doi: 10.15389/agrobiology.2025.1.3eng
UDC: 633.11:632.938.1:631.52
Acknowledgements:
The authors thank the reviewers for their contribution to the peer review of this work.
Supported financially by the Russian Science Foundation, Project No. 19-76-30005
NEW SOURCES AND DONORS WITH HIGH POTENTIAL FOR COMPLEX RESISTANCE TO ESPECIALLY DANGEROUS DISEASES FOR WHEAT BREEDING
V.P. Sudnikova1, Yu.V. Zeleneva2 ✉, I.V. Gusev1,
E.A. Konkova3, N.M. Kovalenko2
1Michurin Federal Science Center, Middle-Russian Branch, 1А, ul. Molodezhnaya, pos. Novaya Zhizn’, Tambov District, Tambov Province, 392553 Russia, e-mail sudnikova47@mail.ru, tmbsnifs@mail.ru;
2All-Russian Research Institute of Plant Protection, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail zelenewa@mail.ru (✉ corresponding author), nadyakov@mail.ru;
3Federal Center of Agriculture Research of the South-East Region, 7, Tulaikov Street, Saratov, 410010 Russia, e-mail baukenowaea@mail.ru
ORCID:
Sudnikova V.P. orcid.org/0000-0001-5367-1340
Konkova E.A. orcid.org/0000-0001-8607-2301
Zeleneva Yu.V. orcid.org/0000-0001-9716-288X
Kovalenko N.M. orcid.org/0000-0001-9577-8816
Gusev I.V. orcid.org/0000-0003-1063-4739
Final revision received July o8, 2024
Accepted August 08, 2024
The development and introduction into production of new wheat varieties with complex resistance to diseases is an urgent task of modern breeding. This work is the first to identify samples resistant to the main pathogens of septoria blotch, tan spot, spot blotch, leaf and stem rust during comprehensive field and laboratory evaluations of 18 spring soft wheat breeding lines originated at the Central Russian branch of Michurin Federal Scientific Center, and 25 hybrids and varieties of soft wheat of domestic and foreign breeding. Using molecular markers, a recessive allele tsn1, providing resistance to the ToxA toxin, was detected in more than 20 wheat samples. Samples carrying the recessive allele snn1, providing resistance to the Tox1 toxin, were identified. The work objective was an immunological assessment of soft wheat breeding material resistance to leaf-stem diseases and identification of genes for resistance to phytopathogen toxins. Immunological tests of soft wheat (Triticum aestivum L.) samples were carried out in 2021-2023 at a stationary site of the Michurin Central Russian branch of the Federal Scientific Center located in the north-eastern part of the Central Black Earth Region (Tambov District, Tambov Province). The material for immunological studies in infectious nurseries were 18 breeding lines of spring soft wheat from the Central Russian branch of the Michurin Federal Scientific Center 1/16-5-1, 1/16-5-2, 3/16-5, 3/16-20, 5/16-2-1, 5/16-2-2, 5/16-20, 6/16-2-1, 6/16-2-2, 12/16-4, 1/16-2, 1/16-3, 5/16-1, 5/16-5, 5/16-2, 10/16-1, 11/16-5, 17/16-1 and 25 hybrids and varieties of soft wheat of domestic and foreign selection 31213 (USA), 31228 (USA), 31306 (USA), 34950 (USA), 49851 (USA), 55196 (USA), 51289 (USA), 51829 (USA), 55199 (USA), 30287 (Mexico), 32164 (Mexico), 31821 (Mexico), 347071 (Mexico), 31765 (CIMMYT), 31964 (CIMMYT), 33832 (CIMMYT), 33402 (Brazil), 3515 (Argentina), 63325 (France), 34984 (Peru), 30579 (ICARDA), Biora (Russia), Lutescens 537 (Russia), Estivum 614 (Russia), 54208 (Russia) (the work provides sample numbers from the catalog of the Michurin Federal Scientific Center). To evaluate wheat samples with septoria tritici blotch (Zymoseptoria tritici, Parastagonospora nodorum, P. pseudonodorum) and leaf rust (Puccinia triticina) pathogens, an artificial infection load was created in field conditions. Plant damage by the tan spot (yellow leaf spot, Pyrenophora tritici-repentis) was evaluated under natural infection. Laboratory evaluation with artificial infection load of leaf and stem rust (P. triticina, P. graminis) pathogens was performed 8-10 days after inoculation. For laboratory evaluation of resistance/susceptibility to spot blotch, a spore mixture of fungal isolates from the collection of the All-Russian Research Institute of Plant Protection (St. Petersburg-Pushkin) was used as an inoculum (Z. tritici, P. nodorum, P. pseudonodorum, Septoria triticicola). In addition, in lab tests, the leaves of collection wheat samples were infected with isolates of P. tritici-repentis (ToxA) and B. sorokiniana. The inoculum of each fungal species contained a mixture of several isolates obtained in 2022 from the VIZR collection. The P. tritici-repentis material was collected in the Saratov Province, B. sorokiniana in the Leningrad Province. Genomic DNA was isolated from the leaves of 5-day-old wheat seedlings using the standard CTAB/chloroform method. After quantitative assessment, DNA concentration was normalized to 30 ng/μl for PCR. Wheat samples were examined for the presence of Tsn1/tsn1, Snn1/snn1 genes. A number of breeding lines and hybrid forms had high resistance to the main spot blotch pathogens Z. tritici (1/16-5-1, 1/16-5-2, 3/16-5, etc.), P. nodorum (6/16-2-2, 12/16-4, 1/16-2, etc.), P. pseudonodorum (6/16-2-2, 12/16-4, 1/16-3, etc.) and S. triticicola (3/16-5, 11/16-5, 17/16-1, etc.). In field and laboratory tests most of the studied samples (95-100 %) showed high resistance to leaf and stem rust. A number of breeding lines and hybrids were resistant to the causative agent of tan spot (P. triticina-repentis) (1/16-5-1, 3/16-5, 3/16-20, etc.). Some lines and hybrids were resistant to the causative agent of spot blotch (B. sorokiniana) (5/16-2-1, 5/16-2-2, 6/16-2-2, etc.). In the studied wheat breeding material, genes for resistance to two important toxins of phytopathogens ToxA and Tox1 were identified. The recessive allele tsn1, providing resistance to the ToxA toxin, was identified in more than 20 wheat samples. These are two varieties (Biora, Lutescens 537), 9 selection lines (1/16-5-1, 1/16-5-2, 3/16-20, 5/16-20, 1/16-3, 5/16-1, 5/16-5, 10/16-1, 17/16-1) and 13 hybrid lines 31228, 34950, 55196, 55199 (USA); 30287, 31821, 347071 (Mexico); 31765, 31964 (CIMMYT); 33402 (Brazil); 63325 (France); 34984 (Peru); 54208 (Russia). Other samples carried the recessive snn1 allele providing resistance to the Tox1 toxin, namely the Estivum 614 variety, 8 selection lines (1/16-5-1, 1/16-5-2, 3/16-5, 3/16-20, 5/16-20, 1/16-2, 1/16-3, 5/16-1) and 10 hybrid lines 31228, 49851, 51289, 51829, 55199 (USA); 32164 (Mexico); 33402 (Brazil); 63325 (France); 34984 (Peru); 54208 (Russia). Lines and hybrids 1/16-5-1, 1/16-5-2, 3/16-20, 5/16-20, 1/16-3, 5/16-1 (Central Russian Branch of the Michurin Federal Scientific Center); 31228, 55199 (USA); 33402 (Brazil); 63325 (France); 34984 (Peru); 54208 (Russia) beared both tsn1 and snn1 genes, providing complex protection against two toxins.
Keywords: Triticum aestivum L., wheat, brown rust, selection, immunity, stem rust, spot blotch, pyrenophorosis, dark brown spot, Tsn1, Snn1, PCR.
