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A b s t r a c t  
 

Nowadays, the search for new effective methods and approaches based on using natural 

bioactive compounds that control plant growth, development, and plant productivity with minimal 

impact to the environment and human health is still in great demand. One of the directions developing 

during the last decades contributing to the “greening” of agricultural production is the application 

agrochemicals based on phytohormones with protective functions, such as abscisic acid, salicylic acid, 

and jasmonates. The use of these phytohormones is very promising since it can significantly increase 

plant tolerance to unfavorable factors of biotic and abiotic nature. This review summarizes the current 

information on the biological functions of abscisic acid, jasmonates, and salicylates, presents the ex-

amples demonstrating crop species treatment with the agrochemicals based on these phytohormones, 

and discusses the promising directions for the phytohormones application in agriculture. Abscisic acid, 

jasmonates, and salicylates are often referred to as stress hormones because they regulate the plant 

adaptive responses to adverse environmental conditions. Abscisic acid is a regulator of plant growth 

and development throughout ontogenesis, as well as tolerance to abiotic and biotic stress factors (J. Li 

et al., 2017), plays a role in the stomata closure, regulating the ion flow in the guard cells, controls all 

stages of seed maturation (K. Chen et al., 2020). Abscisic acid can play positive and negative roles in 

plant protection against pathogens (L. Lievens et al., 2017; K. Xie et al., 2018) and influence the 

symbiotic relationships with fungi and bacteria (A. Tsyganova, V. Tsyganov, 2015). Salicylic acid con-

trols plant tolerance to pathogens (A. Vlot et al., 2009; P. Ding, Y. Ding, 2020), plays a role in the 

development of hypersensitive response, death of infected cells (D. Klessig and J. Malamy, 1994; 

M. Alvarez, 2000), and formation of tolerance in unaffected plant parts (systemic acquired resistance) 

(M. Bürger, J. Chory, 2019). Salicylic acid may also be involved in the enhancement of plant tolerance 

to salt and low temperature stress (E. Horvath et al., 2015; Yu. Kolupaev, Yu. Karpets, 2021; W. Wang 

et al., 2018) and maintenance of the root zone microbiome (S. Lebeis et al., 2015). The range of 

regulatory effects of jasmonates is broad, but their functions are primarily associated with the regulation 

of mechanisms that determine plant tolerance to necrotrophic pathogens and insects, including root 

pests (C. Rohwer, J. Erwin, 2008; S. Johnson et al., 2018). Jasmonates also control plant tolerance to 

low temperature, salt stress, flooding, drought, ozone, heavy metals, and ultraviolet radiation 

(T. Savchenko et al., 2014; D. Pandita, 2022; T. Savchenko et al., 2019; K. Kazan, 2015; H. Kim et 

al., 2021). The high biological activity of abscisic acid, salicylates and jasmonates determines the sig-

nificant potential of their application in agriculture to increase plant stress tolerance. At the same time, 

according to published data, the increase in plant tolerance mediated by the mentioned phytohormones 

is often accompanied by the suppression of growth-related processes, which can adversely affect crop 
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yields and product quality. To assess the prospects for the practical use of agrochemicals based on 

abscisic acid, jasmonates, and salicylic acid, a comprehensive analysis of the available data on the 

physiological effects caused by these substances is necessary due to their spectrum of actions, dependent 

on species/variety specificity, phase of plant development, susceptibility of the target tissue, chemicals 

concentration, duration of treatment and conditions of application.  
 

Keywords: phytohormones, abscisic acid, jasmonic acid, salicylic acid, physiological effects, 

plant tolerance, abiotic stress, biotic stressors, exogenous treatment, adaptive response 
 

Phytohormones regulate plant growth, ontogeny, metabolism and adaptive 

responses to changing environmental conditions. Since the beginning of the 21st 

century, researchers have made significant progress in understanding the biological 

functions of plant hormones, identifying regulatory mechanisms and signal trans-

duction pathways that they control to form a background for their use in agricul-

tural practice. Auxins, ethylene, gibberellins, abscisic acid, cytokinins, the so-

called classical plant hormones have been well known since the mid-20th century. 

The potential of jasmonates, salicylic acid, brassinosteroids and strigolactones, the 

compounds with regulatory functions proven relatively recently is currently being 

actively studied. The number of new regulatory molecules is growing, and, in 

addition to the classes of compounds mentioned, hormone-like properties have 

been discovered in polyamines, karrikins, triacontanol, turgorins, and peptide 

hormones [1-3]. 

