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A b s t r a c t  
 

Currently, one of the important tools for increasing crop production is the introduction of 

precision farming systems. As an obligatory element of such systems, production process control has 

been successfully used in recent years. Such control is implemented by modeling the responsiveness of 

the vegetative mass to changes in actual environmental conditions. In domestic and foreign literature, 

there are many examples of the development of mathematical models of plant growth and development 

that take into account external influences. It is shown that the predictive models allow us to respond 

in a timely manner to changing growing conditions. In turn, this helps to quickly make optimal agro-

nomic decisions. In this work, for the first time, the relationship between the difference (anomaly) of 

the average annual and current seasonal indicators of NDVI (normalized difference vegetation index) 

and the process of plant growth and development, taking into account the influence of existing con-

ditions, was established for the first time. It is shown that the conditions for the adequacy of approxi-

mation, when leveling noisy time series, are completely satisfied by the Gauss-Laplace function. As a 

mathematical expectation, the average values of the highest NDVI values of the vegetative period of 

the crop should be used. Mathematical models of the influence of photosynthetic, meteorological, and 

soil-climatic factors on NDVI anomalies in a particular phase of plant development have been ob-

tained. Our goal was to develop predictive models of the vegetation process of grain crops, based on a 

comparison of the average long-term indicators of NDVI with its current seasonal values. The influence 

of actual conditions was taken into account. The research was carried out on the fields of the «Inte-

gration» center of the Oryol State Agrarian University (Oryol Procince). In 2021, winter wheat (Triti-

cum aestivum L.) cultivar Moskovskaya 39 occupied an area of 48.1 ha, spring barley (Hordeum vulgare 

L. sensu lato) cultivar Raushan — 17.4 ha. Data for calculation of NDVI values were obtained from 

the CosmosAgro geoportal, as well as using an Agrofly Quadro 4/17 unmanned aerial vehicle (Agrofly 

International, Russia). Data noise compensation was performed by approximating time series with the 

Gauss-Laplace function. The adequacy of the regression models for the approximation of NDVI time 

series was assessed using the Fisher F-test and the average error of the approximation coefficient; the 

accuracy of the predictive models was confirmed by the Mean Absolute Percentage Error (MAPE) 

indicator. As a result, time series of the average NDVI value for the studied crops were obtained based 

on long-term observations, and the current NDVI values in the growing season 2021 were calculated. 

The distribution of time series of the vegetation index has been established. It was close to normal. 

The maximum (peak) values of NDVI are determined. They amounted to 0.71 for winter wheat and 

0.54 for spring barley and fell in June, regardless of the crop. The purpose of leveling the noisy NDVI 

time series of crops during the growing season is most fully satisfied by the asymmetric Gauss-Laplace 
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function. As a mathematical expectation, the average value of the highest NDVIs for the crop vegeta-

tion period was used. Mathematical models were obtained based on the NDVI anomaly index. These 

models describe the influence of photosynthetic, meteorological, soil, and climatic factors on the crop 

state during a particular phenophase. The mean absolute error of the proposed models was 9.23 for 

spring barley and 5.68 for winter wheat. Thus, the proposed characteristic ΔNDVI can be used as an 

independent variable (optimization criterion) in factorial models for predicting the dynamics of the 

vegetation process. 
 

Keywords: yield forecast, vegetation index, NDVI, Gaussian function, factor analysis, time 

series approximation 
 

Agriculture is on the verge of a digital revolution, which becomes the basis 

for precision farming and contributes to the implementation of the innovative 

development strategy of the Russian Federation. Site-specific crop management 

(SSCM) is an important element of precision farming, which is actively imple-

mented to increase crop yields [1-4]. Regulation of the bioproduction process is 

possible due to timely and prompt response to deviations caused by external in-

fluences [5-8]. The latter include the soil-climatic factor, various plant diseases, 

pests, and weeds. 