REFERENCES
- Kokhmetova A.M., Atishova M.N., Kumarbayeva M.T., Leonova I.N. Phytopathological screening and molecular marker analysis of wheat germplasm from Kazakhstan and CIMMYT for resistance to tan spot. Vavilovskii Zhurnal Genetiki i Selektsii, 2019, 23(7): 879-886 CrossRef
- Zhelezova S.V., Pakholkova E.V., Veller V.E., Voronov M.A., Stepanova E.V., Zhelezova A.D., Sonyushkin A.V., Zhuk T.S., Glinushkin A.P. Hyperspectral non-imaging measurements and perceptron neural network for pre-harvesting assessment of damage degree caused by Septoria/Stagonospora blotch diseases of wheat. Agronomy, 2023, 13(4): 1045 CrossRef
- Plotnikova L., Sagendykova A., Pozherukova V. The use of genetic material of tall wheatgrass to protect common wheat from Septoria blotch in Western Siberia. Agriculture, 2023, 13(1): 203 CrossRef
- Kumarbayeva M., Kokhmetova A., Kovalenko N., Atishova M., Keishilov Z., Aitymbetova K., Characterization of Pyrenophora tritici-repentis (tan spot of wheat) races in Kazakhstan. Phytopathol. Mediterr, 2022, 61(2): 243-257 CrossRef
- Mironenko N.V., Kovalenko N.M., Baranova O.A., Mitrofanova O.P. Trudy po prikladnoy botanike, genetike i selektsii, 2023, 184(4): 205-214 CrossRef
- Kokhmetova A., Rathan N.D., Sehgal D., Malysheva A., Kumarbayeva M., Nurzhuma M., Bolatbekova A., Krishnappa G., Gultyaeva E., Kokhmetova A., Keishilov Z., Bakhytuly K. QTL mapping for seedling and adult plant resistance to stripe and leaf rust in two winter wheat populations. Frontiers in Genetics, 2023, 14: 1265859 CrossRef
- Kokhmetova A., Bolatbekova A., Zeleneva Y., Malysheva A., Bastaubayeva S., Bakhytuly K., Dutbayev Y., Tsygankov V. Identification of wheat Septoria tritici resistance genes in wheat germplasm using molecular markers. Plants, 2024, 13(8): 1113 CrossRef
- Pakholkova E.V., Sal’nikova N.N. Dostizheniya nauki i tekhniki APK, 2024, 38(2): 16-22 (in Russ.).
- Kovalenko N.M., Zeleneva Yu.V., Sudnikova V.P. Characterization of Pyrenophora tritici-repentis, Parastagonospora nodorum, and Parastagonospora pseudonodorum in the Tambov Oblast for the presence of effector genes. Russian Agricultural Sciences, 2023, 49(3): 285-291 CrossRef
- Kremneva O.Yu., Danilov R.Yu., Sereda I.I. ·Tutubalina O.V., Pachkin A.A., Zimin M.V. Spectral characteristics of winter wheat varieties depending on the development degree of Pyrenophora tritici-repentis. Precision Agriculture, 2023, 24(3): 830-852 CrossRef
- Gavrilova O.P., Gagkaeva T.Yu., Orina A.S., Gogina N.N. Mikologiya i fitopatologiya, 2022, 56(3): 194-206 (in Russ.).
- Gvozdeva M.S., Volkova G.V. Yug Rossii: ekologiya, razvitie, 2023, 18(2): 140-151 CrossRef (in Russ.).
- Gul’tyaeva E.I., Shaydayuk E.L., Veselova V.V., Smirnova R.E., Zuev E.V., Khakimova A.G., Mitrofanova O.P. Trudy po prikladnoy botanike, genetike i selektsii, 2022, 183(4): 208-218 CrossRef (in Russ.).
- Sibikeev S.N., Kon’kova E.A., Salmova M.F. Agrarnyy nauchnyy zhurnal, 2020, 9: 40-44 CrossRef (in Russ.).