The prospects for using phytohormones in agriculture as plant growth reg-

ulators and inducers of protective responses are beyond doubt [4-6). Preparations 

based on cytokinins, auxins, gibberellins, brassinosteroids and their functional an-

alogues for the treatment of fruits during the post-harvest period [7], seeds and 

vegetative tissues [8-10], have successfully entered into practice. The potential of 

phytohormones with pronounced protective properties, such as abscisic acid, 

jasmonates and salicylates, has not yet been discovered. In Russia, preparations 

based on these phytohormones have not yet been used. Wider application is ham-

pered not only by the difficulties of industrial scale roduction of these compounds 

but also by the lack of necessary approaches and practical recommendations for 

various crops. 

Here, we analyze current data on the effect of abscisic acid, jasmonates 

and salicylates on various crops, and also to outline possible prospects for the 

practical use of each of the phytohormones under consideration in widespread 

agricultural practice. 

Ab s c i s i c  a c i d. Abscisic acid (ABA) is involved in the regulation of plant 

growth and development throughout ontogenesis and determines resistance to abi-

otic and biotic stress factors [11]. ABA regulates ion fluxes in stomatal guard cells. 

ABA-mediated stomatal closure can occur in response to drought, low humidity, 

high CO2 concentrations, pathogen attack, darkness, etc. Stomata allow gas ex-

change and transpiration, and can also allow pathogens to enter, so regulating the 

opening and closing of stomata is important in ensuring plant resistance to adverse 

environmental influences [12]. 

ABA is involved in the regulation of seed maturation [12]. Early on, ABA 

slows down the cell cycle at the G1/S transition stage [13, 14], which inhibits 

embryonic growth through cell division and activates growth through cell elonga-

tion. During the early stages of seed development, ABA accumulates through 

transport from the mother plant [15]. Later, ABA is synthesized in the cells of the 

embryo itself and regulates the activity of the network of LAFL transcription fac-

tors LEC1/ABSCISIC ACID (ABA)-INSENSITIVE3 (ABI3), FUSCA3 (FUS3) 

and LEAFY COTYLEDON2 (LEC2) which control seed maturation. Seed des-

iccation and nutrient accumulation are also controlled by ABA [12]. ABA is a key 

regulator of seed dormancy, since in mutants with reduced ABA content, seeds 
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germinate prematurely while still on the mother plant [15]. 

During evolution, plants have acquired complex mechanisms that ensure 

seed germination only under optimal environmental conditions. The ratio of ABA 

and gibberellic acid (GA) is crucial in maintaining seed dormancy which is regu-

lated by both endogenous factors associated with plant development and external 

influences. During germination, ABA catabolism and gibberellin synthesis are en-

hanced, and GC signaling is activated [11]. A change in the ABA:GA ratio is 

achieved primarily through changes in the expression of the RGL2 gene, which 

encodes RGA-like 2 protein (Repressor of GA). Exogenous ABA is able to activate 

the expression of RGL2, and in the seeds of mutant plants carrying a nonfunctional 

rgl2 variant, the ABA content is reduced after imbibition, which leads to acceler-

ated dormancy release and germination. With a high content of gibberellins, 

DELLA proteins, key negative regulators of the gibberellin signal, are destroyed. 

This leads to a decrease in the activity of the regulatory module, which, in addition 

to DELLA, includes the ABI3 and ABI5 proteins (ABA-dependent transcription 

factors, the main negative regulators of seed germination). As a result, the expres-

sion of gibberellin-dependent genes is induced and accelerated germination occurs. 

It has been shown that during cold stratification, the expression of genes of the 

CYP707A family, involved in ABA catabolism, and the AtGA3OX1 gene, involved 

in the biosynthesis of gibberellins, increases [12]. When exposed to high tempera-

ture, increased activity of a regulatory module including DELLA, ABI3, and ABI5 

inhibits germination [12]. ABA, produced in the tissues of the mother plant, plays 

an important role in the development of the embryo and affects plant yield [16]. 

When unfavorable conditions occur, ABA causes growth arrest to protect the seed-

ling [12]. 

The action of ABA inhibits cell division and elongation, regulates the tran-

sition from cell proliferation to differentiation, the development of lateral roots, 

and the formation of the suberin barrier in roots subject to water stress, providing 

control of water and nutrient flows [17]. Under normal conditions, ABA sup-

presses the emergence of new leaves [18] and plays a critical role in accelerating 

leaf senescence. This is necessary for the efficient distribution of resources from 

senescent leaves to the floral meristem and seeds. ABA serves as an inhibitor in 

the regulation of floral meristem activity and flowering time [12]. The participation 

of ABA in the development of male and female gametophytes and the flower as a 

whole is discussed in detail in the work of Y. Zhao et al. [19]. 

