PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2024.1.73eng

UDC: 633.413:631.522/.524:581.1:577.2

Acknowledgements:
Supported financially by the State assignments FGUM-2023-0002 and FGUM-2022-0004

 

BOLTING IN SUGAR BEET (Beta vulgaris subsp. vulgaris var. altissima Döll): TRIGGERING, GENETIC MECHANISMS AND PREVENTION (review)

A.Yu. Kroupina , P.Yu. Kroupin, G.I. Karlov, M.G. Divashuk

All-Russian Research Institute of Agricultural Biotechnology, 42, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail annshirley@yandex.ru (✉ corresponding author), pavelkroupin1985@gmail.com,
karlov@iab.ac.ru, divashuk@gmail.com

ORCID:
Kroupina A.Yu. orcid.org/0000-0003-3654-8310
Karlov G.I. orcid.org/0000-0002-9016-103X
Kroupin P.Yu. orcid.org/0000-0001-6858-3941
Divashuk M.G. orcid.org/0000-0001-6221-3659

Final revision received September 27, 2023
Accepted November 15, 2023

Sugar beet is a significant crop that is used in the production of sugar, alcohol, livestock feed, confectionery, etc. Sugar beet is a biennial plant that form a root-crop in the first year. In the second year, after winter storage, it produces a bolt with inflorescences. Bolting refers to the ability to form both peduncle and flowers within the first year of life. The formation of bolts in sugar beets is triggered by vernalization (exposure to low positive temperatures) and long daylight hours. Flowering is significant in beet-growing regions with cold springs and long daylight hours as it can result in reduced yield and sugar content. From a genetic perspective, flowering is controlled by a complex system of genes that regulate the transition from the vegetative phase to the generative phase of development. The interaction between the BvBTC1 and BvBBX19 genes plays a central role in this process. The functional products of these genes stimulate the expression of the flowering inducer gene BvFT2 and inhibit the expression of the flowering repressor gene BvFT1 (N. Dally et al., 2018). In the beet genome, several Arabidopsis orthologue flowering genes have been identified. These genes are characterized by differential expression and methylation, which are influenced by vernalization and vary between flowering-resistant and non-flowering genotypes (M.-V. Trap-Gentil et al., 2011; Z. Pi et al., 2021). The main physiological regulator of flowering in sugar beets is gibberellic acid, which is also involved in vernalization through the regulation of synthesis regulator genes (E. Mutasa-Gottgens et al., 2009). The primary methods for controlling flowering involve implementing suitable agrotechnical practices and developing resistant varieties and hybrids through breeding and genetic techniques. Agrotechnical practices include selecting the appropriate sowing date to avoid exposing plants to low temperatures, choosing recommended varieties for the cultivation zone, removing early flowering plants, and using chemical treatments on seeds and vegetative plants (I.A. Oksenenko et al., 1987; K.S. Devlikamov et al., 2016; M. Sadeghi-Shoae et al., 2017). Breeding methods involve creating an analytical framework for the negative selection of flowering material. This includes practices such as ultra-early and sub-winter sowing, selection under long-day conditions, sowing with vernalized seeds, and sowing in soil treated with herbicides (A.V. Kornienko et al., 1983; A.V. Logvinov et al., 2021, 2022). It is crucial to assess genetic collections from global repositories of cultivated and wild accessions in order to identify new sources of resistance to flowering (E.S. Kutnyakhova et al., 2016; V.I. Burenin et al., 2018). An important method for generating new non-flowering alleles is mutagenesis using ethyl methanesulfonate. Markers for allelic variants (haplotypes) of functional flowering genes, as well as quantitative trait loci and single-nucleotide polymorphisms associated with resistance to bolting can be used in marker-assissted selection (B. Büttner et al., 2010; Y. Kuroda et al., 2019; S. Ravi et al., 2021). Great prospects for accelerated sugar beet selection and seed production can be achieved through the “seed to seed” scheme. This involves stimulation of bolting under artificial climate conditions by carefully controlled growing parameters, including the vernalization stage. Important parameters for successful vernalization are temperature, the phenophase of vernalization initiation, and the duration of the photoperiod.

Keywords: sugar beet, vernalization, flowering, bolting, selection, marker-mediated selection, gene networks, agricultural technology, accelerated selection.

