doi: 10.15389/agrobiology.2024.1.156eng

UDC: 633.2:631.46:631.559



N.N. Shuliko , A.Yu. Timokhin, O.F. Khamova,
V.S. Boiko, E.V. Tukmacheva, I.A. Korchagina, A.A. Veinbender

Omsk Agrarian Scientific Center», 26, prosp. Koroleva, Omsk, 644012 Russia, e-mail (✉ corresponding author),,,,,,

Shuliko N.N.
Tukmacheva E.V.
Timokhin A.Yu.
Korchagina I.A.
Khamova O.F.
Veinbender A.A.
Boiko V.S.Х

Final revision received August 31, 2023
Accepted October 27, 2023

The world experience indicates that both natural factors (soil fertility, plant biopotential, etc.) and agrogenic effects (fertilizers, farming systems, etc.) promote sustainable growing crops. Mineral fertilizers have an impact on the abundance, activity and diversity of soil microflora by increasing the productivity of the system, the return of plant residues and the content of organic matter in the soil. Here we show that as a result of the systematic application of mineral fertilizers, the biological state of meadow-chernozem soil remains favorable for a number of microbiological indicators and for an increase in fodder crop yields. Our purpose was to assess the effects and relationship of application of fertilizers on soil microbiological and agrochemical parameters and, as a result, on crop productivity. The tests were carried out in 2020-2022 in the forest-steppe zone of the South Western Siberia, Omsk region (55.04192°N, 73.46504°E) in a stationary field experiment. The content of mobile phosphorus in the soil according to Chirikov is medium. In eight-field grain-grass crop rotation, a mix of perennial grases Dáctylis glomeráta L. with Onobrýchis arenária (Kit.) DC. and annual sorghum-sudank hybrid grass Sorghum × drummondii (Steud.) Millsp. & Chase were grown. The number of different physiological groups of microorganisms, enzymatic activity, the content of nitrates, the nitrification ability of the arable soil layer, and crop yields were assessed. We revealed that the growth of agronomically valuable groups under annual grasses is more intensive than under perennial grasses. Optimized mineral nutrition (N60P60) of the mixed grass stand stimulated mostly the growth of the phosphate-mobilizing microorganisms and soil micromycetes (by 118 and 122 % compared to control), under the sorghum Sudangrass hybrid, the number of amylolytic and oligonitrophilic microbiota significantly increased by 57-90 % vs. control, respectively. The analysis of changes in the total microbial number showed the stimulating effect of mineral fertilizers on the soil microbocenosis under agricultural crops. The use of mineral fertilizers affected the total microbial numbers equally under perennial and annual grasses, with 51-52 % increase vs. the control without fertilizers. It was revealed that the long-term use of mineral fertilizers negatively affects the activity of catalase, the redox enzyme. The decrease vs. the control was up to 14 % depending on the culture. The activity of hydrolytic enzymes urease and invertase remained not significantly affected. Observations of the meadow-chernozem soil nitrate regime showed that mineral fertilizers used at a dosage of N60P60 in sorghum-Sudangrass hybrid and grass mixture crops increased the soil nitrate nitrogen content during the growing season by two times or more compared to variants without fertilizers. In our research, the yield of perennial grasses over the years was 3.84-4.57 t/ha DM in the control and 4.82-4.89 t/ha DM upon fertilization. The studied technology of mineral fertilizer application significantly increases the yield of sorghum-Sudangrass (by 1.65 t/ha DM, or by 39 % vs. control. Crop yields had the strongest direct correlation with the microbiota of the nitrogen cycle, the amylolytic and proteolytic microorganisms (r = 0.98 and r = 0.85, respectively, p < 0,05).

Keywords: soil microorganisms, enzymatic activity, mineral fertilizers,nitrate nitrogen, nitrification ability, crop rotation, perennial grasses, sorghum-sudangrass hybrid, yield.



