doi: 10.15389/agrobiology.2025.1.70eng
UDC: 579.64:631.452:004.032.26
Acknowledgements:
Supported financially by Russian Science Foundation (project № 23-26-00234)
THE NEURAL NETWORK RANKING OF AGRO-TECHNOLOGIES BY INDICES OF SOIL MICROBIOLOGICAL ACTIVITY AND SOIL FERTILITY: NEW POSSIBILITIES OF STATISTICAL ANALYSIS
N.I. Vorobyov1,2 ✉
1AII-Russian Research Institute for Agricultural Microbiology, 3, sh. Podbel'skogo. St. Petersburg, 196608 Russia, e-mail Nik.IvanVorobyov@yandex.ru (✉ corresponding author);
2Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, Akademika Skryabina, Moscow, 109472 Russia
Vorobyov N.I. orcid.org/0000-0001-8300-2287
Final revision received January 28, 2024
Accepted February October 16, 2024
Neural networks make it possible to extract previously inaccessible information from physiological and molecular genetic data and visualize implicit relationships. In the presented work we applied the neural network approach to analyze the data of Yu.M. Vozniakovskaya et al. (Sel’skokhozyaistvennaya Biologiya/Agricultural Biology, 1994) obtained in a long-term experiment (1962-1991, North-West region of the Russian Federation) on the influence of crop rotations and mineral fertilizers on microbiological and biochemical characteristics of sod-podzolic soils under potato and barley. The experiment, the aim of which was to identify microbiological indicators that most clearly characterize the level of soil fertility, determined the composition of soil microorganisms, measured the intensity of CO2 release, cellulose decomposition, activity of soil polyphenol oxidases and peroxidases as indicators of the intensity of plant residue humification, as well as invertases and ureases to assess the accumulation of nitrates and ammonium in the soil. On this basis, the authors attributed the most informative microbiological indicators of the level of effective soil fertility to the general soil biogenicity, species diversity of soil microorganisms, the ratio of trophic groups of microorganisms, and the graph of trophic relationships. In the present work, the analysis of fractal profiles of microbial physiological groups isolated on selective media demonstrated unique possibilities of statistical analysis using computational neural networks. Their application for processing empirical microbiological and physico-biochemical soil data reported by Yu.M. Vozniakovskaya et al., 1994 allowed determination of the specificity of the impact of the used agrotechnology elements on soil fertility under different crops. Soil microbiological activity and soil fertility are data characterizing heterogeneous biological objects? Soil microbial community (CSImicro index) and plants (CSIyield index), where CSI means Cognitive Salience Index. Therefore, to visualize the function CSIyield = f(CSImicro) we used neural network with the construction of Scale matrix the cells of which with coordinates CSIyield;CSImicro were filled with corresponding numbers of treatment variants. For this purpose, fractal profiles of soil microbial physiological groups of microorganisms obtained in the experiment were subjected to neural network analysis. As a result, form the Scale matrix, it was possible to estimate the function CSIyield = f(CSImicro) and the influence of fertilizer and crop rotation agrotechnologies on the intensity of humus accumulation in soil and soil fertility. It was found that the maximum soil fertility index CSIyield did not coincide with the maximum value of soil microbiological activity index CSImicro. The original indices proposed by us allow optimization of agrotechnologies for organ mineral fertilizers and bacterial preparations to obtain stably high yields of agricultural crops.
Keywords: soil microbiological activity, soil fertility, fractal analysis of microbiota, correlation analysis, cluster analysis, discriminant analysis, computational neural network.
REFERENCES
- Aristovskaya T.V. Mikrobiologiya protsessov pochvoobrazovaniya [Microbiology of soil formation processes]. Leningrad, 1980 (in Russ.).
- Fedotov G.N., Lysak L.V., Shalaev V.S. Lesnoy vestnik, 2013, 7: 111-115 (in Russ.).
- Shlegel’ G.G. Istoriya mikrobiologii [History of microbiology]. Moscow, 2020 (in Russ.).
- Ben-Jacob E. Bacterial self-organization: coenhancement of complexication and adaptability in a dynamic environment. Phil. Trans. R. Soc. Lond. A, 2003, 361: 1283-1312.