With transgenic Arabidopsis plants in the mesophilic leaves of which ABA 

signaling is constitutively suppressed, it was shown that ABA does not directly 

affect photosynthesis, but the presence of ABA is necessary to achieve maximum 

plant productivity. Under optimal conditions, transgenic plants with impaired 

ABA signaling were characterized by more vigorous growth at the initial stages of 

development, earlier flowering, smaller flowers, delayed chlorophyll degradation 

and fewer seeds compared to wild-type plants, but no such differences were ob-

served under drought conditions [20]. 

ABA accumulates rapidly in plants in response to a variety of stress factors. 

When favorable conditions return, the ABA content decreases due to glycosylation 

or oxidation to phaseic acid, which is further converted into dihydrophaseic acid. 

When a plant is exposed to a stress factor with the participation of ABA, the 

stomata close, the expression of aquaporin genes is inhibited, but the expression 

of genes encoding chaperone proteins, hydrophilic LEA proteins (late embryogen-

esis abundant, dehydrins) and antifreeze proteins, enzymes for the synthesis of 

wax and suberin are activated, and accumulate sugars and proline, the antioxidant 

system is activated, and other protective changes occur [11]. The prevailing view 

in the scientific community is that ABA is a growth inhibitory hormone, but recent 
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studies show that nanomolar concentrations of exogenous ABA can stimulate 

growth, including a positive effect on hypocotyl growth in the dark [21]. 

The functions of ABA in protecting plants from pathogens are carried out 

in interaction with other hormones: salicylic acid (SA), jasmonic acid (JA) and 

ethylene. ABA can cause stomatal closure to block pathogen entry and stimulate 

callose deposition in plant cells, limiting pathogen spread. Virulence factors of 

some pathogens are aimed at suppressing ABA signaling in plants, although in 

other cases, on the contrary, ABA produced by the pathogen acts as an effector 

that suppresses defense responses [22]. Interestingly, ABA can play both positive 

and negative roles in plant resistance to viruses [23]. The positive effect of ABA 

on the symbiotic relationships of plants with fungi and bacteria is the formation 

of arbuscular mycorrhiza, while the negative effect is the establishment of rhizobial 

symbiosis [24]. 

The use of exogenous ABA for pre-sowing seed treatment and foliar treat-

ment of plants increases the stress resistance of grain crops, which leads to an 

increase in yield [9]. Based on ABA, Valent BioSciences (USA) has developed the 

BioNik™ drug which is used to delay the development of plants of inbred lines of 

pollen donors in order to synchronize and extend the period of cross-pollination 

when growing corn for grain (https://www.valentbiosciences.com). 

Exogenous treatment of soybean plants with abscisic acid over several sea-

sons of field and greenhouse trials increased dry mass of aerial parts, root length 

density, leaf area, number of seeds per pod, and seed oil content [25]. Due to this 

and due to the distribution of metabolic flows from the vegetative parts of the 

plant to the seeds, ABA promotes an increase in soybean yields [25]. 

The use of ABA on sunflower under conditions of sufficient water supply 

negatively affects plants, while spraying under drought conditions can mitigate the 

negative effects of stress by increasing the leaf blade area, flowerhead diameter, 

number of seeds per head, yield, 1000-seed weight and oil yield [26, 27]. Spraying 

ABA during the budding stage is more effective than spraying during the flowering 

stage, while the treatment efficiency was different for different hybrids. 

The use of the drug ProToneTM (20% ABA, Valent BioSciences) contrib-

uted to 100% leaf fall from apple trees in early autumn, without affecting the 

shoots of axillary buds [28], which indicates the possibility of using this drug to 

prepare the plant for harvesting and wintering. Exogenous ABA protected apple 

trees during drought by stimulating stomatal closure [29). Spraying the crown of 

cherry trees or directly treating fruits enhanced the color of drupes in various 

varieties [30]. The use of ABA on citrus trees improved the color of fruits, in-

creased resistance to cold, and reduced the content of organic acids in fruits. It 

was noted that the observed effect was achieved only by foliar treatment while root 

treatment did not have any effect [31, 32]. 

