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A b s t r a c t  
 

Since the methodological methods of direct genetics are applicable only for monogenic traits, 

the created breeding material, line or variety must be tested in the field, since the presence of the 

desired gene in the genome, confirmed by molecular methods, does not always lead to the formation 

of a trait valuable for selection. Systems based on 3D imaging technologies make it possible to obtain 

a plant model, as well as information on morphological parameters. However, very little attention is 

paid to the preparation of protocols for phenoscreening. The purpose of this study was a comparative 

assessment of the accuracy of determining the morphological characteristics of lilac plants by traditional 

methods and using machine vision technology, depending on the plant location on the scanned surface. 

Microclones of lilac (Syringa vulgaris L.) cv. Microclones are morphologically homogenous and small 

in size, which allows measurements of sufficiently large sets of samples and makes it easier to compare 

the research results by their normalization to average values. The measurements were made after the 

plant complete adaptation and cultivation for 1 month in a greenhouse. With traditional morphometry, 

in 10 microclones, the height was measured with a measuring ruler, and the leaf area was measured 

using the contour method. When scanning (PlantEye F500 3D scanner, Phenospex B.V., Netherlands), 

each of 10 selected plants was placed at five different positions of the scanned surface, and at least five 

repeated scans were performed in the same position. When using machine vision technology, 3D leaf 

area, projected leaf area, digital biomass, height, maximum height, leaf tilt, leaf tilt angle, light pene-

tration depth were determined. It has been established that in order to obtain objective and comparable 

data from using a 3D scanner, it is optimal to place plants in the center of the scanned surface in 

the same position. The following parameters can be recommended to identify varieties and assess 

plant growth rate: the leaf area, projected leaf area, height, and leaf inclination angle. For each 

plant species, it is necessary to preliminarily study particular morphological traits and to compare 

the obtained data with the scan results in order to introduce correction factors/ This will confirm 

the information content of the feature set used, thereby increasing the accuracy of machine vision 

technology data. 
 

Keywords: phenotyping, morphology, Syringa vulgaris L., machine vision technology, 3D 

canning 
 

Modern genetic research is focused on the genome structure [1, 2] in order 

to identify determinants for economically valuable traits and mechanisms of gene 

acttivity [3-5], to assess population variability [6], to identify varieties at the early 

stages of plant development [7, 8], to reveal patterns of genome organization and 

evolution [9, 10]. 

The widely used approaches of direct classical genetics in which genes are 
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identified by the traits they encode are being replaced by reverse genetics methods 

when not the phenotype and its genetic control are analyzed but the DNA se-

quence itself and its phenotypic effects are revealed [11-14]. The paradigm shift is 

due to the fact that the methodological methods of direct genetics are applicable 

only for monogenic traits. However, in most cases, the properties of biological 

objects are polygenic and are formed as a result of the combined action of several 

genes, or phenotypic expression may be the result of mutations in different genes 

[15]. Therefore, the traits of the obtained breeding material, lines or varieties 

should be checked in the field, since the presence of the desired gene in the 

genome confirmed by molecular methods does not always lead to the formation 

of a trait valuable for breeding [16-18]. In addition, when analyzing qualitative 

and quantitative morphological features, it is necessary to recognize the modifica-

tion variability that occurred due to various environmental factors [19]. 

The morphological characterization of plants is an obligatory stage of se-

lection and genetic studies [15, 17]. Modern phenotyping methods based on ma-

chine vision technologies are highly productive and allow obtaining real-time data 

on several morphological parameters [20, 21]. Automation of phenotyping pro-

cesses significantly speeds up the analysis and increases its accuracy, eliminating 

the human factor as a source of subjective evaluation of the results, and provides 

with parameters that were not used in traditional morphometric measurements 

[22]. 

The most important morphological features in plant phenotyping include 

plant size, type of leaf arrangement, shape and area of the leaf blade. There are 

automated platforms that allow identification of plant species from photographs, 

such as INaturalist (https://www.inaturalist.org/) and PlantNet (https://plant-

net.org/). However, the accuracy of phenotyping depends on the accumulated 

photographic material (the number and quality of photographs at different stages 

of plant vegetation), the frequency of occurrence of the species in the study area, 

and the actual confirmation of its identification during field observations [23, 24]. 

