doi: 10.15389/agrobiology.2017.2.349eng

UDC 636.084.524:637.4.04::547.396


Supported by the grant from Russian Science Foundation under project 16-16-04047 for the development of functional egg products enriched with essential nutrients, optimal metabolic parameters and low allergenicity.



A.Sh. Kavtarashvili, I.L. Stefanova, V.S. Svitkin, E.N. Novotorov

Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, Federal Agency of Scientific Organizations,10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail (corresponding author),,,

The authors declare no conflict of interests


Kavtarashvili A.Sh.

Svitkin V.S.

Stefanova I.L.

Novotorov E.N.

Received November 30, 2016


The world’s market of functional foodstuffs is a permanently growing sector. Functional foods should meet the nutritive requirements of the consumers and render therapeutic and/or preventive effects on human health. Functional eggs enriched with different bioactive substances are one of the most voluminous segments of this market (N. Shapira, 2010). High rate and flexibility of avian lipid metabolism allow fast modifications in egg yolk composition via corresponding alterations in the diets of laying hens. In the last decades nutritionists pay increasingly close attention to ω-3 polyunsaturated fatty acids (PUFAs), primarily α-linolenic (ALA, C18:3), eicosapentaenoic (EPA, C20:5), and docosahexaenoic (DHA, C22:6) acids due to the benefits for human health and necessity for brain development, retinal function, prevention of cardiovascular diseases, etc. (A. Simopoulos, 2001); human diets in most countries including Russia are severely deficient in these essential fatty acids. Flexibility of avian lipid metabolism allows transfer of dietary PUFAs into eggs after 1-2 weeks of feeding PUFA-enriched diets (C.O. Leskanich, R.C. Noble, 1997). However, any increase in PUFA contents in dietary lipids can lead to definite changes in lipid metabolism in layers affecting productivity and egg quality: a decrease in blood level of total fat and triacylglycerols, an increase in hepatic level and catabolism of triacylglycerols which can cause the fatty liver hemorrhagic syndrome (FLHS), as well as the decrease in yolk and egg weight (M.E. Van Elswyk, 1997). Another common problem related to egg enrichment with ω-3 PUFAs is fishy taint phenomenon: panel tests often characterize enriched eggs as smelling fish-like, and this effect deteriorates market attractiveness of these eggs (F. Bubel et al., 2011). Diets for laying hens for the production of ω-3 PUFA enriched eggs usually contain one of the three types of dietary PUFA sources. The first is fish oil from different species; its advantages include higher levels of long-chain PUFAs (LC-PUFAs), primarily EPA and DHA in resulting enriched eggs. Major disadvantages of fish oil, however, are instability of composition and high susceptibility to oxidation; frequent appearance of fishy taint even at the lowest levels of inclusion into the diets; relatively high price, market availability, and contamination with typical oceanic pollutants (I. Fraeye et al., 2012). The second type of additives is flax products, seeds, cake or oil containing substantially lesser amounts of LC-PUFAs compared to fish oil while being extremely rich in ALA (over 50 % of total fatty acids); ALA-enriched lipids in diets, layer body and eggs are more resistant to oxidation. The data of numerous studies suggests that reasonable level of inclusion of flaxseed products into the diets for layers are 5-8 % for seed and cake and 3 % for oil; these doses are reportedly beneficial for productivity and egg quality (E.M. Goldberg et al., 2013). In Russia flax products are available and inexpensive, and can therefore represent the most profitable dietary source of ω-3 PUFA for layers. The third type additives are macro- and microalgal species which are less available and still understudied, though the recent research data show that these additives can be the most promising dietary sources of ω-3 PUFA (J.H. Park et al., 2015). Enrichment of feeds and eggs with ω-3 PUFA requires additional dietary antioxidants to prevent lipid oxidation (Ch. Nimalaratne, J. Wu, 2015); the most efficient and well-studied antioxidant is vitamin E which is, after that, a valuable bioactive substance per se for egg enrichment. The data of different experiments with different ω-3 PUFA sources are often inconsistent and controversial due to the close relation to the multifaceted avian lipid metabolism, and comparative analysis of these studies is further complicated by the lack of estimated parameters; it could be helpful, therefore, to launch an international database related to these experiments and containing raw datasets which could be statistically analyzed and compared in a more efficient way.