The use of ABA on grapes has been well studied. ABA stimulates the 

ripening of berries, enhances their color by increasing the content of anthocyanins 

and phenolic compounds, and reduces the content of organic acids [33]. This is 

due to the fact that ABA controls the biosynthesis of phenolic compounds and 

anthocyanins [34-36]. The ability of ABA to control the timing of grape berry 

ripening depends on the concentration of the sprayed solution and also on the 

target organ, since different tissues demonstrate unequal absorption rates due to 

the permeability of the cuticle. Cabernet Sauvignon berries absorbed ABA less 

readily than leaves, but in both cases, ABA treatment accelerated the onset of 

berry coloring. A cool and wet growing season enhances the effect of exogenous 

ABA on fruit quality. The bunches treated with ABA had a lower berry weight and 

a higher dry skin weight which is acceptable for winemaking. Exogenous applica-

tion of ABA can be an alternative agronomic technique to accelerate berry ripening 
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and improve their quality in cool years, in humid climates and in regions where 

the likelihood of early frosts is high [33]. 

In a recent study, J. Li et al. [37] showed a relationship between exogenous 

exposure to ABA and the content of endogenous phytohormones and metabolites 

that determine the quality of Ruidu Hongyu grape berries. Treatment with ABA 

significantly improved the appearance of berries and the content of a number of 

metabolites (sugars, anthocyanins, polyphenols, soluble sugars, ascorbic acid) by 

increasing the expression of genes involved in the biosynthesis of these substances. 

In addition, an increase occurred in the content of endogenous ABA, auxin and 

cytokinin and the transcription of genes associated with ABA biosynthesis and 

signaling in fruits. 

ABA-based ProToneTM (200 to 400 g/ha) is used in many countries to 

improve the color of red table grapes. The action of the drug is based on increasing 

the activity of UDP-glucose flavonoid 3-0-glucosyltransferase (UFGT). The effect 

of ProToneTM is similar to that of 2-chloroethylphosphonic acid (Ethephon), a 

precursor of ethylene, but ProToneTM does not lead to softening of fruit tissue 

and is more technologically advanced because it is not volatile, unlike ethylene 

(https://www.valentbiosciences.com). The mechanisms by which ABA regulates 

fruit ripening are discussed in detail in a review article by X. Kou et al. [38). 

ABA can find application in vegetable growing. It was shown that exoge-

nous ABA treatment of red and green leaf lettuce significantly reduced yield, but 

induced the accumulation of chlorophyll b and an increase in the content of total 

carotenoids in the leaves, while the content of phenols and anthocyanins in red 

leaf lettuce significantly increased [39]. Exogenous ABA treatment increased ca-

rotenoid accumulation in tomatoes [40]. 

S a l i c y l i c  a c i d. Salicylic acid (SA) provides plant resistance to patho-

gens [41, 42]. During infection, SA synthesis plays a key role in the development 

of a hypersensitivity reaction, local death of plant cells together with the pathogen 

[43, 44], as well as the formation of resistance (systemic acquired resistance) in 

unaffected parts of the plant [45]. 

The most compelling evidence of the protective role of SA was obtained 

by analyzing Arabidopsis thaliana (L.) Heynh. plants which are unable to accumu-

late it due to the expression of the bacterial gene NahG, which encodes the enzyme 

salicylate hydroxylase which converts SA into catechol. After infection, these 

plants could not develop systemic acquired resistance because they did not express 

PR (pathogenesis-related) genes and were vulnerable to attack by the pathogen. 

Treatment with a synthetic analogue of SA restored plant resistance and expression 

of PR genes [46, 47]. 

The main molecules through which the SA signal is transmitted are the 

NPR1 and NPR3/NPR4 proteins (non-expressor of PR proteins) and the SABP 

group of proteins (salicylic acid-binding proteins) [48]. Signal transmission into 

the nucleus occurs through NPR proteins which, after the action of SA, enter the 

nucleus and activate the expression of a large group of genes encoding PR proteins, 

among which are genes encoding chitinases (PR-3) and β-1,3-glucanases (PR-2), 

proteinase inhibitors (PR-6), cysteine-rich proteins, similar thaumatin (PR-5), as 

well as a group of proteins grouped in the PR-1 family, which inhibit fungal growth 

in an in vitro system [49]. The role of other SA-regulated proteins is not yet 

entirely clear, but their expression is associated with increased resistance to a large 

number of bacterial, fungal and viral infections. It should be noted that while 

NPR1 positively regulates the expression of PR genes, NPR3 and NPR4 (pa-

ralogues of NPR1) function more as transcriptional repressors of salicylate-acti-

vated genes at low SA content in the cell [50]. SABP proteins do not transmit a 

signal to the nucleus, but change their activity upon SA binding. Among the SABP 
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proteins, in particular, catalases (SABP1, CAT2) and phosphatase 2A are distin-

guished, which negatively regulate the PIN2 protein associated with auxin 

transport [51, 52]. 