  1. Kapustin S.I., Volodin A.B., Kapustin A.S. Tavricheskiy vestnik agrarnoy nauki, 2022, 3(31): 76-84 (in Russ.).
  2. Boyko V.S., Timokhin A.Yu., Volodin A.B., Nizhel’skiy T.N. Kormoproizvodstvo, 2022, 4: 29-33 (in Russ.).
  3. Hamidi N.H., Ahmed O.H., Omar L., Ch’ng H.Y., Johan P.D., Paramisparam P., Musah A.A., Jalloh M.B. Co-application of inorganic fertilizers with charcoal and sago bark ash to improve soil nitrogen availability, uptake, use efficiency, and dry matter production of sorghum cultivated on acid soils. Sustainability, 2023, 15: 827 CrossRef
  4. Chernyavskikh V.I. Dostizheniya nauki i tekhniki APK, 2009, 7: 42-45 (in Russ.).
  5. Siebielec S., Siebielec G., Klimkowicz-Pawlas A., Gałązka A., Grządziel J., Stuczyński T. Impact of water stress on microbial community and activity in sandy and loamy soils. Agronomy, 2020, 10(9): 1429 CrossRef
  6. Le Guillou C., Chemidlin Prévost‐Bouré N., Karimi B., Akkal‐Corfini N., Dequiedt S., Nowak V., Terrat S., Menasseri-Aubry S., Viaud V., Maron P.A., Ranjard L. Tillage intensity and pasture in rotation effectively shape soil microbial communities at a landscape scale. Microbiologyopen, 2019, 8 (4): e00676 CrossRef
  7. Nannipieri P., Greco S., Ceccanti B. Ecological significance of biological activity in soil. Biochemistry of soil, 2017, 7: 293-337 CrossRef
  8. Wolyejko E., Jablonska-Trypuc A., Wydro U., Butarewicz A. Soil biological activity as an indicator of soil pollution with pesticides. Applied Soil Ecology, 2020, 147: 103356 CrossRef
  9. Garg N., Saroy K., Cheema A., Bisht A. Microbial diversity in soil: biological tools for abiotic stress management in plants. In: Plant biotic interactions. A. Varma, S. Tripathi, R. Prasad (eds.). Springer, Cham. 2019
  10. Jezierska-Tys S., Wesolowska S., Galazka A., Joniec J., Bednarz J., Cierpiala R. Biological activity and functional diversity in soil in different cultivation systems. International Journal of Environmental Science and Technology, 2020, 17: 4189-4204 CrossRef
  11. Oszust K., Frac M., Gryta A., Bilinska N. The influence of ecological and conventional plant production systems on soil microbial quality under hops (Humulus lulus). International Journal of Molecular Sciences, 2014, 15(6): 9907-9923 CrossRef
  12. Basmaga M., Wyszkowska J., Kucharski J. The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth. Ecotoxicology, 2016, 25(8): 1575-1587 CrossRef
  13. Mommer L., Kirkegaard J., Ruijven J. Root-root interactions: towards a rhizosphere framework. Trends in Plant Science, 2016, 21(3): 209-217 CrossRef
  14. Abdurashitova E.R., Mel’nichuk T.N., Abdurashitov S.F., Egovtseva A.Yu., Turin E.N., Gongalo A.A. Rossiyskaya sel’skokhozyaystvennaya nauka, 2022, 2: 67-72 CrossRef (in Russ.).
  15. Dmitriev N.N., Gamzikov G.P. Agrokhimiya, 2015, 2: 3-12 (in Russ.).
  16. Bünemann E.K., Schwenke G.D., Zwieten L.Van Impact of agricultural inputs on soil organisms-a review. Australian Journal of Soil Research, 2006, 44 (4): 379-406 CrossRef
  17. Konova A.M., Gavrilova A.Yu. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal, 2016, 11-5 (53): 27-30 CrossRef (in Russ.).
  18. Wang G-Y., Hu Y-X., Liu Y-X., Ahmad S., Zhou X-B. Effects of supplement irrigation and nitrogen application levels on soil carbon-nitrogen content and yield of one-year double cropping maize in subtropical region. Water, 2021, 13(9): 1180 CrossRef
  19. Artamonova V.S., Kurachev V.M., Ignat’ev L.A., Naumenko Yu.V. Mikrobiologicheskie osobennosti antropogenno preobrazovannykh pochv Zapadnoy Sibiri [Microbiological features of anthropogenically transformed soils of Western Siberia]. Novosibirsk, 2002 (in Russ.).
  20. Zvyagintsev D.G. Pochvovedenie, 1978, 6: 48-52 (in Russ.).
  21. Berestetskiy A.O. Prikladnaya biokhimiya i mikrobiologiya, 2008, 5: 501-514 (in Russ.).
  22. Kallenbach C., Grandy A.S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: a meta-analysis. Agriculture, Ecosystems & Environment, 2011, 144(1): 241-252 CrossRef
  23. Voronkova N.A. Biologicheskie resursy i ikh znachenie v sokhranenii pochvennogo plodorodiya i povyshenii produktivnosti agrotsenozov Zapadnoy Sibiri [Biological resources and their role in preserving soil fertility and increasing crop productivity in Western Siberia]. Omsk, 2014 (in Russ.).