- Volkova G., Kudinova O., Vaganova O., Agapova V. Effectiveness of leaf rust resistance genes in the adult and juvenile stages in Southern Russia in 2011-2020. Plants, 2022, 11(6): 793 CrossRef
- Khudokormova Zh.N., Ablova I.B., Bespalova L.A., Tarkhov A.S., Boldakov D.M., Lymar’ A.A. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2022, 102: 216-221 (in Russ.).
- Baranova O., Solyanikova V., Kyrova E., Kon’kova E., Gaponov S., Sergeev V., Shevchenko S., Mal’chikov P., Dolzhenko D., Bespalova L., Ablova I., Tarhov A., Vasilova N., Askhadullin D., Askhadullin D., Sibikeev S. Evaluation of resistance to stem rust and identification of Sr genes in Russian spring and winter wheat cultivars in the Volga region. Agriculture, 2023, 13(3): 635 CrossRef
- Kon’kova E.A. Agrarnyy nauchnyy zhurnal, 2021, 8: 23-27 CrossRef (in Russ.).
- Zhang Y., Wu X., Wang W., Xu Y., Sun H., Cao Y., Li T., Karimi-Jashni M. Virulence characteristics of Blumeria graminis f. sp. tritici and its genetic diversity by EST-SSR analyses. PeerJ, 2022, 10: e14118 CrossRef
- Syukov V.V., Porot’kin S.E. Vavilovskiy zhurnal genetiki i selektsii, 2014, 18(3): 517-522 (in Russ.).
- Druzhin A.E., Krupnov V.A., Golubeva T.D., Kalintseva T.V. Intraracial structure and variability in virulence to Ustilago tritici. Annual Wheat Newsletter, 2005, 51: 104.
- Zeleneva Yu.V., Sudnikova V.P., Bokunova L.V., Gusev I.V. Materialy IV Natsional’noy nauchno-prakticheskoykonferentsii s mezhdunarodnym uchastiem «Aktual’nye nauchno-tekhnicheskie sredstva i sel’skokhozyaystvennye problemy» [Proc. IV National Conf. «Current scientific and technical means and agricultural problems»]. Kemerovo, 2020: 108-113 (in Russ.).
- Gurjar M.S., Kumar T.P.J., Shakouka M.A., Saharan M.S., Rawat L., Aggarwal R. Draft genome sequencing of Tilletia caries inciting common bunt of wheat provides pathogenicity-related genes. Frontiers Microbiologi, 2023, 14: 1283613 CrossRef
- Askhadullin D.F., Askhadullin D.F., Vasilova N.Z., Zuev E.V., Bagavieva E.Z., Tazutdinova M.R., Khusainova I.I. Zernovoe khozyaystvo Rossii, 2022, 14(2): 83-88 CrossRef (in Russ.).
- Chekmarev V.V. Zashchita i karantin rasteniy, 2012, 8: 27-28 (in Russ.).
- Metodika gosudarstvennogo sortoispytaniya sel’skokhozyaystvennykh kul’tur. Vypusk pervyy [Methodology of state testing of agricultural crops varieties. First edition]. Moscow, 2019: 329 (in Russ.).
- Kolomiets T.M., Pakholkova E.V., Dubovaya L.P. Otbor iskhodnogo materiala dlya sozdaniya sortov pshenitsy s dlitel’noy ustoychivost’yu k septoriozu [Selection of source material for the creation of wheat varieties with long-term resistance to septoria]. Moscow, 2017: 56 (in Russ.).
- Peterson R.F., Campbell A.B., Hannah A.E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 1948, 26(5): 496-500 CrossRef (in Russ.).
- Mikhaylova L.A., Gul’tyaeva E.I., Mironenko N.V. V knige: Sbornik metodicheskikh rekomendatsiy po zashchite rasteniy [In: Collection of methodological recommendations on plant protection]. St. Petersburg, 1998: 105-126.
- Mains E.B., Jackson H.S. Physiologic specialization in the leaf rust of wheat Puccinia triticina Erikss. Phytopathology, 1926, 16: 89-120.
- Stakman E.C., Stewart D.M., Loegering W.Q. Identification of physiologic races of Puccinia graminis var. tritici. United States Department of Agriculture. Agricultural Research Service, 1962, 617: 53.