Treatment with salicylates is often used to make plants resistant to various 

infections [53]. For example, treatment with SA increased resistance to Fusarium 
oxysporum [54] and yellow leaf curl virus [55] in tomatoes, to Magnaporthe grisea 
and Xanthomonas oryzae [56, 57] in rice, and to Xanthomonas axonopodis [58] in 

citrus plants. However, it should be taken into account that SA has an antagonistic 

relationship with jasmonates and often inhibits jasmonate-regulated responses to 

necrotrophic pathogens [59-61]. Thus, exogenous treatment with SA suppresses 

plant resistance to necrotrophic infections for which jasmonates are responsible. 

SA is important for the resistance to Botrytis cinerea. S. Ferrari et al. [62] showed 

that, along with ethylene and FA, the activity of SA signaling pathways is required 

for the formation of local resistance to B. cinerea in Arabidopsis. Treatment of 

tomatoes with SA resulted in the accumulation of reactive oxygen species in tissues 

and increased resistance to pathogens of the genus Botrytis [63]. 

SA may be involved in the formation of plant resistance to abiotic stresses. 

Treatment with SA contributed to an increase in the resistance of tomatoes to salt 

stress [64, 65] and frost resistance of wheat [66]. There are known examples of the 

participation of SA in the regulation of plant growth and development [67] and in 

the process of microbiome formation in the root zone [68]. 

One of the effects associated with the use of SA is inhibition of plant 

growth. Like other protective hormones, SA regulates the distribution of resources 

between processes that ensure plant growth and protection. Exogenous SA can 

have different effects on plant growth depending on the dose, duration of treat-

ment, species, and stage of plant development [67]. If the use of small doses 

stimulates seed germination, then in high concentrations SA almost always has a 

negative effect. For example, treatment with a 1 mM SA solution significantly 

inhibited the growth and development of Arabidopsis seedlings [69]. Disruption in 

SA hydroxylation resulted in a pronounced dwarf phenotype in A. thaliana [48, 

70, 71]. 

A special physiological effect of SA was discovered when studying ther-

mogenesis in aroids. During flowering of Sauromatum guttatum (Wall.) Schott, two 

periods of thermogenesis are noted (increase in temperature in the flower by 10-

12 С), and shortly before this there is an almost 100-fold increase in the endog-

enous content of SA [72]. Exogenous treatment with SA or its analogues is capable 

of stimulating thermogenesis, while only two substances (aspirin and 2,6-dihydro-

benzoic acid) which are most similar to SA, increased the temperature in flowers, 

while other analyzed SA analogues (31 compounds) did not have such an effect 

possessed. The observed increase in temperature is associated with activation of 

mitochondrial alternative oxidase [73]. 

In the 1970s, it was suggested that SA might be a flowering inducer because 

exogenous treatments stimulated flowering in both short- and long-day plants [74]. 

The participation of SA in the regulation of flowering is confirmed by the following 

facts: mutant Arabidopsis plants with SA deficiency and transgenic NahG forms 

expressing the salicylate hydroxylase gene are significantly delayed in flowering 

under short-day conditions [75]; SA synthesis and accumulation are required for 

the transition to far-ultraviolet (UV-C, wavelength 200-290 nm)-activated flow-

ering [75]; plants accumulating SA are characterized by an early flowering pheno-

type [48, 76]. 

There is evidence of the involvement of SA in the regulation of the aging 

process of plants. Thus, during Arabidopsis aging, the amount of SC in tissues 

increased. In addition, in plants with reduced SA content (npr1 mutant and plants 
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overexpressing NahG), and the number of transcripts of a number of genes asso-

ciated with aging decreased [77]. 

SA treatment can improve crop yields. For example, treatment of tomato 

leaves with SA solution (> 0.125 mM) for 2 weeks increased yield (number and 

size of fruits) and improved consumer qualities (increased density of fruit pulp, 

increased content of phenols, lycopene and vitamin C) [78]. An effective way to 

increase stress resistance of agricultural crops is treatment with SA at the stage of 

seeds and early seedlings. Soaking tomato and bean seeds in SA solution or wa-

tering the soil during sowing increased the survival of seedlings under drought 

conditions and during high and low temperature stress [79]. Pretreatment of lupine 

seedlings with SA increased plant resistance to high temperatures [80]. Treatment 

of leaves of adult tomato plants with SA stimulated growth under salinity condi-

tions, increased root mass, proline content and soluble carbohydrates in leaves, 

significantly increasing salt tolerance [81]. Salicylic acid helps keep cut flowers 

fresh [82]. 

