposomes increased and averaged 66±6 nm and 62±11 nm, respectively. Fifty percent cholesterol changed the lipid suspension completely resulting in complex structures formed by phospholipid-cholesterol lamellae and crystals of cholesterol monohydrate. Eight percent cholesterol did not increase a cryorpotective efficiency of lecithin, while 18-50 % cholesterol decreased its cryoprotective capacity. An increase in cholesterol concentration in the lipid mixture up to 50 % (~ 66 mol%) led to somewhat higher spermatozoa motility compared to a minimum score observed at freezing with 33 % cholesterol. The most probable cause of the negative impact of cholesterol on the cryoprotective effectiveness of lecithin suspension is impairment in liposome interaction with a sperm plasma membrane caused by condensation of phospholipid packing in a lipid bilayer.

Keywords: cattle, cryopreservation, sperm, cholesterol, phospholipids, liposomes.


Full article (Rus)

Full text (Eng)



  1. Layek S.S., Mohanty T.K., Kumaresan A., Parks J.E. Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders. Anim. Reprod. Sci., 2016, 172: 1-9 CrossRef
  2. Foulkes J.A. The separation of lipoproteins from egg yolk and their effect on the motility and integrity of bovine spermatozoa. J. Reprod. Fert. 1977, 49: 277-284 CrossRef
  3. Milovanov V.K., Semenova V.A. Doklady VASKHNIL, 1985, 11: 25-26 (in Russ.).
  4. Erokhin A.S., Dobrovol'skii G.I. Molochnoe i myasnoe skotovodstvo, 2009, 5: 16-17 (in Russ.).
  5. Shishova N.V., Kombarova N.A., Davydova G.A., Seraya O.Yu., Mironova E.A., Abilov A.I., Pashovkin T.N., Gakhova E.N. Biologicheskie membrany, 2017, 34(3): 223-230 (in Russ.).
  6. Darin-Bennett A., White I.G. Influence of the cholesterol content of mammalian spermatozoa on susceptibility to cold-shock. Cryobiology, 1977, 14(4): 466-470 CrossRef
  7. Nauk V.A. Struktura i funktsii spermiev sel'skokhozyaistvennykh zhivotnykh pri kriokonservatsii [Structure and function of farm animal cryopreserved semen]. Kishinev, 1991 (in Russ.).
  8. Parks J.E., Lynch D.V. Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology, 1992, 29(2): 255-266 CrossRef
  9. Blesbois E., Grasseau I., Seigneurin F. Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction, 2005, 129(3): 371-378 CrossRef
  10. Drokin S.I. Phospholipid distribution and fatty acid composition of phosphatidylcholine and phosphatidylethanolamine in sperm of some freshwater and marine species of fish. Aquatic Living Resources, 1993, 6: 49-56 CrossRef
  11. Zidovetzki R., Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim. Biophys. Acta, 2007, 1768(6): 1311-1324 CrossRef
  12. Mocé E., Tomás C., Blanch E., Graham J.K. Effect of cholesterol-loaded cyclodextrins on bull and goat sperm processed with fast or slow cryopreservation protocols. Animal, 2014, 8(5): 771-776 CrossRef
  13. Rajoriya J.S., Prasad J.K., Ramteke S.S., Perumal P., Ghosh S.K., Singh M., Pa-
    nde M., Srivastava N. Enriching membrane cholesterol improves stability and cryosurvival of buffalo spermatozoa. Anim. Reprod. Sci., 2016, 164: 72-81 CrossRef
  14. Mocé E., Blanch E., Tomás C., Graham J.K. Use of cholesterol in sperm cryopreservation: present moment and perspectives to future. Reprod. Domest. Anim., 2010, 45(Suppl 2): 57-66 CrossRef
  15. Fayyaz M.H., Ahmad M., Ahmad N. Survival of buffalo bull spermatozoa: effect on structure and function due to alpha-lipoic acid and cholesterol-loaded cyclodextrin. Andrologia, 2016 CrossRef
  16. Yang S.T., Kreutzberger A.J., Lee J., Kiessling V., Tamm L.K. The role of cholesterol in membrane fusion. Chem. Phys. Lipids, 2016, 199: 136-143 CrossRef
  17. Wang Z., Ma Y., Khalil H., Wang R., Lu T., Zhao W., Zhang Y., Chen J., Chen T. Fusion between fluid liposomes and intact bacteria: study of driving parameters and in vitro bactericidal efficacy. Int. J. Nanomed., 2016, 11: 4025-4036 CrossRef
  18. Falck E., Patra M., Karttunen M., Hyvonen M.T., Vattulainen I. Lessons of slicing membranes: Interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys. J., 2004, 87: 1076-1091. CrossRef
  19. Natsional'naya tekhnologiya zamorazhivaniya i ispol'zovaniya spermy plemennykh bykov-proizvoditelei /Pod redaktsiei N.M. Reshetnikovoi, A.M. Abilova [National technology of freezing and use of pedigree bull sires’ semen. N.M. Reshetnikova, A.I. Abilov (eds.)]. Moscow, 2008 (in Russ.).
  20. Scholfield C.R. Composition of soybean lecithin. J. Am. Oil Chem. Soc., 1981, 58: 889-892 CrossRef
  21. Ovchinnikov Yu.A. Bioorganicheskaya khimiya [Bioorganic chemistry]. Moscow, 1987 (in Russ.).
  22. Huang J., Buboltz J.T., Feigenson G.W. Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim. Biophys. Acta, 1999, 1417: 89-100 CrossRef
  23. Feigenson G.W., Buboltz J.T. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J., 2001, 80: 2775-2788 CrossRef
  24. Ma Y., Wang Z., Zhao W., Lu T., Wang R., Mei Q., Chen T. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium. Int. J. Nanomed., 2013, 8(1): 2351-2360 CrossRef
  25. Huang J., Feigenson G.W. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J., 1999, 76: 2142-2157 CrossRef