Thus, when using automated platforms, it is possible to determine plant species 

with sufficient content of the database, but it is not possible to assess the modifi-

cation variability of morphological characters, as well as to determine varieties. 

Systems based on 3D imaging technologies provide a plant model as well 

as information on morphological parameters [25]. In this case, the image pro-

cessing software plays a major role, and not the resolution of the scanner [26]. As 

a result, current research on phenotyping is mainly devoted to software develop-

ment, improvement of the camera positioning system [27]. However, very little 

attention has been paid to the development of protocols for phenoscreening [28-

30]. There is no doubt that the automation of phenotyping processes, carried out 

both in laboratory and in the field, will not only significantly speed up the evalu-

ation of breeding material, but will also increase the homogeneity of selected plants 

when working with annual crops [31-34]. Despite many publications on the use 

of 3D scanners for assessing morphological parameters, the literature covers rather 

superficially the issues of accuracy of morphological characteristics in plant phe-

notyping depending on their location on the scanned surface [35-37]. 

In this paper, we compared the results of direct morphometric measure-

ments carried out by personnel and indirect measurements based on machine vision 

technology, and identified conditions that, if not observed during phenoscreening, 

can lead to unreliable results. 

The purpose of our study was to comparatively assess the accuracy of de-

termining morphological traits of lilac plants by traditional methods and by ma-

chine vision technology, depending on the location of the object on the scanned 
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surface. 

Materials and methods. Lilac plants (Syringa vulgaris L.) cv. Mercy were 

obtained by the in vitro method after adaptation. Accounts were made after the 

completion of the stage of adaptation and cultivation of plants for 1 month in 

greenhouses. 

With traditional morphometry, the sample consisted of 10 microclones, in 

which plant height was measured with a ruler, and the surface area of each leaf 

was measured by the contour method. 

Scanning was performed on a PlantEye F500 multispectral 3D unit 

(Phenospex B.V., the Netherlands) (equipment of UNU Botanical Garden of Bel-

gorod State National Research University, https://ckp-rf.ru/usu/200997/). Each 

of the 10 selected plants was scanned at five different points on the scanned sur-

face, and at least five repeated scans were performed in the same position. Using 

the PlantEye F500 setup, the values of the following morphometric parameters 

were analyzed: 3D Leaf Area, cm2; Projected Leaf Area, cm2; Digital Biomass, 

cm3; Height, mm; Height Max, mm; Leaf Inclination, cm2/cm2; Leaf Angle, ; 

Light Penetration Depth, mm. For processing the obtained data, the PlantEye 

F500 HortControl software was used. 

Arithmetic mean values (M) and confidence intervals (±CI) were calcu-

lated at a confidence level p = 0.05, and correlation analysis was performed. 

Results. The choice of microclones as an object is due to a high degree of 

morphological uniformity and small plant sizes, which allows measurements and 

comparison of the data obtained in sufficiently large samples, normalizing them 

to average values. 

At the first stage of the study, we carried out morphometric measurements 

of plant height (22.7±2.3 cm) and leaf surface area (388.3±12.3 cm2). Digital 

biomass (product of plant height and leaf surface area) was 8814.41±325 cm3. 
 

A B 

  

Fig. 1. Positioning of lilac (Syringa vulgaris L.) cv. Mercy plants (A) and triangulation of points to 

generate a 3D cloud (B) for phenotyping by 3D scanning (PlantEye F500, Phenospex B.V., the Neth-

erlands). 
 

The position of each plant during 3D scanning is shown in Figure 1, A. 

When using the PlantEye F500 3D scanner to measure leaf area, points are created 

in the point cloud that belong to the same array, which are triangulated (connected 

into triangles). Since an uneven distribution of points in space is allowed, the size 

of the triangles can vary (see Fig. 1, B). 
A group of triangles forming a uniform surface represents a domain and 

corresponds to one sheet. Then the total area of 3D scanning of plant leaves is 
calculated as the sum of the areas of elementary triangles of all scanned leaves of 
one plant (Fig. 2). 