J a smona t e s. Modern scientific literature has accumulated a significant 

amount of experimental data on the physiological effects caused by endogenously 

produced and exogenously applied jasmonates to plants [83-86]. In higher plants, 

jasmonates are represented by 12-oxo-phytodienoic acid (12-OPDA), jasmonic 

acid (JA) and its derivatives, including methyl jasmonate (MeJA) and a conjugate 

of jasmonate with isoleucine which is responsible for the regulation of most 

jasmonate-dependent processes. It was found that 12-OPDC which serves as the 

final product of the plastid stage of biosynthesis, FA and its derivatives exhibit 

biological activity, while their functions overlap only partially [87, 88). The ques-

tion of the functional specificity of certain jasmonates is of particular interest. 

Thus, there are known genes whose expression is regulated by 12-OPDK, but not 

by FA or MeFA, and the 12-OPDK signal can be transmitted through components 

of the FA signaling pathway or through other signaling pathways [89-92]. 

The regulatory effects of jasmonates are varied, but primarily the functions 

of jasmonates are associated with the regulation of mechanisms that determine 

plant resistance to necrotrophic pathogens and insects, including root pests [93, 

94]. Plants lacking jasmonates are very sensitive to the action of these biotic en-

vironmental factors. Extensive evidence suggests a role for these substances in 

regulating resistance to biotrophic pathogens [95]. In response to mechanical dam-

age and disruption of tissue integrity, jasmonates activate a complex of responses, 

the so-called wound responses, associated with changes in the expression of many 

genes [96, 97]. The protective responses induced by jasmonates include the bio-

synthesis of secondary metabolites, toxic compounds, as well as substances or en-

zymes that reduce the nutritional value of plant tissues, such as inhibitors of pro-

teinases, deaminases and polyphenol oxidases [98-101]. An important aspect of 

FA participation in plant defense responses to insect attacks is the regulation of 

circadian genes, which allows synchronizing the rhythms of defense processes with 

insect behavior [102]. In response to the presence of pathogens, it is with the 

participation of jasmonates that the biosynthesis of protective secondary metabo-

lites with antimicrobial and antioxidant properties (phytoalexins, phenylpro-

panoids, terpenoids, polyamines, and alkaloids) is initiated [103]. Jasmonates reg-

ulate the accumulation of free amino acids, which have protective properties (104). 

There is evidence that these hormones have a direct effect on the pathogens them-

selves [93]. Jasmonates help the plant fight competitors. For example, MeFA ac-

tivates the biosynthesis of sorghum, a compound with pronounced herbicidal ac-

tivity, in sorghum roots [105]. 

Jasmonates are involved in the regulation of indirect defense responses 

associated with the release of volatile compounds that can attract natural enemies 
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that attack insects [106-108]. The response of plants to insect pest attacks depends 

largely on the type of the damage, the insect feeding, and the type of pest mouth-

parts [103, 109, 110]. Volatile compounds released may also serve as an alarm 

signal to neighboring plants, allowing coordination of defense responses at the 

population level [111, 112]. 

Regulation of adaptive responses under conditions of biotic stress occurs 

as a result of the coordinated action of jasmonates and other phytohormones, 

including salicylic acid, ethylene, and ABA. 

The role of jasmonates in regulating plant adaptation to abiotic stresses is 

also well known [113-118]. Jasmonates control resistance to low temperature and 

salt stress, flooding, drought, ozone, heavy metals and ultraviolet radiation. They 

serve as the main regulators of the most important signaling pathway that controls 

plant frost resistance — (ICE)-C-repeat Binding Factor/DRE Binding factor1 

(CBF/DREB1) [119]. Data on the role of jasmonates in the formation of plant 

resistance to elevated temperatures are very contradictory. Most likely, jasmonates 

play a negative role under high temperature conditions, and increased catabolism 

of active forms of jasmonates under these conditions is an important adaptive 

mechanism [120]. The importance of FA and MeFA in plant protection under 

drought conditions has been demonstrated for many crops [117, 118, 121, 122]. 

The participation of 12-OPDC in the formation of drought resistance in Arabidop-
sis plants was also determined [121, 124]. Numerous studies indicate the protective 

effects of jasmonates under salinity conditions [116, 117, 125, 126]. Coronatine, 

a phytotoxin from Pseudomonas syringae (a functional analogue of jasmonates), 

significantly increases the resistance of maize to water deficiency and osmotic 

stress caused by polyethylene glycol by stimulating the formation of ROS and 

activating the antioxidant system [127]. 

The signaling and protective functions of jasmonates under biotic and abi-

otic stress conditions are in many cases associated with both oxidative stress and 

the antioxidant system [128]. Jasmonates regulate the formation of ROS, primarily 

О2
 (superoxide anion radical) and НО (hydroxyl radical). At the same time, 

treatment with jasmonates stimulates the activity of antioxidant enzymes [129]. 