- Young I.M., Crawford J.W. Interactions and self-organization in the soil-microbe complex. Science, 2004, 304(5677): 1634-1637 CrossRef
- Crawford J.W., Deacon L., Grinev D., Harris J.A., Ritz K., Singh B.K., Young I. Microbial diversity affects self-organization of the soil-microbe system with consequences for function. Journal of the Royal Society Interface, 2012, 9(71): 1302-1310 CrossRef
- Vorobyov N.I., Egorov I.A., Kochish I.I., Nikonov I.N., Lenkova T.N. Fractal analysis of frequency-taxonomic profile of broiler's gut microbiota for studying the influence of probiotics on bird development. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(2): 400-410 CrossRef
- Kochish I.I., Vorob’ev N.I., Nikonov I.N., Selina M.V. Veterinariya i Zootekhniya, 2022, 12: 57-65 (in Russ.).
- Petrov V.B., Chebotar' V.K. Management of destruction and humification of the post-harvest rests of cereal crops using microbiological preparation Extrasol. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2012, 3: 103-108 (in Russ.).
- Matyuk N.S., Shevchenko V.A., Mazirov M.A., Polin V.D., Nikolaev V.A., Savos’kina O.A., ChebanenkoS.I. Monitoring i upravlenie plodorodiem pochv v agroekosistemakh: elektronnoe uchebnoe posobie [Monitoring and management of soil fertility in agroecosystems: electronic textbook]. Moscow, 2022 (in Russ.).
- Berestetskiy O.A., Voznyakovskaya Yu.M., Dorosinskiy L.M. Biologicheskie osnovy plodorodiya pochvy [Biological bases of soil fertility]. Moscow, 1984 (in Russ.).
- Kruglov Yu.V. Microbial community of soil: physiological diversity patterns and assessment (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(1): 46-59 (in Russ.).
- Semenov A.M., Shatalov A.A., Semenova E.V. Uspekhi sovremennoy biologii, 2022, 142(6): 591-602 (in Russ.).
- Emtsev V.T., Mishustin E.N. Mikrobiologiya [Microbiology]. Moscow, 2005 (in Russ.).
- Ovchinnikova T.A., Pankratov T.A. Metody ekologii pochvennykh mikroorganizmov: uchebnoe posobie [Methods of ecology of soil microorganisms: a tutorial]. Samara, 2009 (in Russ.)
- Osnovnye mikrobiologicheskie i biokhimicheskie metody issledovaniya pochv /Pod redaktsiey Yu.M. Voznyakovskoy [Basic microbiological and biochemical methods of soil research. Yu.M. Voznyakovskaya (ed.)]. Leningrad, 1987 (in Russ.).
- Tepper E.Z., Shil’nikova V.K., Pereverzeva G.I. Praktikum po mikrobiologii [Microbiology workshop]. Moscow, 2004 (in Russ.).
- Netrusov A.I., Bonch-Osmolovskaya E.A., Gorlenko V.M. Ekologiya mikroorganizmov [Ecology of microorganisms]. Moscow, 2004 (in Russ.).
- Manucharova N.A. Molekulyarno-biologicheskie metody v pochvovedenii i ekologii [Molecular biological methods in soil science and ecology]. Moscow, 2014 (in Russ.).
- Chubenko G.I. Metody identifikatsii bakteriy [Methods of bacterial identification]. Blagoveshchensk, 2018 (in Russ.).
- Shcherbakov A.V. Endofitnye soobshchestva sfagnovykh mkhov kak istochnik bakteriy – effektivnykh assotsiantov sel’skokhozyaystvennykh kul’tur. Kandidatskaya dissertatsiya [Endophytic communities of sphagnum mosses as a source of bacteria – effective associates of agricultural crops. PhD Thesis]. St. Petersburg, 2013 (in Russ.).
- Korzhov S.I., Maslov V.A., Orekhova E.S. AgroXXI, 2009, 1-3: 20090103022.
- Voznyakovskaya Yu.M„ Popova Zh.P. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 1989, 5: 86-89 (in Russ.).
- Dreyper N., Smit G. Prikladnoy regressionnyy analiz. Mnozhestvennaya regressiya [Applied regression analysis. Multiple regression]. Moscow, 2007 (in Russ.).