Keywords: functional eggs, polyunsaturated fatty acids n-3, lipid metabolism, flax seed and oil, fish oil.


Full article (Rus)

Full text (Eng)



  1. Siró I., Kápolna E., Kápolna B., Lugasi A. Functional food. Product development, marketing and consumer acceptance — A review. Appetite, 2008, 51: 456-467 CrossRef
  2. Fisinin V.I. Ptitsevodstvo Rossii — strategiya innovatsionnogo razvitiya [Poultry farming in Russia — innovative strategy]. Moscow, 2009 (in Russ.).  
  3. Rodic V., Peric L., Pavlovski Z., Vlahovic B. Consumers’ perception and attitudes towards table eggs from different housing systems: the case study from Serbia. Proc. XIII European Poultry Conf., Tour, France, August 23-27, 2010 (CD).
  4. Rodic V., Rodic V., Miloševic N. Production of poultry meat and eggs as functional food — Challenges and opportunities. Biotechnol. Anim. Husbandry, 2011, 11(3): 511-520 CrossRef
  5. Gjorgovska N., Filev K. Multi-enriched eggs with omega 3 fatty acids, vitamin E and selenium. Arch. Zootech., 2011, 14(2): 28-35.
  6. Yannakopoulos A., Tserveni-Gousi A., Christaki E. Enhanced egg production in practice: The case of bio-omega-3 eggs. International Journal of Poultry Science, 2005, 4(8): 531-535 CrossRef
  7. Howell W.H., McNamara D.J., Tosca M.A., Smith B.T., Gaines J.A. Plasma lipid and lipoprotein responses to dietary fat and cholesterol — A meta-analysis. Am. J. Clin. Nutr., 1997, 65(6): 1747-1764.
  8. Hu F.B., Stampfer M.J., Rimm E.B., Manson J.E., Ascherio A., Colditz G.A., Rosner B.A., Spiegelman D., Speizer F.E., Sacks F.M., Hennekens C.H., Willet W.C. A prospective study of egg consumption and risk of cardiovascular disease in men and women. JAMA-J. Am. Med. Assoc., 1999, 281(15): 1387-1394.
  9. Gray J., Griffin B.A. Eggs and dietary cholesterol — dispelling the myth. Nutr. Bull., 2009, 34(1): 66-70 CrossRef
  10. Surai P. Kombikorma, 2010, 6: 95-96 (in Russ.). 
  11. Cruickshank E.M. Studies on the fat metabolism in the fowl. I. The composition of the egg fat and depot fat of the fowl has affected by the ingestion of large amounts of different fats. Biochem. J., 1934, 28: 965-977.
  12. Arkhipov A.V. Lipidnoe pitanie, produktivnost' ptitsy i kachestvo produktov ptitsevodstva [Lipid nutrition, poultry productivity and quality of poultry products]. Moscow, 2007 (in Russ.). 
  13. Leskanich C.O., Noble R.C. Manipulation of the n-3 polyunsaturated fatty acid composition of avian eggs and meat. World’s Poultry Sci. J., 1997, 53(2): 155-183 CrossRef
  14. Griminger P. Lipid metabolism. In: Avian Physiology. P.D. Sturkey (ed.). Springer, NY, 1986: 345-358.
  15. Hargis P.S., Van Elswyk M.E., Hargis B.M. Dietary modification of yolk lipid with menhaden oil. Poultry Sci., 1991, 70(4): 874-883 CrossRef
  16. Lovell T.M., Gladwell R.T., Groome N.P., Knight P.G. Ovarian follicle development in the laying hen is accompanied by divergent changes in inhibin A, inhibin B, activin A and follistatin production in granulosa and theca layers. J. Endocrinol., 2003, 177(1): 45-55 CrossRef
  17. Perry M.M., Waddington D., Gilbert A.B., Hardie M.A. Growth rates of the small yolky follicles in the ovary of the domestic fowl. IRCS Med. Sci.-Biochem., 1983, 11: 979-980.
  18. Kassis N., Drake S.R., Beamer S.K., Matak K.E., Jaczynski J. Development of nutraceutical egg products with omega-3-rich oils. LWT — Food Science and Technology, 2010, 43(5): 777-783 CrossRef