As tools for assessing the impact of environmental conditions on agricul-

tural crops, the analysis of meteorological data and the values of the vegetation 

index is successfully used. Taking into account external influences allows not only 

to quickly respond to emerging deviations [9, 11], but also to increase the effi-

ciency of monitoring the phytosanitary condition of crops [12], create new soft-

ware products for analyzing incoming information [13, 14], develop and imple-

ment automated systems decision-making on plant protection [15], contributing 

to an increase in the productivity of agrocenoses. The methods of mathematical 

statistics [16], in particular, multivariate analysis [17) make it possible to carry out 

forecasting for the management of the vegetation process. 
Previously, it was shown [18] that taking into account the influence of air 

temperature, soil moisture, and ultraviolet radiation power on the timing of plant 
development makes it possible to predict the vegetation process and develop rec-
ommendations for agronomic measures. It should be noted that the performance 
of the proposed method of factor analysis is determined by the choice of a char-
acteristic indicator of the solution of the problem, by the value of which the op-
timality of the found algorithm is estimated. The implementation of the factor 
complex, in which the optimization criterion was the period of lagging/advancing 
the development of plants from the average values calculated from long-term data, 
made it possible to characterize the course of the process under study, which fully 
satisfies the task of obtaining an adequate mathematical model, while the predicted 
harvesting period harvest allowed to reduce the seasonal load of combines. How-
ever, this does not allow the assessment to be carried out remotely, which could 
be used when managing a household based on digital platform solutions. 

Thanks to the methods of remote sensing of the Earth (ERS), the amount 
of information received and the possibilities of its processing are expanding [19-
21]. One of the indicators reflecting the assessment of the state and dynamics of 
plant development is the normalized difference vegetation index (NDVI). To pre-
dict the influence of existing conditions on the state of plants, it is advisable to 
use the method of comparing current values with long-term averages. At the same 
time, in order to exclude the features of a particular growing season (advance or 
lag in development), the averaged NDVI time series should be leveled [22-25]. 
This will make it possible to analyze information on deviations of current values 
from long-term averages at comparable stages of plant development with a smaller 
error [26]. 

In this work, for the first time, the relationship between the difference 

(anomaly) of the average annual and current seasonal indicators of the normalized 
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vegetative index NDVI and the process of plant growth and development under 

the influence of existing conditions has been established. It is shown that the use 

of the average value of the highest NDVI indicators of the growing season of a 

crop as the mathematical expectation of the Gauss-Laplace function for leveling 

noisy time series fully satisfies the conditions for the adequacy of their approxi-

mation. Mathematical models of the influence of photosynthetic, meteorological 

and soil-climatic factors on NDVI anomalies during a particular phase of plant 

development were obtained. 

Our goal was to create predictive models of the state of the vegetation 

process of grain crops under the influence of existing conditions based on a com-

parison of the average long-term indicators of the NDVI vegetation index with its 

current seasonal values. 

Materials and methods. The research was carried out on the fields of the 

Scientific and Educational Production Center "Integration" of the Orlov State 

Agrarian University (Orel Province). In 2016-2020, the average long-term values 

of the NDVI index were calculated for winter wheat in plots No. 28 (2016), Nos. 

23, 26, 31 (2017), No. 36 (2018), Nos. 22, 33 (2019 year), Nos. 23, 24, 26 (2020), 

for spring barley - in plots Nos. 27, 30 (2016), No. 54 (2017), Nos. 37-39 (2018), 

No. 27, 34 (2019), No. 13 (2020). In the growing season of 2021, experimental 

crops of winter wheat (Triticum aestivum L.) variety Moskovskaya 39 occupied an 

area of 48.1 hectares, spring barley (Hordeum vulgare L. sensu lato) variety 

Raushan 17.4 hectares. 

Normalized difference vegetation index (NDVI) was calculated by the for-

mula [27]: 

redNIR

redNIR
NDVI




 , 

where NIR is the vegetation cover reflection in the near infrared region (0.85-

0.88 µm) of the electromagnetic spectrum and red in the red region (0.64-

0.67 µm). 

Satellite data for 2016-2020 were obtained on the CosmosAgro geoportal 

developed by the ScanEx Engineering and Technology Center (Russia) [28]. We 

used multi-temporal archival remote sensing data from the Sentinel-2 imaging 

system (MSI scanner, multichannel), free from clouds (no more than 10%), haze 

and other adverse factors, with a spatial resolution of 10.2 m/pixel and the fre-

quency of obtaining information once at 5 days For analytical processing, the 

ScanEx GeoMixer utility [29] was used. 

To obtain data on NDVI during the growing season of 2021, an unmanned 

aerial vehicle Agrofly Quadro 4/17 (Agrofly International, Russia) was used. Com-

pensation for data noise caused by cloudiness, haze, evapotranspiration, precipi-

tation, and other natural-climatic and temperature influences was performed by 

the approximation method. We used the asymmetric Gauss-Laplace function, 

which most fully meets the tasks of aligning the NDVI time series during the 

growing season [30-32]: 

𝑓(𝑥) =
1

σ√2π
𝑒−

1

2
(

𝑥−μ

σ
)

2

, 

where 2 is distribution variance; μ is mathematical expectation (average value). 