 

REFERENCES

  1. Niklyaev V.S., Kosinskiy V.S., Tkachev V.V., Suchilina A.A. Osnovy tekhnologii sel’skokhozyaystvennogo proizvodstva. Zemledelie i rastenievodstvo /Pod redaktsiey V.M. Niklyaeva [Fundamentals of agricultural production technology. Agriculture and crop production. V.M. Niklyaev (ed.)]. Moscow, 2000 (in Russ.).
  2. Vavilov P.P., Gritsenko V.V., Kuznetsov V.S. et al. Rastenievodstvo /Pod redaktsiey P.P. Vavilova [Crop production. P.P. Vavilov (ed.)]. Moscow, 1986: 200-242 (in Russ.).
  3. Borel’ A.N. Sakhar, 2016, 8: 30-31 (in Russ.).
  4. Bulatov R.K. Istoriya proiskhozhdeniya sakharnoy svekly. NovaInfo, 2016, 44: 67-69 (in Russ.).
  5. Soare E., Dobre I., David L. Research on sugar beet production and trade — worldwide overview. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 2021, 21(4): 533-540.
  6. FAOSTAT. Food and Agriculture Organization. Crops and livestock productsyu Available: https://www.fao.org/faostat/en/#data/QCL. Accessed: 20.09.2023.
  7. Federal’naya sluzhba gosudarstvennoy statistiki (Rosstat). Glavnyy mezhregional’nyy tsentr. Posevnye ploshchadi, valovye sbory i urozhaynost’ sel’skokhozyaystvennykh kul’tur v Rossiyskoy Federatsii v 2022 godu (predvaritel’nye dannye) [Sown areas, gross yields and crop yields in the Russian Federation in 2022 (preliminary data)]. Available: https://rosstat.gov.ru/storage/mediabank/29_cx_predv_2022.xlsx. Accessed: 20.09.2023 (in Russ.).
  8. Karamnova N.V. Teoriya i praktika mirovoy nauki, 2017, 7: 31-35 (in Russ.).
  9. Itogi 2022: sakhar i sakharnaya svekla [Results 2022: sugar and sugar beets]. Institut kon’‘yunktury agrarnogo rynka (IKAR), 2022. Available: http://ikar.ru/lenta/752.html. Accessed: 20.09.2023 (in Russ.).
  10. Logvinov A.V., Neshchadim N.N., Gorpinchenko K.N. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta, 2022, 183: 194-203 (in Russ.).
  11. Kukharev O.N., Starostin I.A., Semov I.N. Vestnik Kazanskogo GAU, 2019, 14(4-2): 25-30 (in Russ.).
  12. Apasov I.V., Bartenev I.I., Putilina L.N., Selivanova G.A., Smirnov M.A., Podosinnikov I.V. Zemledelie, 2013, 4: 43-46 (in Russ.).
  13. Oshevnev V.P., Gribanova N.P. Zemledelie, 2013, 4: 39-41 (in Russ.).
  14. Logvinov A.V. Nauchnye osnovy sozdaniya tolerantnykh k tserkosporozu i gerbitsidam linii i gibridov sakharnoy svekly: fenotipicheskoe proyavlenie, genotipicheskie osobennosti i prakticheskoe ikh ispol’zovanie. Doktorskaya dissertatsiya [Scientific basis for the creation of sugar beet lines and hybrids tolerant to cercospora and herbicides: phenotypic manifestation, genotypic characteristics and their practical use. DSc Thesis]. Krasnodar, 2022 (in Russ.).
  15. Bikchurina E. Agroinvestor, 2017, 2. Available: https://www.agroinvestor.ru/technologies/article/25823-ukhod-ot-semennoy-zavisimosti/. Accessed: 20.09.2023 (in Russ.).
  16. Karakotov S.D., Apasov I.V., Nalbandyan A.A., Vasil’chenko E.N., Fedulova T.P. Vavilovskiy zhurnal genetiki i selektsii, 2021, 25(4): 394-400 CrossRef (in Russ.).
  17. Oshevnev V.P., Gribanova N.P., Vasil’chenko E.N., Berdnikov R.V. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2018, 20(2(2)): 186-191 (in Russ.).
  18. Pyl’nev V.V., Konovalov Yu.B., Khupatsariya V.I., Buko O.A., Pyl’nev V.M., Rubets V.S., Pyl’neva E.V., Konorev P.M., Bazhenova S.S., Berezkina L.L. Chastnaya selektsiya polevykh kul’tur /Pod redaktsiey V.V. Pyl’neva [Private selection of field crops. V.V. Pyl’nev (ed.)]. Moscow, 2016: 467-500 (in Russ.).