- Mikhaylova L.A., Mironenko N.V., Kovalenko N.M. Zheltaya pyatnistost’ pshenitsy. Metodicheskie ukazaniya po izucheniyu vozbuditelya zheltoy pyatnistosti Pyrenophora tritici-repentis i ustoychivosti sortov [Yellow spot of wheat. Guidelines for studying the causative agent of yellow spot Pyrenophora tritici-repentis and resistance of varieties]. St. Petersburg, 2012: 64 (in Russ.).
- Smurova S.G. Novye istochniki i donory ustoychivosti pshenitsy k Cochliobolus sativus Drechs. ex Dastur. Kandidatskaya dissertatsiya [New sources and donors of wheat resistance to Cochliobolus sativus Drechs. ex Dastur. PhD Thesis]. St. Petersburg, 2008: 236 (in Russ.).
- Doyle J.J., Doyle J.L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12(1): 13-15.
- Faris J.D., Zhang Z., Lu H.J., Lu S.W., Reddy L., Cloutier S., Fellers J.P., Meinhardt S.W., Rasmussen J.B., Xu S.S., Oliver R.P., Simons K.J., Friesen T.L. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. PNAS, 2010, 107(30): 13544-13549 CrossRef
- Bertucci M., Brown-Guedira G., Murphy J.P., Cowger C. Genes conferring sensitivity to Stagonospora nodorum necrotrophic effectors in Stagonospora nodorum blotch-susceptible U.S. wheat cultivars. Plant Disease, 2014, 98(6): 746-753 CrossRef
- Ciuffetti L.M., Tuori R.P., Gaventa J.M. A single gene encodes a selective toxin causal to the development of tan spot of wheat. The Plant Cell, 1997, 9(2): 135-144 CrossRef
- Shi G., Zhang Z., Friesen T.L., Raats D., Fahima T., Brueggeman R.S., Lu S., Trick H.N., Liu Z., Chao W., Frenkel Z., Xu S.S., Rasmussen J.B., Faris J.D. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Science Advances, 2016, 2(10): e1600822 CrossRef
- Zhang Z., Friesen T.L., Xu S.S., Shi G., Liu Z., Rasmussen J.B., Faris J.D. Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. The Plant Journal, 2011, 65(1): 27-38 CrossRef
- Zeleneva Yu.V., Konkova E.A. Soft wheat cultivars grown in the Saratov region and their resistance to Septoria blotch. Vavilov Journal of Genetics and Breeding, 2023, 27(6): 582-590 CrossRef
- Zeleneva Y.V., Sudnikova V.P., Gusev I.V., Baranova O.A. Identification of effector genes of Parastagonospora nodorum, P. pseudonodorum in Tambov populations and sensitivity genes to NEs in varieties and hybrid lines of spring soft wheat. Ecological Genetics, 2024, 22(2): 139-150 CrossRef
- Nuzhnaya T., Veselova S., Burkhanova G., Rumyantsev S., Shoeva O., Shein M., Maksimov I. Novel sources of resistance to Stagonospora nodorum and role of effector-susceptibility gene interactions in wheat of Russian breeding. Int. J. Plant Biol., 2023, 14(2): 377-396 CrossRef
- Friesen T.L., Holmes D.J., Bowden R.L., Faris J.D. ToxA is present in the U.S. Bipolaris sorokiniana population and is a significant virulence factor on wheat harboring Tsn1. Plant Disease, 2018, 102(12): 2446-2452 CrossRef
- Navathe S., Yadav P.S., Chand R., Mishra V.K., Vasistha N.K., Meher P.K., Joshi A.K., Gupta P.K. ToxA-Tsn1 interaction for spot blotch susceptibility in Indian wheat: an example of inverse genefor-gene relationship. Plant Disease, 2020, 104(1): 71-81 CrossRef
- Zeleneva Yu.V., Gul’tyaeva E.I., Plakhotnik V.V. Vestnik zashchity rasteniy, 2013, 3: 34-39 (in Russ.).