Long-term statistical data on the dynamics of changes in the vegetation 

index NDVI were obtained from archival materials on crops with similar crops 

located near the plots of the field experiment. 

The fairness of using average NDVI values for individual fields to describe 

the average annual crop indicator was confirmed by the comparison criterion. At 

the same time, due to the impracticability of the classical conditions for applying 

the Student’s t-test in most statistical problems, the assessment of the homogeneity 
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of time series according to the NDVI index was performed using the Cramer-

Welch test T for the equality of mathematical expectations based on statistics [33]: 

𝑇 =
√𝑚𝑛(𝑥̅−𝑦̅)

√𝑛σ𝑥
2+𝑚σ𝑦

2
, 

where m, n are sample sizes; 𝑥̅, 𝑦̅ are the mean sample values; σ𝑥
2 , σ𝑦

2 are the 

variances of sample distributions.  

By comparing the T-test with the boundary value Ф (1 −
α

2
) where  is a 

significance level equal to 0.05, a decision was made to accept the hypothesis of 

homogeneity of the compared samples at the significance level  in accordance 

with the equality: 

𝑇 ≤ Ф (1 −
α

2
). 

The results of biometric calculations were processed in the Microsoft 

Excel software environment. The arithmetic mean values ( X ), standard devia-

tions (), coefficients of variation (kv) and dispersion (2) for the samples were 

calculated, artifacts were searched for and excluded, and the distribution param-

eters of the variation series were studied. The error in the calculated values did 

not exceed 5%. 

The adequacy of the regression models for the approximation of the NDVI 

time series was assessed using the Fisher’s F-test and the average error of the 

approximation coefficient (𝐴̅) according to the following formulas. 

𝐹 =
σ𝑥

2

σ𝑦
2, 

where σ𝑥
2 , σ𝑦

2 are variances of compared regression series; 

𝐴̅ =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1 × 100 %, 

where 𝑦𝑖, 𝑦̂𝑖  are the actual and theoretical (calculated by the regression equation) 

values, respectively, of the effective trait. 

The accuracy of the predictive models was evaluated using the Mean Ab-

solute Percentage Error (MAPE) model [6] based on the data for each phase of 

plant development in the growing season of 2021. At the same time, the prediction 

error was determined by comparing the actual NDVI anomaly index (NDVI) 

with its theoretical values found for each characteristic segment of the growing 

season [34]: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖𝑡ℎ𝑒𝑜𝑟−𝑦𝑖𝑎𝑐𝑡𝑢𝑎𝑙|

𝑦𝑖факт

𝑛
𝑖=1 × 100, 

where n is the number of compared pairs of values; yitheor, yiactual are the values of 

the indicators of the mathematical model optimization criterion and the actual 

indicators of the feature obtained during the experiment 

Results. Despite some deviations at the end of the growing season, obvi-

ously caused by different harvesting times, the calculation of the Cramer-Welch 

criterion did not reveal significant differences in the compared variation series of 

the NDVI index for individual plots located near fields with experimental crops 

in 2021: the calculated values of T did not exceed boundary value Ф(1 −
α

2
) at a 

significance level   = 0.05 (Table 1). This confirms the validity of using the values of 

the vegetation index of the selected plots to calculate the average annual NDVI values. 

The seasonal dynamics of the NDVI index change according to long-term 

data is presented in Table 2. As can be seen, the nature of the change in the values 

of the time series was similar for the studied crops and, more than other distribu-

tion functions, corresponded to the normal law. Regardless of the crop, the lowest 

values of the vegetation index corresponded to the winter months. The highest 
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NDVI values were observed between May and June. The maximum average long-

term values of the vegetation index were in June and amounted to 0.71 for winter 

wheat and 0.54 for spring barley. 

1. Evaluation of the homogeneity of time series according to the normalized difference 

vegetation index (NDVI)  during investigation (Orel Province) 

Test sites 

NDVI statistical parameters  

arithmetic mean, X  dispersion, 2 
Cramer-Welch 

test, Т 

boundary Т-value, 

Ф(1 −
α

2
),  = 0.05 

2 0 1 6   

Spring barley (Hordeum vulgare L. sensu lato) 

No 27 0.47 0.220 0.4527, 30 1.96 

No 30 0.45 0.210   

2 0 1 7   

Winter wheat (Triticum aestivum L.) 