  19. Kukharev O.N., Kasynkina O.M., Koshelyaev V.V. Niva Povolzh’ya, 2017, 2(43): 29-33 (in Russ.).
  20. Logvinov A.V., Mishchenko V.N., Logvinov V.A., Moiseev V.V., Shevchenko A.G. Sakhar, 2019, 3: 44-51 (in Russ.).
  21. Cherkasova N.N., Zhuzhzhalova T.P., Kolesnikova E.O. Sakhar, 2018, 10: 43-45 (in Russ.).
  22. Khusseyn A.S., Mikheeva N.R., Nalbandyan A.A., Cherkasova N.N. Biotekhnologiya, 2021, 37: 14-19 CrossRef (in Russ.).
  23. Chesnokov Yu.V., Burenin V.I., Ivanov A.A. RAPD analysis of collection accessions of the genus Beta L. species. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 3: 28-36 CrossRef
  24. Sashchenko M.N., Podvigina O.A., Vashchenko T.G. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta, 2015, 2(45): 14-20 (in Russ.).
  25. Shalaeva T.V., Aniskina Yu.V., Kolobova O.S., Velishaeva N.S., Logvinov A.V., Mishchenko V.N., Shilov I.A. Investigation of the sugar beet (Beta vulgaris L. ssp. vulgaris) microsatellite loci structure to develop a technology for genetic analysis of sugar beet lines and hybrids. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2023, 58(3): 483-493 CrossRef
  26. Abekova A.M., Erzhebaeva R.S., Ageenko A.V., Konysbekov K.T., Bersimbaeva G.Kh. Sibirskiy vestnik sel’skokhozyaystvennoy nauki, 2020, 50(5): 94-102 CrossRef (in Russ.).
  27. Jaggard K.W., Wickens R., Webb D.J., Scott R.K. Effects of sowing date on plant establishment and bolting and the influence of these factors on yields of sugar beet. The Journal of Agricultural Science, 1983, 101(1): 147-161 CrossRef
  28. Sapronov A.R. Tekhnologiya sakharnogo proizvodstva [Sugar production technology]. Moscow, 1999 (in Russ.).
  29. Rezaei J., Fasahat P. Autumn-sown sugar beet cultivation in semiarid regions. In: Sugar beet cultivation, management and processing. V. Misra, S. Srivastava, A.K. MallSingapore (eds.). Springer, Singapore, 2023: 275-290 CrossRef
  30. Logvinov A.V., Tsatsenko L.V., Mishchenko V.N., Zhabatinskaya Yu.V. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2022, 101: 168-174 CrossRef (in Russ.).
  31. Devlikamov K.S., Devlikamov D.K. Nashe sel’skoe khozyaystvo. Agronomiya, 2016, 9: 10-14 (in Russ.).
  32. Melzer S., Müller A.E., Jung C. Genetics and genomics of flowering time regulation in sugar beet. In: Genomics of plant genetic resources. Vol. 2. Crop productivity, food security and nutritional quality. R. Tuberosa, A. Graner, E. Frison (eds.). Springer, Dordrecht, 2014: 3-26 CrossRef
  33. Chechetkina I., Gulyaka M. Nashe sel’skoe khozyaystvo. Agronomiya, 2021, 5: 42-44 (in Russ.).
  34. Milford G.F.J., Jarvis P.J., Walters C. A vernalization-intensity model to predict bolting in sugar beet. The Journal of Agricultural Science, 2010, 148(2): 127-137 CrossRef
  35. Abu-Ellail F.F.B., Salem K.F.M., Saleh M.M., Alnaddaf L.M., Al-Khayri J.M. Molecular breeding strategies of beetroot (Beta vulgaris ssp. vulgaris var. conditiva Alefeld). In: Advances in plant breeding strategies: vegetable crops. J.M. Al-Khayri, S.M. Jain, D.V. Johnson (eds.). Springer, Cham, 2021: 157-212 CrossRef
  36. Logvinov A.V., Suslov V.I. Materialy Mezhdunarodnoy zaochnoy nauchno-prakticheskoy konferentsii «Nauka XXI veka: Aktual’nye voprosy, problemy i perspektivy» [Proc. Int. Conf. «Science of the 21st century: Current issues, problems and prospects»]. Neftekamsk, 2021: 30-39 (in Russ.).