  19. Ganesan B., Brothersen C., McMahon D.J. Fortification of foods with omega-3 polyunsaturated fatty acids. Critical Reviews in Food Science and Nutrition, 2014, 54(1): 98-114 CrossRef
  20. Swanson D., Block R., Mousa Sh.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr., 2012, 3(1): 1-7 CrossRef
  21. Kapoor R., Huang Y.S. Gamma linolenic acid: an antiinflammatory omega-6 fatty acid. Curr. Pharm. Biotechnol., 2006, 7(6): 531-534 CrossRef
  22. Simopoulos A. Evolutionary aspects of diet and essential fatty acids. World Rev. Nutr. Diet., 2001, 88: 18-27 CrossRef
  23. Li D., Hu X. Fish and its multiple human health effects in times of threat to sustainability and affordability: are there alternatives? Asia Pac. J. Clin. Nutr., 2009, 18(4): 553-563 CrossRef
  24. Stoll A. The omega-3 connection. Simon and Schuster, NY, 2001: 40.
  25. Abedi E., Sahari M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr., 2014, 2(5): 443-463 CrossRef
  26. Allport S. The queen of fats: why omega-3 fats were removed from the western diet and what we can do to replace them. University of California Press, Berkeley, 2007: 115.
  27. Simopoulos A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother., 2002, 56(8): 365-379 CrossRef
  28. Sparks N.H.C. The hen’s egg — is its role in human nutrition changing? World’s Poultry Sci. J., 2006, 62(2): 308-313 CrossRef
  29. Okolelova T.M. Ptitsevodstvo, 2013, 5: 15-19 (in Russ.). 
  30. Antongiovanni M., Minieri S., Buccioni A., Galligani I., Rapaccini S. Transfer of dietary fatty acid from butyric acid fortified canola oil into the meat of broiler. Ital. J. Anim. Sci., 2009, 8(Suppl. 2): 754-756 CrossRef
  31. Shapira N. Every egg may have a targeted purpose: Toward a differential approach to egg according to composition and functional effect. World’s Poultry Sci. J., 2010, 66(2): 271-284 CrossRef
  32. Atalas M.S., Citil O.B. Comparison of fatty acid composition of egg yolks obtained white and brown hens fed in the same way method. Maced. J. Anim. Sci., 2013, 3(1): 41-44.
  33. Komprada T. Eicosapentaenoic and docosahexaenoic acids as inflammation-modulating and lipid homeostasis influencing nutraceuticals: A review. Journal of Functional Foods, 2012, 4(1): 25-38 CrossRef
  34. Plourde M., Cunnane S.C. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Applied Physiology, Nutrition, and Metabolism, 2007, 32(4): 619-634 CrossRef
  35. Speake B.K., Deans E.A. Biosynthesis of oleic, arachidonic and docosahexaenic acids from their C18 precursors in the yolk sac membrane of the avian embryo. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2004, 138(4): 407-414 CrossRef
  36. Calchadora P., García-Rebollar P., Alvarez C., Méndez J., De Blas J.C. Double enrichment of chicken eggs with conjugated linoleic acid and n-3 fatty acids through dietary fat supplementation. Anim. Feed Sci. Tech., 2008, 144(3-4): 315-326 CrossRef
  37. Sardesai V.M. Nutritional role of polyunsaturated fatty acids. J. Nutr. Biochem., 1992, 3(4): 154-166 CrossRef
  38. García-Rebollar P., Cachaldora P., Alvarez C., De Blas C., Méndez J. Effect of the combined supplementation of diets with increasing levels of fish and linseed oils on yolk fat composition and sensorial quality of eggs in laying hens. Anim. Feed Sci. Tech., 2008, 140(3-4): 337-348 CrossRef