- Shafran S.A. Pochva, udobreniya, urozhay [Soil, fertilizers, harvest]. Moscow, 2019 (in Russ.).
- Sutrop U. List Task and a Cognitive Salience Index. Field metods, 2001, 13(3): 263-276 (in Russ.).
- Tolstova Yu.N. Osnovy mnogomernogo shkalirovaniya [Basics of multidimensional scaling]. Moscow, 2006 (in Russ.).
- Ermolaev O.Yu. Matematicheskaya statistika dlya psikhologov [Mathematical statistics for psychologists]. Moscow, 2003 (in Russ.).
- Voznyakovskaya Yu.M., Popova Zh.P., Vorob’ev N.I. Sel’skokhozyaystvennaya biologiya [Agricultural Biology], 1994, 5: 84-90 (in Russ.).
- Shreder M. Fraktaly, khaos, stepennye ryady [Fractals, chaos, power series]. Izhevsk, 2001 (in Russ.).
- Mitsel’ A.A. Vychislitel’nye metody [Computational methods]. Tomsk, 2013 (in Russ.).
- Vakulenko S.A., Zhikhareva A.A. Prakticheskiy kurs po neyronnym setyam [Practical course on neural networks]. St. Petersburg, 2018 (in Russ.).
- Dyrmann M., Karstoft H., Midtiby H.S. Plant species classification using deep convolutional neural network. Biosystems Engineering, 2016, 151: 72-80.
- Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw., 2015,61(1): 85-117 CrossRef
- Pogodaev A.K., Khabibullina E.L., Inyutin D.M. Prikladnaya matematika i voprosy upravleniya, 2021, 2: 73-92 (in Russ.).
- Kulakov K.A., Dimitrov V.M. Osnovy testirovaniya programmnogo obespecheniya [Software testing basics]. Petrozavodsk, 2018 (in Russ.).
- Gafarov F.M., Galimyanov A.F. Iskusstvennye neyronnye seti i ikh prilozheniya [Artificial neural networks and their applications]. Kazan’, 2018 (in Russ.).
- Kruglov V.V., Borisov V.V. Iskusstvennye neyronnye seti. Teoriya i praktika [Artificial neural networks. Theory and practice]. Moscow, 2002 (in Russ.).
- Kim Dzh.-O., Myuller Ch.U., Klekka U.R., Oldenderfer M.S., Bleshfild R.K. Faktornyy, diskriminantnyy i klasternyy analiz [Factor, discriminant and cluster analysis]. Moscow, 1989 (in Russ.).
- Krivtsova N.I., Moyzes O.E. Dopolnitel’nye glavy matematiki. Statisticheskiy analiz [Additional chapters in mathematics. Statistical analysis]. Tomsk, 2015 (in Russ.).
- Tyurin V.V., Shcheglov S.N. Diskriminantnyy analiz v biologii: monografiya [Discriminant analysis in biology: monograph]. Krasnodar, 2015 (in Russ.).
- Vorob’ev N.I., Pishchik V.N., Provorov N.A., Sviridova O.V. Agrofizika, 2014, 4(16): 35-41 (in Russ.).
- Kutuzova R.S., Sirota L.B., Orlova O.V., Vorob’ev N.I. Agrokhimiya, 2001, 1: 19-33 (in Russ.).
- Ivanishchev V.V. Izvestiya TulGU, 2018, 1: 69-77 (in Russ.).
- Karasev E.S., Chizhevskaya E.P., Simarov B.V., Provorov N.A., Andronov E.E. Comparative phylogenetic analysis of symbiotic genes of different nodule bacteria groups using the metatrees method. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(5): 995-1003 CrossRef
- Pershina E.V., Andronov E.E., Pinaev A.G., Akhtemova G.A., Doumova V.A., Provorov N.A. The use of T-RFLP method for studying the dynamics of soil microbial communities under xenobiotics treatment. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 3: 81-87 (in Russ.).
- Samusik E.A., Marchik T.P., Golovatyy S.E. Zhurnal Belorusskogo gosudarstvennogo universiteta. Ekologiya, 2019, 3: 65-79 (in Russ.).