No 23 0.48 0.085 0.2331, 26 1.96 

No 26 0.39 0.082 1.2226, 23  

No 31 0.40 0.052 1.6823, 31  

2 0 1 8   

Spring barley (Hordeum vulgare L. sensu lato) 

No 37 0.34 0.012 0.1137, 39 1.96 

No 38 0.32 0.011 1.6737, 38  

No 39 0.35 0.016 1.6438, 39  

2 0 1 9   

Winter wheat (Triticum aestivum L.) 

No 22 0.37 0.160 0.1022, 33 1.96 

No 33 0.37 0.220   

Spring barley (Hordeum vulgare L. sensu lato) 

No 27 0.31 0.024 1.0927, 34 1.96 

No 34 0.29 0.026   

2 0 2 0   

Winter wheat (Triticum aestivum L.) 

No 23 0.44 0.201 0.1923, 24 1.96 

No 24 0.46 0.223 1.7424, 26  

No 26 0.42 0.231 0.5123, 26  

 

2. Monthly values of the normalized difference vegetation index (NDVI) across a 5-

year study study (Orel Province) 

Year 
Month 

I II III IV V VI VII VIII IX X XI XII 
W i n t e r  w h e a t  (Triticum aestivum L.) cv. M o s k o v s k a y a  3 9  

2016 нд 0,02 0,30 0,26 0,55 0,71 0,44 0,39 0,36 0,28 0,26 nd 

2017 0.03 0.03 0.19 0.32 0.43 0.74 0.73 0.54 0.55 0.46 0.48 0.20 

2018 нд 0.03 0.35 0.16 0.53 0.70 0.36 0.40 0.39 0.29 0.17 nd 

2019 0.04 нд 0.26 0.29 0.58 0.65 0.39 0.26 0.23 0.20 0.34 nd 

2020 нд нд 0.42 0.42 0.76 0.79 0.39 0.32 0.38 0.35 0.19 0.21 

Average 0.04 0.03 0.33 0.27 0.54 0.71 0.46 0.38 0.38 0.27 0.28 0.21 

S p r i n g  b a r l e y  (Hordeum vulgare L. sensu lato) cv. R a u s h a n   

2016 0.04 нд 0.18 0.19 0.36 0.55 0.53 0.42 0.32 0.22 0.2 nd 

2017 0.04 0.03 0.30 0.33 0.50 0.56 0.80 0.54 0.49 0.48 0.23 0.03 

2018 нд 0.04 нд 0.20 0.27 0.48 0.47 0.39 0.33 0.26 0.19 nd 

2019 0.03 нд 0.14 0.14 0.37 0.56 0.52 0.32 0.19 0.19 0.30 nd 

2020 0.01 нд 0.17 0.19 0.27 0.54 0.41 0.37 0.33 0.21 0.13 0.13 

Average 0.04 0.03 0.19 0.19 0.35 0.54 0.53 0.41 0.33 0.24 0.22 0.11 

N o t е. nd — no data.  

 

We carried out a comparative assessment of the average annual indicators 

of the vegetation index of the studied crops for 2016-2019; 2020 was not consid-

ered due to a clear deviation in NDVI values for compared crops due to lack of 

rainfall. This anomaly, especially in the spring and early summer periods, prede-

termined a sharp decrease in the vegetative mass of spring barley. The latter, as is 

known [35, 36], is more susceptible to lack of moisture compared to winter crops, 

which make better use of the spring reserves of moisture and nutrients. 

A stable ratio of NDVI values for winter wheat to those for spring barley 
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was found, which was 1.16 (16%) on average over the years for the specified 

period. At the same time, the correlation coefficient (r) between the compared 

time series turned out to be 0.96. 
 

 

Fig. 1. The alignment of the average long-term time series of the normalized difference vegetation index 
(NDVI) using the Gauss-Laplace function for spring barley (Hordeum vulgare L. sensu lato) cv. 
Raushan (A) and winter wheat (Triticum aestivum L.) cv. Moskovskaya 39 (B): blue dots — actual 
values, graph — calculated values, EST — estimated sowing time, EHT — estimated harvest time 
(Orel Province).  