  39. Miranda J.M., Anton X., Redondo-Valbuena C., Roca-Saavedra P., Rodriguez J.A., Lamas A., Franco C.M., Cepeda A. Egg and egg-derived products: Effects on human health and use as functional foods. Nutrients, 2015, 7(1): 706-729 CrossRef
  40. Hayat Z., Cherian G., Pasha T.N., Khattak F.M., Jabbar M.A. Oxidative stability and lipid components of eggs from flax-fed hens: Effect of dietary antioxidants and storage. Poultry Sci., 2010, 89(6): 1285-1292 CrossRef
  41. Galobart J., Barroeta A.C., Baucells M.D., Cortinas L., Guardiola F. α-Tocopherol transfer efficiency and lipid oxidation in fresh and spray-dried eggs enriched with n-3 polyunsaturated fatty acids. Poultry Sci., 2001, 80(10): 1496-1505 CrossRef
  42. Gebert S., Messikommer R., Pfirter H.P., Bee G., Wenk C. Dietary fats and vitamin E in diets for laying hens: Effects on laying performance, storage stability and fatty acid composition of eggs. Arch. Geflügelkd., 1998, 62: 214-222.
  43. Scheideler S.E., Froning G., Cuppett S. Studies of consumer acceptance of high omega-3 fatty acid-enriched eggs. J. Appl. Poult. Res., 1997, 6(2): 137-146 CrossRef
  44. Fernandes Pereira A.L., Fontoura Vidal T., Gonçalves Abreu V.K., Fuentes Zapata J.F., Rodrigues Freitas E. Type of dietary lipids and storing time on egg stability. Ciênc. Tecnol. Aliment., 2011, 31(4): 984-991 CrossRef
  45. Aghdam Shahryar H., Salamatdoust R., Chekain-Azar S., Ahadi F., Vahdatpoor T. Lipid oxidation in fresh and stored eggs enriched with dietary ω3 and ω6 polyunsaturated fatty acids and vitamin A and E dosages. Afr. J. Biotechnol., 2010, 9(12): 1827-1832 CrossRef
  46. Chekaniazar S. Unhealthy fats can be declined in enriched eggs by graded levels of polyunsaturated oils and selenium sources. J. Appl. Environ. Biol. Sci., 2011, 1(12): 711-715.
  47. Marshall A.C., Sams A.R., Van Elswyk M.E. Oxidative stability and sensory quality of stored eggs from hens fed 1.5 % menhaden oil. J. Food Sci., 1994, 59(3): 561-563 CrossRef
  48. Caston L., Squires E.J., Leeson S. Hen performance, egg quality, and the sensory evaluation of eggs from SCWL hens fed dietary flax. Can. J. Anim. Sci., 1994, 74(2): 347-353 CrossRef
  49. Florou-Paneri P., Nikolakakis I., Giannenas I., Koidis A., Botsoglou E., Dotas V., Mitsopoulos I. Hen performance and egg quality as affected by dietary oregano essential oil and α-tocopheryl acetate supplementation. International Journal of Poultry Science, 2005, 4(7): 449-454 CrossRef
  50. Onagbesan O., Bruggeman V., De Smit L., Debonne M., Witters A., Tona K., Everaert N., Decuypere E. Gas exchange during storage and incubation of avian eggs: Effects on embryogenesis, hatchability, chick quality and post-hatch growth. World’s Poultry Sci. J., 2007, 63(4): 557-573 CrossRef
  51. Akter Y., Kasim A., Omar H., Sazili A.Q. Effect of storage time and temperature on the quality characteristic of chicken eggs. Journal of Food, Agriculture and Environment, 2014, 12(3-4): 87-92.
  52. Raharjo S., Sofos J.N., Schmidt G.R. Solid phase acid extraction improves thiobarbituric acid methods to determine lipid oxidation. J. Food Sci., 1993, 58(4): 921-924 CrossRef