- Khaziev F.Kh. Ekobiotekh, 2018, 1(2): 80-92 CrossRef (in Russ.).
- Sal’nikova E.V. Khimicheskiy analiz ob’‘ektov okruzhayushchey sredy [Chemical analysis of environmental objects]. Orenburg, 2021 (in Russ.).
- D’yakonov V.P. Veyvlety. Ot teorii k praktike [Wavelets. From theory to practice]. Moscow, 2004 (in Russ.).
- Mascarenhas, WF. Fast and accurate normalization of vectors and quaternions. Comp. Appl. Math., 2018, 37: 4649-4660.
- Nikoli D., Muresan R.C., Feng W., Singer W. Scaled correlation analysis: a better way to compute a cross-correlogram. European Journal of Neuroscience, 2012, 35(5): 1-21 CrossRef
- Batushansky A., Toubiana D., Fait A. Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: a case study in cancer cell metabolism. Biomed. Res. Int., 2016, 2016: ID8313272 CrossRef
- Everitt B.S., Landau S., Leese M., Stahl D. Cluster analysis. John Wiley & Sons, 2011.
- Markova L.V., Korchevskaya E.A. Chislennye metody nakhozhdeniya sobstvennykh vektorov i sobstvennykh znacheniy matrits [Numerical methods for finding eigenvectors and eigenvalues of matrices]. Vitebsk, 2011 (in Russ.).
- Okubo A., Matsusaka M., Sugiyama S. Rasteniya i pochva, 2016, 399 (1-2): 345-356 (in Russ.).
- Kravchenko L.V. Rol’ kornevykh ekzometabolitov v integratsii mikroorganizmov s rasteniyami. Avtoreferat doktorskoy dissertatsii [The role of root exometabolites in the integration of microorganisms with plants.PhD Thesis]. Moscow, 2000 (in Russ.).
- Belosokhov A.F., Yarmeeva M.M., Mislavskiy S.M., Kurchaev M.L., Dolgov A.M., Albantov G.P., Skokov D.N., Tsindeliani A.A., Kokaeva L.Yu., Chudinova E.M., Elanskiy S.N. Mikologiya i fitopatologiya, 2023, 57(2): 123-133 (in Russ.).
- Bogoutdinov D.Z., Fominykh T.S., Kastal’eva T.B., Girsova N.V., Pavlovskaya N.E., Gagarina I.N., Mishurov N.P., Nemenushchaya L.A., Piskunova N.A. Metody diagnostiki vozbuditeley zabolevaniy ovoshchnykh kul’tur: analiticheskiy obzor [Methods of diagnostics of pathogens of vegetable crops: an analytical review]. Moscow, 2020 (in Russ.).
- Pavlyusin V.A., Novikova I.I., Boikova I.V. Microbiological control in phytosanitary optimization technologies for agroecosystems: research and practice (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(3): 421-438 CrossRef
- Kolesnikov L.E., Balagurova E.D., Popova E.V., Novikova I.I., Kolesnikova Y.R. Application of chitosan to protect wheat from diseases and boost yields. Appl. Biochem. Microbiol., 2022, 58(3): 329-335.
- Zhemyakin S.V., Vorobyov N.I., Popov A.A., Orlova O.V., Rusakova I.V. Bioconsolidation of soil microflora and subsequent increase in the efficiency of humification of cereals plant residues. BIO Web of Conferences ‘AgriScience2024’, 2024, 139 CrossRef
- Moskovkin V.V. Ekologo-agrokhimicheskaya otsenka vliyaniya mikrobiologicheskikh preparatov-destruktorov rastitel’nykh ostatkov zernovykh kul’tur v agrotsenozakh na dernovo-podzolistykh supeschanykh pochvakh. Kandidatskaya dissertatsiya [Ecological and agrochemical assessment of the influence of microbiological preparations-destructors of plant residues of grain crops in agrocenoses on sod-podzolic sandy loam soils. PhD Thesis]. Vladimir, 2018 (in Russ.).
- Masyutenko N.P., Pankova T.I., Kuznetsov A.V., Masyutenko M.N., Breskina G.M., Chuyan N.A. Yug Rossii: ekologiya, razvitie, 2021, 16(2): 108-118 CrossRef (in Russ.).