  37. Smit A.L. Influence of external factors on growth and development of sugar beet (Beta vulgaris L.). Wageningen, 1983.
  38. Suslov V.I., Logvinov V.A., Mishchenko V.N., Suslov A.V., Logvinov A.V., Titarenko A.I., Kolganov V.V. Sakharnaya svekla, 2012, 6: 12-15 (in Russ.).
  39. Hoffmann C.M., Kluge-Severin S. Light absorption and radiation use efficiency of autumn and spring sown sugar beets. Field Crops Research, 2010, 119(2-3): 238-244 CrossRef
  40. Enikiev R.I., Kamilanov A.A. Ural’skiy nauchnyy vestnik, 2022, 8(3): 81-84 (in Russ.).
  41. Curcic Z., Ciric M., Nagl N., Taski-Ajdukovic K. Effect of sugar beet genotype, planting and harvesting dates and their interaction on sugar yield. Front. Plant Sci., 2018, 9: 1041 CrossRef
  42. Chiurugwi T., Holmes H.F., Qi A., Chia T.Y.P., Hedden P., Mutasa-Göttgens E.S. Development of new quantitative physiological and molecular breeding parameters based on the sugar-beet vernalization intensity model. The Journal of Agricultural Science, 2013, 151(4): 492-505 CrossRef
  43. Mutasa-Gottgens E., Qi A., Mathews A., Thomas S., Phillips A., Hedden P. Modification of gibberellin signalling (metabolism & signal transduction) in sugar beet: analysis of potential targets for crop improvement. Transgenic Res., 2009, 18: 301-308 CrossRef
  44. Goudriaan J., Monteith J.L. A mathematical function for crop growth based on light interception and leaf area expansion. Annals of Botany, 1990, 66(6): 695-701 CrossRef
  45. Gao R., Bouillet S., Stock A.M. Structural basis of response regulator function. Annual Review of Microbiology, 2019, 73: 175-197 CrossRef
  46. Brambilla V., Fornara F. Y flowering? Regulation and activity of CONSTANS and CCT-domain proteins in Arabidopsis and crop species. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2016, 1860(5): 655-660 CrossRef
  47. Dally N., Xiao K., Holtgräwe D., Jung C. The B2 flowering time locus of beet encodes a zinc finger transcription factor. PNAS, 2014, 111(28): 10365-10370 CrossRef
  48. Pin P.A., Benlloch R., Bonnet D., Wremerth-Weich E., Kraft T., Gielen J.J.L., Nilsson O. An Antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science, 2010, 330(6009): 1397-1400 CrossRef
  49. Dally N., Eckel M., Batschauer A., Höft N., Jung C. Two CONSTANS-LIKE genes jointly control flowering time in beet. Sci. Rep., 2018, 8: 16120 CrossRef
  50. Kim D.-H. Current understanding of flowering pathways in plants: focusing on the vernalization pathway in Arabidopsis and several vegetable crop plants. Hortic. Environ. Biotechnol., 2020, 61: 209-227 CrossRef
  51. Pi Z., Xing W., Zhu X., Long J., Zou Y., Wu Z. Temporal expression pattern of bolting-related genes during vernalization in sugar beet. Sugar Tech, 2021, 23: 146-157 CrossRef
  52. Zhao L., Li S., Yu Q., Zhang C., Wang L., Jiang Y., Wu Z., Pi Z. Vernalization promotes GA-mediated bolting initiation via the inhibition of ABA and JA biosynthesis. Agronomy, 2023, 13(5): 1251 CrossRef
  53. Mutasa-Göttgens E.S., Joshi A., Holmes H.F., Hedden P., Göttgens B. A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC Genomics, 2012, 13: 99 CrossRef