  53. Scheideler S.E., Froning G.W. The combined influence of dietary flaxseed variety, level, form and storage conditions on egg production and composition among vitamin E-supplemented hens. Poultry Sci., 1996, 75(10): 1221-1226 CrossRef
  54. Bubel F., Dobrzanski Z., Bykowski P., Patkowska-Sokola B., Trzisz-
    ka T. Enrichment of hen eggs with omega-3 polyunsaturated fatty acids — physiological and nutritional aspects. Acta Sci. Pol. Medicina Veterinaria, 2011, 10(3): 5-18.
  55. Van Elswyk M.E., Schake L.S., Hargis B.M., Hargis P.S. Effects of dietary menhaden oil on serum lipid parameters and hepatic lipidosis in laying hens. Poultry Sci., 1991, 70(Supp. 1): 122.
  56. Van Elswyk M.E., Prochaska J.F., Carey J.B., Hargis P.S. Physiological parameters in response to dietary menhaden oil in molted hens. Poultry Sci., 1992, 71(Suppl. 1): 114.
  57. Herkel R., Gálik B., Bíro D., Rolinec M., Šimko M., Jurácek M., Majl-
    át M., Arpášová H. The effect of pumpkin and flaxseed oils on selected parameters of laying hens performance. Acta Fytotechnica et Zootechnica, 2014, 17(3): 96-99 CrossRef
  58. Harris W.S. Fish oils and plasma lipid and lipoprotein metabolism in humans: A critical review. J. Lipid Res., 1989, 30(6): 785-807.
  59. Cherian G., Hayat Z. Long-term effects of feeding flaxseed on hepatic lipid characteristics and histopathology of laying hens. Poultry Sci., 2009, 88(12): 2555-2561 CrossRef
  60. Phetteplace H.W., Watkins B.A. Lipid measurements in chicken fed different combinations of chicken fat and menhaden oil. J. Agric. Food Chem., 1990, 38(9): 1848-1853 CrossRef
  61. Konig B., Spielmann J., Haase K., Brandsch C., Kluge H., Stangl G.I., Eder K. Effects of fish oil and conjugated linoleic acids on expression of target genes of PPARα and sterol regulatory element-binding proteins in the liver of laying hens. Br. J. Nutr., 2008, 100(2): 355-363 CrossRef
  62. Whitehead C.C., Bowman A.S., Griffin H.D. Regulation of plasma oestrogen by dietary fats in the laying hen: relationships with egg weight. Brit. Poultry Sci., 1993, 34(5): 999-1010 CrossRef
  63. Van Elswyk M.E. Nutritional and physiological effects of flaxseed in diets for laying fowl. World’s Poultry Sci. J., 1997, 53(3): 253-264 CrossRef
  64. Thompson L.U., Robb P., Serraino M., Cheung E. Mammalian lignan production from various foods. Nutr. Cancer, 1991, 16(1): 43-52 CrossRef
  65. Kennedy A.K., Dean C.E., Aymond W.M., Van Elswyk M.E. Dietary flax seed influences pullet reproductive parameters. Poultry Sci., 1994, 73(Suppl. 1): 20.
  66. Johnson A.L., van Tiehoven A. Effects of aminoglutethimide on luteinizing hormone and steroid secretion, and ovulation in the hen, Gallus domesticus. Endocrinology, 1984, 114(6): 2276-2283 CrossRef
  67. Crespo R., Shivaprasad H.L. Developmental, metabolic and other non infectious disorders. In: Diseases of poultry. Y.M. Saif, H.J. Barnes, J.R. Glisson, A.M. Fadly, L.R. McDo-ugald, D.E. Swayne (eds.). Iowa State University Press, Ames, 2003: 1048-1102.
  68. Julian R.J. Production and growth related disorders and other metabolic diseases of poultry - A review. The Veterinary Journal, 2005, 169(3): 350-369 CrossRef
  69. Bean I.D., Leeson S. Long-term effects of feeding flaxseed on performance and egg fatty acid composition of brown and white hens. Poultry Sci., 2003, 82(3): 388-394 CrossRef