  24. Shuliko N.N., Khamova O.F., Timokhin A.Yu., Boiko V.S., Tukmacheva E.V., Krempa A. Influence of long-term intensive use of irrigated meadow-chernozem soil on the biological activity and productivity of the arable layer. Scientific Reports, 2022, 12: 14672 CrossRef
  25. Gamzikova O.I. Etyudy po fiziologii, agrokhimii i genetike mineral’nogo pitaniya rasteniy [Studies on plant physiology, agrochemistry and genetics of mineral nutrition]. Novosibirsk, 2008 (in Russ.).
  26. Khaziev F.Kh. Sistemno-ekologicheskiy analiz fermentativnoy aktivnosti pochv [Ecological analysis of soil enzymatic activity]. Moscow, 1982 (in Russ.).
  27. Kalashnikov R.P., Semenova E.A., Fokin S.A., Zakharov E.B. Dal’nevostochnyy agrarnyy vestnik,2020, 3(55): 26-34 CrossRef (in Russ.).
  28. Khramtsov I.F., Voronkova N.A., Balabanova N.F. Sovremennye problemy nauki i obrazovaniya, 2012, 2: 392 (in Russ.).
  29. Egorova E.V. V sb.: Agrokhimiya v XXI veke [In: Agrochemistry in the 21st century]. Moscow, 2018: 119-122 (in Russ.).
  30. Khamova O.F., Yushkevich L.V., Voronkova N.A., Boyko V.S., Shuliko N.N. Biologicheskaya aktivnost’ lugovo-chernozemnykh pochv Omskogo Priirtysh’ya [Biological activity of meadow-chernozem soils of the Omsk Irtysh region]. Omsk, 2019 (in Russ.).
  31. Zemledelie na ravninnykh landshaftakh i agrotekhnologii zernovykh v Zapadnoy Sibiri (na primere Omskoy oblasti): monografiya /Pod red. I.F. Khramtsova, V.G. Kholmova [Farming on flat landscapes and agricultural technologies of grain in Western Siberia (using the example of the Omsk region): monograph. I.F. Khramtsov, V.G. Kholmov (eds.)]. Novosibirsk, 2003 (in Russ.).
  32. Tepper E.Z., Shil’nikov V.K. Praktikum po mikrobiologii [Workshop on microbiology]. Moscow, 2004 (in Russ.).
  33. Metody pochvennoy mikrobiologii i biokhimii /Pod redaktsiey D.G. Zvyagintseva [Methods of soil microbiology and biochemistry. D.G. Zvyagintsev (ed.)]. Moscow, 1991 (in Russ.).
  34. Khaziev F.Kh. Metody pochvennoy enzimologii [Methods of soil enzymology]. Moscow, 2005 (in Russ.).
  35. Arinushkina E.V. Rukovodstvo po khimicheskomu analizu pochv [Soil chemical analysis guide]. Moscow, 1970 (in Russ.).
  36. Gamzikov G.P. Agrokhimiya azota v agrotsenozakh [Agrochemistry of nitrogen in agrocenoses]. Novosibirsk, 2013 (in Russ.).
  37. Agrokhimicheskie metody issledovaniya pochv /Pod redaktsiey A.V. Sokolova [Agrochemical methods for soil research. A.V. Sokolov (ed.)]. Moscow, 1975 (in Russ.).
  38. Novoselov Yu.K., Kireev V.N., Kutuzov G.P. et al. Metodicheskie ukazaniya po provedeniyu polevykh opytov s kormovymi kul’turami [Guidelines for conducting field experiments on forage crops]. Moscow, 1997 (in Russ.).
  39. Dospekhov B.A. Metodika polevogo opyta: s osnovami statisticheskoy obrabotki rezul’tatov issledovaniy [Methodology of field experience: with the basics of statistical data processing]. Moscow, 1985 (in Russ.).
  40. Boyko V.S., Yakimenko V.N., Timokhin A.Yu. Ekologiya i promyshlennost’ Rossii, 2019, 11: 66-71 CrossRef (in Russ.).
  41. Ge G., Li Z., Fan F., Chu G. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant and Soil, 2010, 326(1): 31-44 CrossRef
  42. Kallenbach C.M., Grandy A.S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: a meta-analysis. Agriculture, Ecosystems & Environment, 2011, 144 (1): 241-252 CrossRef
  43. Breaz-Boruta B. Effect of cropping system on development dynamics of cellulolytic microorganisms in soil. Environmental Protection and Natural Resources,2013, 24(2): 41-44 CrossRef
  44. Kurakov A.V., Guzev V.S., Stepanov A.L. et al. V sbornike: Mikroorganizmy i okhrana pochv [In: Microorganisms and soil conservation]. Moscow, 1989: 47-85 (in Russ.).
  45. Li J., Li Y.-T., Yang X.-D., Zhang J.-J., Lin Z.-A., Zhao B.-Q. Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil. Journal of Integrative Agriculture, 2015, 14(12): 2500-2511 CrossRef
  46. Lemtiri A., Degrune F., Barbieux S., Hiel M-P., Chelin M., Parvin N., Vandenbol M., Francis F., Colinet G. Crop residue management in arable cropping systems under temperate climate. Part 1: Soil biological and chemical (phosphorus and nitrogen) properties. A review. Biotechnologie, Agronomie, Societe and Environment, 2016, 20(S1): 236-244 CrossRef