  54. Trap-Gentil M.-V., Hébrard C., Lafon-Placette C., Delaunay A., Hagège D., Joseph C., Brignolas F., Lefebvre M., Barnes S., Maury S. Time course and amplitude of DNA methylation in the shoot apical meristem are critical points for bolting induction in sugar beet and bolting tolerance between genotypes. Journal of Experimental Botany, 2011, 62(8): 2585-2597 CrossRef
  55. Liang N., Cheng D., Zhao L., Lu H., Xu L., Bi Y. Identification of the genes encoding B3 domain-containing proteins related to vernalization of Beta vulgaris. Genes, 2022, 13(12): 2217 CrossRef
  56. Asgari M., Mirzaie-asl A., Abdollahi M.R., Khodaei L. Flowering time regulation by the miRNA156 in the beet (Beta vulgaris ssp. maritima). Research Square, 2022, 150: 361-370 CrossRef
  57. Liang G., He H., Li Y., Wang F., Yu D. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiology, 2014, 164(1): 249-258 CrossRef
  58. Hébrard C., Trap-Gentil M.-V., Lafon-Placette C., Delaunay A., Joseph C., Lefèbvre M., Barnes S., Maury S. Identification of differentially methylated regions during vernalization revealed a role for RNA methyltransferases in bolting. Journal of Experimental Botany, 2013, 64(2): 651-663 CrossRef
  59. Hébrard C., Peterson D.G., Willems G., Delaunay A., Jesson B., Lefèbvre M., Barnes S., Maury S. Epigenomics and bolting tolerance in sugar beet genotypes. Journal of Experimental Botany, 2016, 67(1): 207-225 CrossRef
  60. Shavrukov Y.N. Localization of new monogerm and late-bolting genes in sugarbeet using RFLP markers. Journal of Sugarbeet Research, 2000, 37(4): 107-115.
  61. Abou-Elwafa S.F., Hamada A., Mehareb E.M. Genetic identification of a novel locus (LB2) regulates bolting time in Beta vulgaris. International Journal of Agricultural Science and Technology, 2014, 2(1): 48-52 CrossRef
  62. Büttner B., Abou-Elwafa S.F., Zhang W., Jung C., Müller A.E. A survey of EMS-induced biennial Beta vulgaris mutants reveals a novel bolting locus which is unlinked to the bolting gene B. Theoretical and Applied Genetics, 2010, 121: 1117-1131 CrossRef
  63. Abou-Elwafa S.F., Büttner B., Kopisch-Obuch F.J., Jung C., Müller A.E. Genetic identification of a novel bolting locus in Beta vulgaris which promotes annuality independently of the bolting gene B. Molecular Breeding, 2012, 29: 989-998 CrossRef
  64. Kuroda Y., Kuranouchi T., Okazaki K., Takahashi H., Taguchi K. Biennial sugar beets capable of flowering without vernalization treatment. Genetic Resources and Crop Evolution, 2023, 71: 823-834 CrossRef
  65. Pfeiffer N., Tränkner C., Lemnian I., Grosse I., Müller A.E., Jung C., Kopisch-Obuch F.J. Genetic analysis of bolting after winter in sugar beet (Beta vulgaris L.). Theoretical and Applied Genetics, 2014, 127: 2479-2489 CrossRef
  66. Tränkner C., Lemnian I.M., Emrani N., Pfeiffer N., Tiwari S.P., Kopisch-Obuch F.J., Vogt S.H., Müller A.E., Schilhabel M., Jung C., Grosse I. A detailed analysis of the BR1locus suggests a new mechanism for bolting after winter in sugar beet (Beta vulgaris L.). Front. Plant Sci., 2016, 7: 1662 CrossRef
  67. Pfeiffer N., Müller A.E., Jung C., Kopisch-Obuch F.J. QTL for delayed bolting after winter detected in leaf beet (Beta vulgaris L.). Plant Breed, 2017, 136(2): 237-244 CrossRef
  68. Broccanello C., Stevanato P., Biscarini F., Cantu D., Saccomani M. A new polymorphism on chromosome 6 associated with bolting tendency in sugar beet. BMC Genet., 2015, 16: 142.