 

Based on the use of the Gauss-Laplace function, an approximation of the 

actual NDVI time series was performed based on long-term average data and plots 

of regression models with a variable structure were plotted (Fig. 1). It is known 

[26] that one of the main conditions for the approximation of empirical series is 

the minimization of the sum of squared deviations of the theoretical points 𝑦̅𝑥′ of 

the regression line from the points 𝑦𝑖 of empirical (experimental) observations: 

𝑄 = ∑(𝑦𝑖 − 𝑦̅𝑥′)2⇒min. When using the Gauss-Laplace function, this requirement 

was provided by the values of the parameters  and μ. Thus, the mathematical 

expectation μ was taken equal to the average value for the five highest NDVI 

indicators of the growing season for the crop. To equalize the time series of the 

vegetation index for winter wheat and spring barley, μ was 181 and 198, respec-

tively. In both cases, the shift in the position of the mathematical expectation 

relative to the centers allows us to classify the obtained approximations as func-

tions of an asymmetric left-hand distribution. 

As can be seen, the description of the NDVI time series using the Gauss-
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Laplace function made it possible to get rid of the noise caused by the difference 

in the conditions for obtaining the initial data. 

Checking the adequacy of the accepted mathematical models using the 

Fisher’s F-test and the average error of the approximation coefficient 𝐴̅ in the 

areas characterizing the timing of the vegetation process of crops showed satisfac-

tory convergence of the actual and theoretical series: 

winter wheat — 𝐹0.05
𝑐𝑎𝑙𝑐 = 1.20 < 𝐹0.05

𝑡𝑒𝑠𝑡(76) = 1.47; 𝐴̅ = 23.4%; 

spring barley — 𝐹0.05
𝑐𝑎𝑙𝑐 = 1.22 < 𝐹0.05

𝑡𝑒𝑠𝑡(50) = 1.6; 𝐴̅ = 19.9%. 
A fairly high value of 𝐴̅ was due to a large variation in the actual long-

term average NDVI indicators (coefficients of variation kv = 0.50 for winter wheat, 

kv = 0.51 for spring barley). Nevertheless, based on the comparative assessment 

of the F-test, we believe that the result obtained gives the right to recommend 

these mathematical models for a comparative analysis of the deviations of the 

current values of the NDVI index of a crop from the long-term average data. 

The average long-term values of the NDVI index for the studied crops 

differed somewhat from the dynamics in the growing season of 2021 (Fig. 2, A, 

B). In June 2021, NDVI values turned out to be higher; in July, they were lower 

than the average long-term observations. For both crops, the NDVI values were 

higher than the long-term average in the heading phase. Thus, with the maximum 

long-term average NDVI for winter wheat and spring barley of 0.75 and 0.63, 

respectively, the highest values of this indicator in 2021 for these crops were 0.80 

and 0.74. 
 

 

Fig. 2. Deviations of the normalized difference vegetation index (NDVI) from the average long-term 

indicators in 2021 for spring barley (Hordeum vulgare L. sensu lato) cv. Raushan (A) and winter wheat 
(Triticum aestivum L.) cv. Moskovskaya 39 (B): blue dots — actual values, graph — long-term averages 

(Orel Province).  
 

The peak of the increase in NDVI in 2021 fell on June 15-20, which is 7-

9 days earlier than the long-term average. Accordingly, an earlier decrease in the 

vegetation index associated with the completion of growth processes was observed 

compared to the average long-term norm. It was established that the optimal value 

of NDVI, equal to 0.30-0.35 and characterizing the readiness of the field for har-

vesting, was achieved for spring barley on August 11, for winter wheat on July 15. 

This is 2-2.5 weeks earlier than the average long-term deadlines for the end of the 

vegetation process. That is, for the growing season of 2021, we should state an 

advance relative to the long-term average normal values. 

A diagram showing NDVI anomalies in 2021 (deviation of NDVI values 

from the average) (Fig. 3) can be used as a basis for assessing the influence of 

certain external factors on the change in the vegetation index. This will allow 

timely adjustment of agronomic measures, creating conditions favorable for the 

crop growth and developemt. 
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Fig. 3. Deviation of the the normalized difference vegetation index (ΔNDVI) from the average long-
term indicators during the growing season of 2021 for spring barley (Hordeum vulgare L. sensu lato) 

cv. Raushan (1) and winter wheat (Triticum aestivum L.) cv. Moskovskaya 39 (2) (Orel Province).  
 

An assessment of the possibility of using deviations (anomalies) of the 

current values of the NDVI vegetation index from the long-term average made it 

possible to apply the previously obtained mathematical models that describe the 

influence of photosynthetic, meteorological, and soil-climatic factors on NDVI 

anomalies during a specific phase of plant development: 

Δysp = 0.022 + 0.136x2  0.184x3  0.006x5  0.002x6 + 0.002x8, 

Δywn = 0.296 + 0.144x1 + 0.004x4 + 0,.021x7  0.005x8, 

where x1 is the content of chlorophyll a (mgʺg1), x2 is the content of chlorophylls 

a + b (mgʺg1), x3 is the content of carotenoids (mgʺg1), x4 is the soil temper-

ature (T, С), x5 is the soil moisture (W, %), x6 is the ambient air temperature (t, 

С), x7 is the accumulated amount of precipitation (RN, mm), x8 is the level of 

ultraviolet radiation (UV, Wʺm2). 