The presented data show that plant locations significantly affected the re-

sult. At points 2 and 4, the smallest values of the leaf area were obtained, at points 



924 

3 and 5, the largest, and the location of the plant at point 1 corresponded to the 

average value obtained at all five points. It should also be noted that the confidence 

interval for five repeated scans in 10 plants turned out to be the largest at point 1. 
 

 

Fig. 2. Leaf area depending on posiooning of of lilac (Sy-

ringa vulgaris L.) cv. Mercy plants (n = 10, M±CI, 

р = 0.05; 3D scanning, PlantEye F500, Phenospex 

B.V., the Netherlands). Each plant was placed at 5 

points, and at least 5 repeated scans were performed 

in the same position.  
 

That is, when conducting auto-

mated measurements, the data obtained 

are affected by the position of the plant 

relative to the scanning area. Even with a 

static location of the object and the ab-

sence of external changing factors (chang-

ing the illumination did not affect the scan 

results) at the scan point closest to the be-

ginning of the scan area, a high instability  

of the obtained data occurred. 

The total leaf area per plant when using the contour method was 3.2 times 

higher than that in 3D scanning. This significant discrepancy is due to the fact 

that some leaves overlap each other, which underestimates the figure. Therefore, 

the use of a 3D scanner to estimate leaf area requires the introduction of a cor-

rection factor calculated on the basis of a comparison of data obtained by different 

methods (in our case, the contour method and as a result of scanning with the 

PlantEye F500). 

The projected leaf area is defined as the projection area of all elementary 

triangles onto the X-Y plane. However, it is equivalent to a value that can be 

measured with a conventional 2D camera. PlantEye F500 measures the projection 

area of the plant on the X-Y plane and turns the 3D object into a flat 2D object 

(Fig. 3). 
 

 

Fig. 3. Leaf projection area depending on posiooning 

of of lilac (Syringa vulgaris L.) cv. Mercy plants 
(n = 10, M±CI, р = 0.05; 3D scanning, PlantEye 

F500, Phenospex B.V., the Netherlands). Each plant 

was placed at 5 points, and at least 5 repeated scans 

were performed in the same position. 

 

It can be seen from the histogram 

that the location of the plant at points 1, 

2, 3 and 4 did not significantly affect the 

obtained data, while the location in the 

center of the scanned surface (point 5) led 

to both a significant increase in the leaf 

area in the projection and an increase in  

the confidence interval. The average values of the area of all leaves for 10 plants 

and the projected area of the leaves obtained by 3D scanning are correlated 

(r = 0.55, p < 0.05). At the same time, the value of the projected leaf area is much 

less than the leaf area, since in 3D scanning, leaves with the same position in the 

X-Y plane, but located at different heights above the ground, are not counted 

twice. That is, the projected leaf area serves as an analogue of the projective cover, 

which determines the relative leaf projection area on the underlying surface. 

With the PlantEye F500 instrument, digital biomass is calculated as the 
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product of height and leaf area values, provided that the plant has a shoot struc-

ture, the volume of which can be calculated from height and length (Fig. 4). 
 

 

Fig. 4. Digital leaf biomass depending on positioning of 
of lilac (Syringa vulgaris L.) cv. Mercy plants (n = 10, 

M±CI, р = 0.05; 3D scanning, PlantEye F500, Pheno-

spex B.V., the Netherlands). Each plant was placed 

at 5 points, and at least 5 repeated scans were per-

formed in the same position. 

 

Similarly, the location of the plant 

influenced the r assessment of both digital 

biomass and leaf area (r = 0.98, p < 0.05). 

Points 2 and 4 showed the smallest digital 

biomass, points 3 and 5 showed the largest 

one, and point 1 corresponded to the aver- 

age value from all five points, at point 1 the value of the confidence interval was 

also the largest, as in the case of leaf area (see Fig. 2). 

To calculate plant height, PlantEye F500 uses the distribution of elemen-

tary triangles along the Z axis. To do this, a histogram along the Z axis is first 

calculated, which reflects the number of elementary triangles at different heights 

above the ground. Next, the top 10% of the plant height is averaged, and the 

height itself is calculated as the distance from the height of the pot to the part for 

which the averaging was performed (Fig. 5). 
 