  69. Kuroda Y. Key quantitative trait loci controlling bolting tolerance in sugar beet. Research Square, 2023 CrossRef
  70. Ravi S., Campagna G., Della Lucia M.C., Broccanello C., Bertoldo G., Chiodi C., Maretto L., Moro M., Eslami A.S., Srinivasan S., Squartini A., Concheri G., Stevanato P. SNP alleles associated with low bolting tendency in sugar beet. Front. Plant Sci., 2021, 12: 693285 CrossRef
  71. Mutasa-Göttgens E.S., Qi A., Zhang W., Schulze-Buxloh G., Jennings A., Hohmann U., Müller A.E., Hedden P. Bolting and flowering control in sugar beet: relationships and effects of gibberellin, the bolting gene B and vernalization. AoB PLANTS, 2010, 2010: plq012 CrossRef
  72. Koda Y., Ohkawa-Takahashi K., Kikuta Y. Stimulation of root thickening and inhibition of bolting by jasmonic acid in beet plants. Plant Production Science, 2001, 4(2): 131-135 CrossRef
  73. Liang N., Cheng D., Liu Q., Cui J., Luo C. Difference of proteomics vernalization-induced in bolting and flowering transitions of Beta vulgaris. Plant Physiology and Biochemistry, 2018, 123: 222-232 CrossRef
  74. Logvinov V.A., Moiseev V.V., Mishchenko V.N., Logvinov A.V., Moiseev A.V. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta, 2018, 71: 45-52 CrossRef (in Russ.).
  75. Kornienko A.V., Lyushnyak V.P., Osadchiy A.S., Makogon A.M. Sposob otbora rasteniy sakharnoy svekly na ustoychivost’ k tsvetushnosti. A.s. SU1237126 A1 (SSSR) MKI A 01 H 1/04, A 01 G 7/00. Tsentr. sel.-genet. st. Nauch.-proizv. ob’‘ed. “Sakhsvekla” (SSSR). № 3638987/30-15. Zayavl. 29.06.83. Opubl. 15.06.86. Byul. № 22 [Method for selecting sugar beet plants for resistance to bolting. Appl. 06/29/83. Publ. 06/15/86. Bull. No. 22] (in Russ.).
  76. Oksenenko I.A., Shuklina I.A., Grekov V.E. Sposob bor’by s tsvetushnost’yu rasteniy svekly. AC SU646483A (SSSR) MKI A 01 N 33/08. Kurskiy s.-kh. institut im. prof. I.I. Ivanova (SSSR). № 2444237/23-04. Zayavl. 18.01.77. Opubl. 30.09.87. Byul. № 36 [Method for combating bolting of beet plants. Appl. 01/18/77. Publ. 09/30/87. Bull. No. 36] (in Russ.).
  77. Sadeghi-Shoae M., Habibi D., Taleghani D.F., Paknejad F., Kashani A. Evaluation the effect of paclobutrazol on bolting, qualitative and quantitative performance in autumn sown-sugar beet genotypes in Moghan region. International Journal of Biosciences, 2014, 5: 346-354 CrossRef
  78. Sadeghi-Shoae M., Taleghani D.F., Habibi D. Some reactions of physiological and morphological characteristics to foliar application of paclobutrazol in autumn sugar beet (Beta vulgaris). Biosci. Biotech. Res. Asia, 2017, 14(1): 225-231 CrossRef
  79. Kornienko A.V., Osadchiy A.S., Makogon A.M. Sposob otbora rasteniy sakharnoy svekly na ustoychivost’ k tsvetushnosti. A.s. SU993886A1 (SSSR) MKI A01H 1/04. Umanskiy selektsionnyy punkt Nauch.-proizv. ob’‘ed. “Sakhsvekla” (SSSR). № 3314603/30-15. Zayavl. 01.04.81. Opubl. 07.02.83. Byul. № 5 [Method for selecting sugar beet plants for resistance to bolting. Appl. 04/01/81. Publ. 02/07/83. Bull. No. 5] (in Russ.).
  80. Shchepetnev P.E., Shchepetneva A.S. Sposob vyvedeniya form sakharnoy svekly s povyshennoy sakharistost’yu i ustoychivykh k tsvetukhe. A.s. SU383435A1 (SSSR) MKI A01H 1/04. Vseros. ord. Trud. Kr. Znameni NII sakharnoy svekly i sakhara (SSSR). № 1701512/30-15. Zayavl. 23.09.71. Opubl. 23.05.73. Byul. № 24 [Method for breeding forms of sugar beet with increased sugar content and resistant to bolting. Appl. 09/23/71. Publ. 0523//73. Bull.No. 24] (in Russ.).