In addition to adaptive processes under stress conditions, jasmonates reg-

ulate plant growth, development [95, 130-132] and flower formation [133], control 

fertility [87, 134] and flowering time [135], influence photosynthesis [136 and seed 

germination [137]. They inhibit root and shoot growth [96], but very low concen-

trations of these phytohormones can enhance stem growth, as it has been shown 

in grapes and morning glory (Pharbitis nil) [138, 139]. 

The high biological activity of jasmonates certainly determines the signif-

icant potential for their use in agriculture [140]. Not only jasmonates are used, 

but also their functional analogues, such as coronatine [83] and prohydrojasmone 

[141]. MeFA can be used as a volatile compound in closed containers/rooms, as 

well as in aerosols, in the form of diluted solutions. There are examples of the use 

of jasmonates to regulate flowering time, slow down plant growth, change their 

morphology, accumulate secondary metabolites and, of course, protect against 

insects and pathogens [140, 142]. Stimulation of the formation of storage organs, 

tubers, and bulbs has been demonstrated in many crops, including potatoes, Di-
oscorea polystachya, and orchids [143-146]. Exogenous treatment with jasmonate 

has been shown to inhibit unwanted sprouting of potato tubers and also prevent 

color change during processing or cooking [147]. Recent studies indicate that 

jasmonates regulate the distribution of metabolic and energy resources between 

processes leading to growth and biomass accumulation and processes associated 

with the synthesis of protective metabolites [148]. That is, by influencing the ac-

tivity of the jasmonate system, it is possible to control central metabolism, stability, 
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and, consequently, plant productivity and crop quality. It is important that the 

effects of growth suppression are short-lived. This means that correct short-term 

use of these hormones should not affect plant growth and productivity, making 

their widespread use possible in practice [149]. 

Jasmonates can be used in fields to protect plants from abiotic and biotic 

stress factors during growth, crop ripening and after harvest without additional use 

of chemicals. In addition, jasmonates can improve the quality and phytochemical 

composition of food crops, make fruits more vibrant, aromatic, sweet, tasty, re-

sistant to cracking, accelerate their ripening and increase their content of second-

ary metabolites (especially phenolic compounds), antioxidants and vitamins [93, 

141, 150-152], slow down the deterioration and softening of tissues of berries and 

fruits [153-155], increase the ability to trap free radicals [153, 154], preserve the 

bright color of cut flowers [156]. Unlike many chemicals used in crop production, 

jasmonates are considered completely safe compounds, and there are no re-

strictions on their use as plant growth regulators [150]. 

Effects from treating various crops with jasmonates, salicylates and abscisic acid  

Crop Concentration 
Stage of ontogen-

esis/organs 
Effects References 

A b s c i s i c  a c i d   

Triticum aestivum L., 

Oryza sativa L., Sor-

ghum bicolor (L.) 

Moench, Zea mays L. 

1 M-1 mM Seeds, seed 

germination, 

flowering 

Regulation of growth and 

metabolic processes; stimulation 

of antioxidant protection, 

biosynthesis of stress proteins 

and secondary metabolites; 

increasing stress resistance and 

productivity 

[9]  

Glycine max (L.) 

Merr. 

300 mg/l 7 leaves Improving the distribution of 

metabolic flows; an increase in 

the dry mass of the above-

ground parts, root density, leaf 

area, number of seeds in the 

bean and oil concentration, but 

not protein in the seeds; increase 

in soybean yield 

[25] 

Helianthus annuus L. 0.5-10 M Budding (preferred), 

flowering 

Mitigation of the negative 

consequences of stress; increase 

in leaf area, basket diameter, 

number of achenes per basket, 

yield, weight of 1000 achenes, oil 

yield. Under sufficient moisture, 

negative effects occure 

[26, 27] 

Malus domestica 

Borkh. 