 

Fig. 5. Plant height depending on positioning of lilac 
(Syringa vulgaris L.) cv. Mercy plants (n = 10, 

M±CI, р = 0.05; 3D scanning, PlantEye F500, Pheno-

spex B.V., the Netherlands). Each plant was placed 

at 5 points, and at least 5 repeated scans were per-

formed in the same position. 

 

It can be seen from the histogram 

that the location of the plant at points 1 

and 3 gave the maximum height values, at 

points 2 and 4 the minimum, while the 

location of the plant in the center of the 

scanned surface (point 5) corresponded to  

the average value for all five points. It should be borne in mind that the error in 

the obtained values is determined by how deep the plant is located relative to the 

edge of the pot, and can be from 1 to 5 cm. 
 

 

Fig. 6. Maximun plant height depending on positioning 
of lilac (Syringa vulgaris L.) cv. Mercy plants (n = 10, 

M±CI, р = 0.05; 3D scanning, PlantEye F500, Pheno-

spex B.V., the Netherlands). Each plant was placed 

at 5 points, and at least 5 repeated scans were per-

formed in the same position. 

 

The maximum height is designed 

to define the absolute highest point of the 

plant in millimeters. This indicator does 

not replace the current height setting, but 

complements it. The current height focuses 

on averages rather than measurement  

accuracy, minimizing the effect of external artifacts or daily plant movements. To 

calculate the maximum height, PlantEye F500 finds the highest area (a group of 
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points in a 3D file) that contains the required number of points and is close enough 

to other areas. In this domain, the highest point is then given as the maximum 

height (Fig. 6). 

In general, for the height and maximum height of plants during 3D scan-

ning, the same dependence of the change in indicators for different positions of 

the plant on the scanned surface can be traced (for the correlation between these 

two parameters, r = 0.99, p < 0.05). The difference between the height and max-

imum height values in our experiment was about 12 mm at all points. 
 

 

Fig. 7. Leaf inclination depending on positioning of lilac 

(Syringa vulgaris L.) cv. Mercy plants (n = 10, M±CI, 

р = 0.05; 3D scanning, PlantEye F500, Phenospex 

B.V., the Netherlands). Each plant was placed at 5 

points, and at least 5 repeated scans were performed 

in the same position. 

 

The leaf slope reflects information 

about how high the leaves are on the plant 

and is calculated as the total leaf area di-

vided by the sum of the projections of each 

elementary triangle onto the X-Y plane 

(Fig. 7). The confidence interval for the 

obtained values is so small that it can be  

neglected with five repeated measurements in 10 plants. The maximum leaf 

slope values were obtained at point 3, the minimum values were obtained at 

points 2 and 4. 
 

 

Fig. 8. Leaf angle depending on positioning of lilac (Sy-

ringa vulgaris L.) cv. Mercy plants (n = 10, M±CI, 

р = 0.05; 3D scanning, PlantEye F500, Phenospex 

B.V., the Netherlands). Each plant was placed at 5 

points, and at least 5 repeated scans were performed 

in the same position. 

  
The leaf angle is the arithmetic 

mean of all the angles of each facet based 
on their normal (Fig. 8). 

The presented histogram shows 
that the location of the plant on the 
scanned surface significantly affects the ob-
tained values. Thus, the location at points 

2 and 4 gives the maximum values of the leaf angles, at point 3 the minimum, at 

points 1 and 5 the values are closest to the average for all five points. The slope 

angle was inversely proportional to the slope of the leaves (r = 0.99, p < 0.05) 

and leaf area (r = 0.92, p < 0.05) in 3D scanning. The higher the leaves are 

above the ground and more rotated relative to the scanning element, the greater 

the total leaf area will be (without changing the predicted area), and as a result, 

the slope of the leaves will increase. 

The depth of penetration of light reflects the distance that the laser beam 

can penetrate through the leaf surface of the plant (Fig. 9). From the presented 

data, it can be seen that the location of plants at points 1, 2 and 3 did not signif-

icantly affect the depth of light penetration, at point 4 there was a slight decrease 

in the indicator, and at point 5 we noted the lowest degree of penetration of the 

laser beam. Thus, we can state with confidence that the location at point 5 is the 

most informative. The value of the projected leaf area in different locations of 

the plant on the scanned surface is inversely proportional to the depth of light 
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penetration (r = 0.95, p < 0.05). 
 