Figure 4 shows the actual and modeled regression curves of the influence 

of acting factors on the NDVI anomalies of the 2021 growing season. 

The assessment of accuracy by the MAPE indicator revealed a satisfactory 

average absolute error of the models: for spring barley 9.23, for winter wheat 5.68. 

Some decrease in the estimate of the accuracy of the predictive model for spring 

barley was probably due to the greater variability in seasonal NDVI values. So, if 

the variance of the vegetation index series for barley was 0.026, then for winter 

wheat it was 0.016. However, in general, the accuracy of the proposed models 

allows us to recommend them for practical use in production conditions. Regular 

assessment of current anomalies (for example, before the onset of the next crop 

phenophase and especially during the earing period) provides a real opportunity 

for operational management of the vegetation process to form maximum yields 

under specific conditions. 

The results of numerous studies [37-39] demonstrate the practical applica-

bility of the indicators of the normalized difference vegetation index for predicting 

the yield of cereals and other crops. At the same time, there is a higher correlation 

between the actual productivity of crops and the maximum (peak) NDVI values 

during the beginning of the heading phase [40, 41]. Some reports [42-44] discuss 

in detail the possibilities of using predictive models to assess the state of the veg-

etative mass, as a tool for managing the production process. Particular attention 

is paid to the processes of formation of yield, growth of the root system, changes 

in the composition of dry matter in plants, etc. This takes into account photosyn-

thesis, respiration, transpiration and soil hydraulics, autotrophic processes and sto-

matal control. The results of studies are given for a number of crops - corn [41], 
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cotton [43], soybeans [37], sugar beets and potatoes [38], forage grasses [40]. 

However, the characteristics of the relationship between the vegetation process 

and the dynamics of NDVI during individual phenophases are not studied, and 

attention is not focused on the influence of weather and climate impacts. 
 

 

Fig. 4. Actual and simulated deviations of normalized difference vegetation index (ΔNDVI) from the 
average long-term values during the growing season of 2021 for spring barley (Hordeum vulgare L. 
sensu lato) cv. Raushan (A) and winter wheat (Triticum aestivum L.) cv. Moskovskaya 39 (B): 1 — 
calculated anomaly  2 — actual anomaly (Orel Province). 

 

The approach proposed in this paper to the construction of a predictive 

model of the growing conditions of grain crops shares the goals formulated in the 

above works, but adds new aspects to them. A qualitative indicator of the process 

of growth and development of plants is a comparative assessment of the vegetation 

index, calculated from the results of the average annual and current seasonal values 

of NDVI. A short-term forecast of the state of plants is built on the basis of 

operational information about external influences. This approach is very important 

for a timely and reliable assessment of the current conditions and making an ad-

equate decision on agrotechnical measures. In addition, unlike the known models 

with a daily step, the new model is based on the use of a complex indicator that 

takes into account the input parameters observed in real time. In addition to NDVI 

indicators, these are atmospheric and soil-climatic characteristics. In practice, the 

use of the proposed forecast algorithm and the corresponding set of monitoring 

tools will allow you to quickly respond to changing external influences and make 

the right agronomic decisions. 

Thus, the task of managing the vegetation process of agricultural crops can 

be implemented on the basis of predictive models obtained through factor analysis 

of influencing external conditions. We considered the possibility of using deviations 
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(anomalies) of the current seasonal values of the NDVI vegetation index from the 

long-term average as a dependent variable for a multivariate regression model. The 

purpose of leveling the noisy time series of NDVI of agricultural crops during the 

growing season is most fully satisfied by the asymmetric Gauss-Laplace function, 

where the average value of the highest NDVI indicators of the crop growing season 

is used as a mathematical expectation. As a result of a comparative analysis of the 

long-term average and the current (vegetation season 2021) NDVI indices for the 

studied crops, a diagram of NDVI anomalies (ΔNDVI) of the current growing 

season was obtained, which is recommended for assessing the influence of external 

factors on the vegetation process. The characteristic ΔNDVI can be used as an 

independent variable (optimization criterion) in factorial models for predicting the 

dynamics of the vegetation process. 
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