  70. Van Elswyk M.E., Hargis B.M., Williams J.D., Hargis P.S. Dietary menhaden oil contributes to hepatic lipidosis in laying hens. Poultry Sci., 1994, 73(5): 653-662 CrossRef
  71. Cherian G., Goeger M.P. Hepatic lipid characteristics and histopathology of laying hens fed CLA or n-3 fatty acids. Lipids, 2004, 39(1): 31-36 CrossRef
  72. Schumann B.E., Squires E.J., Leeson S., Hunter B. Effect of hens fed dietary flaxseed with and without a fatty liver supplement on hepatic and plasma and production characteristics relevant to fatty liver haemorrhagic syndrome in laying hens. Brit. Poultry Sci., 2003, 44(2): 234-244 CrossRef
  73. Squires E.J., Leeson S. Aetiology of fatty liver syndrome in laying hens. Brit. Vet. J., 1988, 144(6): 602-609 CrossRef
  74. Summers J.D., Adams C.A., Leeson S. Metabolic disorders in poultry. Context Product Ltd., Packington (Leicester, UK), 2013: 109-130.
  75. Farag M.M.A. Estimation of formatting biogenetic amines concentration in fresh and processed sardine fish products during different storage conditions. World J. Fish & Marine Sci., 2013, 5(6): 628-636 CrossRef
  76. March B.E., MacMillan C. Trimethylamine production in the caeca and small intestine as a cause of fishy taints in eggs. Poultry Sci., 1979, 58(1): 93-98 CrossRef
  77. Honkatukia M., Reese K., Preisinger R., Tuiskula-Haavisto M., Weigend S., Roito J., Mäki-Tanila A., Vilkki J. Fishy taint in chicken eggs is associated with a substitution within a conserved motif of the FMO3 gene. Genomics, 2005, 86(2): 225-232 CrossRef
  78. Ward A.K., Classen H.L., Buchanan F.C. Fishy-egg tainting is recessively inherited when brown-shelled layers are fed canola meal. Poultry Sci., 2009, 88(4): 714-721 (doi: 10.3382/ps.2008-00430).
  79. Van Elswyk M.E., Dawson P.L., Sams A.R. Dietary menhaden oil influences sensory characteristics and headspace volatiles of shell eggs. J. Food Sci., 1995, 60(1): 85-89 CrossRef
  80. Swoboda P.A.T., Peers K.E. Volatile odorous compounds responsible for metallic, fishy taint formed in butterfat by selective oxidation. J. Sci. Food Agric., 1977, 28(11): 1010-1018 CrossRef
  81. Iglesias J., Lois S., Medina I. Development of a solid-phase microextraction method for determination of volatile oxidation compounds in fish oil emulsions. J. Chromatogr. A, 2007, 1163(1-2): 277-287 CrossRef
  82. Hargis P.S., Van Elswyk M.E. Manipulating the fatty acid composition of poultry meat and eggs for the health conscious consumer. World’s Poultry Sci. J., 1993, 49(3): 251-264 CrossRef
  83. Moffat C.F., McGill A.S. Variability of the composition of fish oils: significance for the diet. Proceedings of the Nutrition Society, 1993, 52(3): 441-456 CrossRef
  84. Albert B.B., Derraik J.G.B., Cameron-Smith D., Hofman P.L., Tumanov S., Villas-Boas S.G., Garg M.L., Cutfield W.S. Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA. Scientific Reports, 2015, 5: 7928 CrossRef
  85. Gonzalez-Esquerra R., Leeson S. Effect of feeding hens regular or deodorized menhaden oil on production parameters, yolk fatty acid profile, and sensory quality of eggs. Poultry Sci., 2000, 79(11): 1597-1602 CrossRef
  86. Lawlor J.B., Gaudette N., Dickson T., House J.D. Fatty acid profile and sensory characteristics of table eggs from laying hens diets containing microencapsulated fish oil. Animal Feed Science and Technology, 2010, 156(3-4): 97-103 CrossRef