  47. Rusakova I.V. Microbiological and ecophysiological parameters of sod-podzolic soil upon long-term application of straw and mineral fertilizers, the correlation with the yield. Agricultural Biology, 2020, 55(1): 153-162 CrossRef
  48. Breza-Boruta B., Paluszak Z. Occurrence of amylolytic microorganisms in soil depending on the type of cultivation. Ecohydrology and Hydrobiology, 2006, 6 (s 1-4): 175-180 CrossRef
  49. Roljevis S., Zeljko D., Kovacevic D., Oljaca S., Majstorovic H. Soil biogenicity in the rhizosphere of different wheat genotypes under the impact of fertilization treatment. Journal of Agricultural Sciences Belgrade, 2022, 67(4): 367-380 CrossRef
  50. Savich V.I., Mosina L.V., Norovsuren Zh., Sidorenko O.D., Anikina D.S. Mezhdunarodnyy sel’skokhozyaystvennyy zhurnal, 2019, 1: 38-42 CrossRef (in Russ.).
  51. Anilkumar R.R., Edison L.K., Pradeep N.S. Exploitation of fungi and actinobacteria for sustainable agriculture. In: Microbial biotechnology. Applications in agriculture and environment. J.K. Patra, Ch.N. Vishnuprasad, G. Das (eds.). Springer Nature Singapore Pte Ltd., 2017, 135-162 CrossRef
  52. Crouzet O., Batisson I., Besse-Hoggan P., Bonnemoy F., Bardot C., Poly F., Bohatier J., Mallet C. Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Soil Biology and Biochemistry, 2010, 42(2): 193-202 CrossRef
  53. Sebiomo A., Ogundero V.W., Bankole S.A. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. African Journal of Biotechnology, 2011, 10(31): 770-778 CrossRef
  54. Frac M., Jezierska-Tys S., Yaguchi T. Occurrence, detection, and molecular and metabolic characterization of heat-resistant fungi in soils and plants and their risk to human health. Advances in Agronomy, 2015, 132: 161-204 CrossRef
  55. Rukavitsina I.V. Biologiya i ekologiya vozbuditeley al’ternarioza, fuzarioza i gel’mintosporioza pshenitsy [Biology and ecology of Alternaria, Fusarium and helminthosporiosis wheat pathogens]. Shortandy, 2008 (in Russ.).
  56. Hartmann A.A., Barnard R.L., Marhan S., Niklaus P.A. Effects of drought and N-fertilization on N cycling in two grassland soils. Oecologia, 2013, 171: 705-717 CrossRef
  57. Kochergin A.E., Gamzikov G.P. Agrokhimiya, 1972, 6: 3-10 (in Russ.).
  58. Gamzikov G.P. Plodorodie,2018, 1: 8-14 (in Russ.).
  59. Lang M., Cai Z. Effects of chlorothalonil and carbendazim on nitrification and denitrification in soils. Journal of Environmental Sciences, 2009, 21(4): 458-467 CrossRef
  60. Shuliko N.N., Khamova O.F. Biologicheskie i agrokhimicheskie svoistva chernozema vyshchelochennogo pri primenenii udobrenii [Biological and agrochemical properties of leached chernozem upon using fertilizers]. Omsk, 2023 (in Russ.).
  61. Balabanova N.F., Voronkova N.A., Doronenko V.D., Volkova V.A., Tsyganova N.A. Zemledelie, 2020, 2: 7-9 CrossRef (in Russ.).
  62. Jezierska-Tys S., Wesolowska S., Galazka A., Joniec J., Bednarz J., Cierpiala R. Biological activity and functional diversity in soil in different cultivation systems. International journal of Environmental Science and Technology, 2020, 17(10): 4189-4204 CrossRef
  63. Tonitto C., Ricker-Gilbert J. Nutrient management in African sorghum cropping systems: applying meta-analysis to assess yield and profitability. Agronomy for Sustainable Development, 2016, 36(1): 10 CrossRef
  64. Buah S., Kombiok J.M., Abatania L. Grain sorghum response to NPK fertilizer in the Guinea Savanna of Ghana. Journal of Crop Improvement, 26(1): 101-115 CrossRef
  65. Liu Z., Rong Q., Zhou W., Liang G. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. PLoS ONE, 2017, 12(3): e0172767 CrossRef
  66. Zhang C., Liu G., Xue S., Wang G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biology and Biochemistry, 2016, 97: 40-49 CrossRef
  67. Gul S., Whalen J.K., Thomas B.W., Sachdeva V., Deng H. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems and Environment, 2015, 206: 46-59 CrossRef
  68. Chaudhry V., Rehman A., Mishra A., Chauhan P.S., Nautiyal C.S. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microbial Ecology, 2012, 64(2): 450-460 CrossRef







Full article PDF (Rus)