  81. Kutnyakhova E.S., Tsykalov A.N. MaterialyMezhdunarodnoynauchno-prakticheskoykonferentsii molodykh uchenykh i spetsialistov «Innovatsionnye tekhnologii i tekhnicheskie sredstva dlya APK» [Proc. Int. Conf. «Innovative technologies and technical means for the agro-industrial complex»]. Voronezh, 2016: 51-54 (in Russ.).
  82. Burenin V.I., Piskunova T.M. MaterialyMezhdunarodnoynauchno-prakticheskoykonferentsii, posvyashchennoy 90-letiyu RUP «Opytnaya nauchnaya stantsiya po sakharnoy svekle», «Nauchnoe obespechenie otrasli sveklovodstva» [Proc. Int. Conf. “Scientific support for the beet growing industry”]. Minsk, 2018: 26-32 (in Russ.).
  83. Büttner B., Abou-Elwafa S.F., Zhang W., Jung C., Müller A.E. A survey of EMS-induced biennial Beta vulgaris mutants reveals a novel bolting locus which is unlinked to the bolting gene B. Theoretical and Applied Genetics, 2010, 121: 1117-1131 CrossRef
  84. Tränkner C., Pfeiffer N., Kirchhoff M., Kopisch-Obuch F.J., van Dijk H., Schilhabel M., Hasler M., Emrani N. Deciphering the complex nature of bolting time regulation in Beta vulgaris. Theoretical and Applied Genetics, 2017, 130: 1649-1667 CrossRef
  85. Höft N., Dally N., Jung C. Sequence variation in the bolting time regulator BTC 1 changes the life cycle regime in sugar beet. Plant Breed., 2018, 137(3): 412-422 CrossRef
  86. Kuroda Y., Takahashi H., Okazaki K., Taguchi K. Molecular variation at BvBTC1 is associated with bolting tolerance in Japanese sugar beet. Euphytica, 2019, 215: 43 CrossRef
  87. Höft N., Dally N., Hasler M., Jung C. Haplotype variation of flowering time genes of sugar beet and its wild relatives and the impact on life cycle regimes. Front. Plant Sci., 2018, 8: 2211 CrossRef
  88. Pin P.A., Zhang W., Vogt S.H., Dally N., Büttner B., Schulze-Buxloh G., Jelly N.S., Chia T.Y.P., Mutasa-Göttgens E.S., Dohm J.C., Himmelbauer H., Weisshaar B., Kraus J., Gielen J.J.L., Lommel M., Weyens G., Wahl B., Schechert A., Nilsson O., Jung C., Kraft T., Müller A. The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet. Current Biology, 2012, 22(12): 1095-1101 CrossRef
  89. Kornienko A.V. Osnovy mutatsionnoy selektsii svekly [Basics of mutation breeding of beets]. Moscow, 1990 (in Russ.).
  90. Kornienko A. V., Butorina A.K. Induced mutagenesis in sugar beet (Beta vulgaris L.): obtained results and prospects for use in development of TILLING project. Biology Bulletin Reviews, 2013, 3: 152-160 CrossRef
  91. Hohmann U., Jacobs G., Jung C. An EMS mutagenesis protocol for sugar beet and isolation of non-bolting mutants. Plant Breed., 2005, 124(2): 317-321 CrossRef
  92. Frerichmann S.L., Kirchhoff M., Müller A.E., Scheidig A.J., Jung C., Kopisch-Obuch F.J. EcoTILLING in Beta vulgaris reveals polymorphisms in the FLC-like gene BvFL1that are associated with annuality and winter hardiness. BMC Plant Biol., 2013, 13: 52 CrossRef
  93. Yıldırım K., Kavas M., Küçük İ.S., Seçgin Z., Saraç Ç.G. Development of highly efficient resistance to Beet Curly Top Iran Virus (Becurtovirus) in sugar beet (B. vulgaris) via CRISPR/Cas9 system. Int. J. Mol. Sci., 2023, 24(7): 6515 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)