  87. Kura Y., Revenga C., Hoshino E., Mock G. Fishing for answers: making sense from the global fish crisis. World Resources Institute, Washington, DC, 2004: 4-6.
  88. Agboola A.F., Omidiwura B.R.O., Oyeyemi A., Iyayi E.A., Adelani A.S. Effect of four dietary oils on cholesterol and fatty acid composition of egg yolk in layers. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 2016, 10(2): 60-67.
  89. Omidi M., Rahimi Sh., Torshizi M.A.K. Modification of egg yolk fatty acids profile by using different oil sources. Vet. Res. Forum, 2015, 6(2): 137-141.
  90. Fraeye I., Bruneel C., Lemahieu C., Buyse J., Muylaert K., Foubert I. Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Res. Int., 2012, 48(2): 961-969 CrossRef
  91. Chen T.-F., Hsu J.-Ch. Incorporation of n-3 long-chain polyunsaturated fatty acids into duck egg yolks. Asian-Australas. J. Anim. Sci., 2003, 16(4): 565-569 CrossRef
  92. Caston L.J., Leeson S. Dietary flax and egg composition. Poultry Sci., 1990, 69(9): 1617-1620 CrossRef
  93. Newkirk R. Flax: Feed Industry Guide. Flax Canada 2015, Winnipeg, MB, 2008.
  94. Morris D.H. Flax: A health and nutrition primer. Flax Council of Canada, Winnipeg, MB, 2007.
  95. Shen Y., Feng D., Oresanya T.F., Chavez E.R. Fatty acid and nitrogen utilization of processed flaxseed by adult chickens. J. Sci. Food Argic., 2005, 85(7): 1137-1142 CrossRef
  96. Feng D., Shen Y., Chavez E.R. Effectiveness of different processing methods in reducing hydrogen cyanide content of flaxseed. J. Sci. Food Agric., 2003, 83(8): 836-841 CrossRef
  97. Aymond W.M., Van Elswyk M.E. Yolk thiobarbituric acid reactive substances and n-3 fatty acids in response to whole and ground flaxseed. Poultry Sci., 1995, 74(8): 1388-1394.
  98. Alzueta C., Rodriguez M.L., Cutuli M.T., Rebole A., Ortiz L.T., Centeno C., Trevino J. Effect of whole and demucilaged linseed in broiler chicken diets on digesta viscosity, nutrient utilization and intestinal microflora. Brit. Poultry Sci., 2003, 44(1): 67-74 CrossRef
  99. Slominski B.A., Meng X., Campbell L.D., Guenter W., Jones O. The use of enzyme technology for improved energy utilization from full-fat oilseeds. Part II: Flaxseed. Poultry Sci., 2006, 85(6): 1031-1037 CrossRef
  100. Egorova T.A., LenkovaT.N.Rapeseed (Brassica napus l.) and its prospective useage in poultry diet (review). Agricultural Biology, 2015, 50(2): 172-182 CrossRef (in Eng.).
  101. Jia W., Slominski B.A., Guenter W., Humphries A., Jones O. The effect of enzyme supplementation on egg production parameters and omega-3 fatty acid deposition in laying hens fed flaxseed and canola seed. Poultry Sci., 2008, 87(10): 2005-2014 CrossRef
  102. Leeson S., Summers J.D. Ingredient evaluation and diet formulation: Flaxseed. In: Commercial poultry nutrition. S. Leeson, J.D. Summers (eds.). University Books, Guelph, Ontario, Canada, 2005: 44-46.
  103. Goldberg E.M., Ryland D., Gibson R.A., Aliani M., House J.D. Designer laying hen diets to improve egg fatty acid profile and maintain sensory quality. Food Sci. Nutr., 2013, 1(4): 324-335 CrossRef
  104. Leeson S., Summers J.D., Caston L.J. Response of layers to dietary flaxseed according to body weight classification at maturity. J. Appl. Poult. Res., 2000, 9(3): 297-302 CrossRef