 

Fig. 9. Light penetration depth depending on positioning 
of lilac (Syringa vulgaris L.) cv. Mercy plants (n = 10, 
M±CI, р = 0.05; 3D scanning, PlantEye F500, Pheno-
spex B.V., the Netherlands). Each plant was placed 
at 5 points, and at least 5 repeated scans were per-
formed in the same position.. 

 

Thus, our study showed that the 

location of the plant on the scanned sur-

face significantly affects the values of mor-

phological parameters measured using the 

PlantEye F500 3D laser scanner. Of the  

eight morphological parameters, two (plant height and maximum plant height) 

duplicate each other. When analyzing plant size, plant height is more preferable, 

since the confidence interval was smaller with five height measurements. The value 

of leaf area and digital biomass at different points of plant location on the scanned 

surface correlate (r = 0.98). Digital biomass is a less informative indicator for 3D 

scanning. It has a large confidence interval and depends on the plant architecton-

ics. A necessary condition for determining this parameter is the ability to calculate 

the volume given the height and the plant length. Two indicators with an inverse 

relationship (r = 0.95) are the leaf projected area and the depth of penetration 

of the laser beam. The depth of penetration of light could be an interesting indi-

cator of the density of shoots and leaves. Howevere, with small plants, as it was 

in our study since we used plants grown in vitro, these parameters are not signifi-

cant. The value of the angle of inclination is inversely proportional to the inclina-

tion of the leaves (r = 0.99). However, the leaf tilt angle is a more informative 

indicator in 3D scanning, allowing a better understanding of the architectonics of 

the plant, despite the fact that the confidence interval for leaf tilt is almost zero. 

In any case, both of these values are calculated based on the average of all leaf 

slopes and slope angles, therefore, a decrease in shoot turgor can significantly 

affect the results obtained. 

The analysis of publications and the results obtained by us of the practical 

application of machine vision technologies in assessing the morphological param-

eters of lilac plants of the Mercy variety using the PlantEye F500 3D scanner 

made it possible to identify the following advantages and disadvantages of the 

automated approach. The advantages include the fact that phenotyping platforms 

allow one scan to determine from 5 to 15 morphological characteristics on one or 

several plants at once [38-40]. Carrying out measurements of morphological pa-

rameters by traditional methods requires the use of various types of equipment, as 

well as significant labor costs. The accuracy of the obtained values of various 

morphological parameters is characterized by a high degree of convergence (see 

Fig. 2-9) even despite the existing measurement errors. The obtained data are 

loaded into a computer, and it is possible to assess the dynamics of changes in 

morphological parameters over time. The lack of protocols for phenoscreening of 

morphological parameters for different crops should be considered as a disad-

vantage [41]. It should be taken into account that when several plants are studied 

simultaneously on the scanned surface, the probability of measurement error in-

creases, as indicated by our experimental data. The impossibility of using the in-

stallation in the field during experiments, external factors (wind) prevent the plant 

from remaining in a static position and, as a result, affect the accuracy of the data 

obtained [36]. Most of the morphometric parameters studied by 3D scanning are 

in strong positive or negative interdependence and duplicate each other, for ex-

ample, height and maximum height, digital biomass and leaf area, projected leaf 
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area and light penetration depth. That is, software developers need to focus not 

on the number of output parameters, but on their informativeness in assessing the 

state of plants and the possibility of determining the dynamics of growth processes. 

when using various forms of drugs. Based on the fact that when changing the 

position of the same plant on the scanned surface (moving along five points), the 

recorded morphological parameters differed significantly, it can be confidently 

expected that the location of several plants on the scanned surface will lead to 

significant differences in the data obtained. 

Thus, our finndings show that, when using the PlantEye F500 3D scanner, 

it is optimal to place plants in the center of the scanned surface in the same 

position in order to obtain objective and comparable results. As morphological 

parameters for identifying varieties and fixing growth, we can recommend using 

the leaf area parameters, projected leaf area, plant height, and leaf angle. For each 

plant species, it is necessary to conduct primary morphological studies using tra-

ditional methods, and then compare the obtained data with the scan results to 

calculate the correction factor and confirm the information content of the trait set 

used, thereby increasing the accuracy of the data provided by machine vision 

technology. 
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