  105. Weill P., Schmitt B., Chesneau G., Daniel N., Safraou F. Legrand P. Effects of introducing linseed in livestock diet on blood fatty acid composition of consumers of animal products. Ann. Nutr. Metab., 2002, 46(5): 182-191 CrossRef
  106. Najib H., Al-Yousef Y.M. Essential fatty acid content of eggs and performance of layer hens fed with different levels of full-fat flaxseed. J. Cell Anim. Biol., 2010, 4(3): 58-63.
  107. Brown Ch., Hamidu J., Adomako K. Paradigm shift in feeding layer birds for omega 3 eggs production. Proc. XXV World’s Poultry Congr., Sep 5-9, 2016. Abstracts. Beijing, China, 2016: 42.
  108. Cherian G., Quezada N. Egg quality, fatty acid composition and immunoglobulin Y content in eggs from laying hens fed full fat camelina or flax seed. J. Anim. Sci. Biotechnol., 2016, 7: 15 CrossRef
  109. Lee Y.J., Kang S.K., Heo Y.J., Shin D.W., Park T.E., Han G.G., Jin G.D., Lee H.B., Jung E., Kim H.S., Na Y., Kim E.B., Choi Y.J. Influence of flaxseed oil on fecal microbiota, egg quality and fatty acid composition of egg yolks in laying hens. Curr. Microbiol., 2016, 72(33): 259-266 CrossRef
  110. Adarme-Vega T.C., Lim D.K.Y., Timmins M., Vernen F., Li Y., Schenk P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 2012, 11(1): 96 CrossRef
  111. Griffiths M.J., Harrison S.T.L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol., 2009, 21(5): 493-507 CrossRef
  112. Lum K.K., Kim J., Lei X.G. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol., 2013, 4(1): 53 CrossRef
  113. Schenk P.M., Thomas-Hall S.R., Stephens E., Marx U.C., Mussgnug J.H., Posten C., Kruse O., Hankamer B. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res., 2008, 1(1): 20-43 CrossRef
  114. Fredriksson S., Elwinger K., Pickova J. Fatty acid and carotenoid composition of egg yolk as an effect of microalgae addition to feed formula for laying hens. Food Chem., 2006, 99(3): 530-537 CrossRef
  115. Park J.H., Upadhaya S.D., Kim I.H. Effect of dietary marine microalgae (Schyzochytrium) powder on egg production, blood lipid profiles, egg quality, and fatty acid composition of egg yolk in layers. Asian-Australas. J. Anim. Sci., 2015, 28(3): 391-397 CrossRef
  116. Wu Y., Chang Y., Huang X., Liu W., Liao R., Zhang Sh., Yan H. Comparison of n-3 polyunsaturated fatty acid-enriched eggs from hens fed diets supplemented with microalgae and flaxseed. Proc. XXV World’s Poultry Congr., Sep 5-9, 2016. Abstracts. Beijing, China, 2016: 531.
  117. Bruneel Ch., Lemahieu Ch., Frayeye I., Ryckebosch E., Muylaert K., Buy-
    se J., Foubert I. Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs. Journal of Functional Foods, 2013, 5(2): 897-904 CrossRef
  118. Ao T., Macalintal L., Paul M., Glenney Ph., Pescatore A., Cantor A., Ford M., Dawson K. Long term effects of dietary microalgae on productive performance of laying hens and egg docosahexaenoic acid concentration. Proc. XXV World’s Poultry Congr., Sep 5-9, 2016. Abstracts. Beijing, China, 2016: 114.
  119. Nimalaratne Ch., Wu J. Hen egg as an antioxidant food commodity: A review. Nutrients, 2015, 7(10): 8274-8293 CrossRef
  120. Gülçin I. Antioxidant activity of food constituents: An overview. Arch. Toxicol., 2012, 86(3): 345-391 CrossRef
  121. Holser R., Hinton A., Jr. Use of polyunsaturated fatty acids with α-tocopherol in poultry feeds. Lipid Insights, 2010, 3(1): 1-4 CrossRef