20% ProToneтм (Valent 

BioSciences, USA)  

Crown Fall of leaves (without affecting 

the shoots of axillary buds) 

[28] 

Prunus avium (L.) L. 400 mg/l Crown, fruits Enhanced coloration of drupes [30]  

Citrus ½ paradise 

Macfad, Citrus reticu-

late Blanco 

500 M and 1 mM 

(crown), 1 nM-1 mM 

(roots) 

Crown, roots (no ef-

fect) 

Increased cold resistance; 

improving the color of fruits and 

reducing the content of organic 

acids in them 

[31, 32] 

Vitis vinifera L. 300 and 500 mg/l,  

10 or 20% ProToneтм 

(Valent BioSciences, 

USA) at 200-400 g/ha  

Vines, leaves only or 

bunches only 

Acceleration of the beginning of 

berry ripening and increased 

color intensity; a decrease in the 

weight of berries with an increase 

in the dry weight of the skin; 

increased content of sugar, 

phenols, anthocyanins; decrease 

in transpiration rate 

[33, 37, 

157] 

Lactuca sativa L. 150 and 300 M Leaves  Decrease in yield; an increase in 

the content of phenolic 

compounds and anthocyanins in 

red leaf lettuce, but not in green; 

inducing the accumulation of 

chlorophyll b and total 

carotenoids 

[39] 
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Continued Table 

Solanum lycopersicum 

L. 

500 mg/l (foliar 

treatment) and 50 mg/l 

(root treatment) 

Leaves, roots Foliar application increases the 

content of carotenoids and 

chlorophylls in leaves and fruits, 

and root application reduces it; 

foliar and root treatment 

increases the sugar content in 

fruits and reduces the content of 

organic acids in them 

[40] 

Zea mays L. 25% BioNikтм (Valent 

BioSciences, USA)  

Seeds Delay in germination of male 

inbred lines to synchronize the 

pollination period with female 

flowers 

[157] 

S a l i c y l a t e s    
Solanum lycopersicum 

L.  

0.2 mM Root feeding and  

leaf treatment 

Resistance to Fusarium ox-

ysporum  

[54] 

Solanum lycopersicum 

L.  

2 mM Spraying leaves Resistance to tomato yellow leaf 

curl virus 

[55] 

Oryza sativa L. 0.05-8 mM  In a hydroponic 

solution and spraying 

leaves  

Resistance to Magnaporthe grisea 

and Xanthomonas oryzae 

[56, 57] 

Solanum lycopersicum 

L.  

0.1 M and 0.1 mM In nutritional  

solution 

Salt stress tolerance [64] 

Triticum aestivum L.  10-1000 M (100 M is 

optimal concentration) 

Leaves Increased frost resistance [66] 

Solanum lycopersicum 

L. 

0,.025 mM-0.125 mM Leaves Increased yield (number of fruits 

and their size) and consumer 

qualities (increased density, 

increased content of phenols, 

lycopene and vitamin C) 

[78] 

Phaseolus vulgaris L., 

Lycopersicon esculen-

tum L. 

0.1-0.5 mM Seeds Increased survival under drought, 

high and low temperature stress 

[79] 

Lupinus angustifolius 

L. 

0.5 mM Sprouts Resistance to elevated 

temperatures 

[80] 

Solanum lycopersicum 

L. 

100 mg/l Roots and leaves Stimulation of plant growth 

under salinity conditions 

[81] 

Rosa hybrida E.H.L. 

Krause, Lilium 

asiaticum, Gerbera 

jamesonii Bolus ex 

Hooker f.  

100-300 mg/l Cut flowers in a vase Cut flowers stay fresh longer [82] 

J a s m o n i c  a c i d  a n d  j a s m o n a t e s  

Garden and  

vegetable crops, 

cereals, legumes 

Jasmonates, 107-103 M Various Formation of storage organs, 

degradation of chlorophyll and 

leaf fall, reduction of 

transpiration, synthesis of 

secondary metabolites, 

protection from pests and 

pathogens 

[93] 

Microlaena stipoides 

(Labill.) R.Br. 

MeJA, 10 g/ml Leaves Protection from the root pest 

Dermolepida albohirtum 

[94] 

Larix olgensis A. 

Henry   

Cis-jasmonе, MeJA, JA,  

0.01-1 mM 

Sprouts Induction of defense 

mechanisms due to the 

accumulation of free amino acids 

[104] 

Sorghum bicolor L. MeJA, 0.5-500 M Seed soaking and 

sprout treatment  

Biosynthesis of the natural 

herbicide sorgaleon 

[105] 

Oryza sativa L. JA, 30 M Hydroponics Increased salt tolerance [126] 

Zea mays L. Coronatine,  

0.0001-0.1 M  

Immerse the stems in 

the solution for 12 

hours 

Increased resistance to drought 

and osmotic stress 

[127] 

Solanum tuberosum L. MeJA, JA, 0.1-0 M Stem segments Stimulation of tuber formation [144] 

Solanum tuberosum L. MeJA,  

0,001 mM-0.1 mM 

Potato tubers Suppression of tuber germination 

and darkening 

[147] 

Prunus mume Sieb.  Prohydrojasmone,  

0.4 mM 

Fruit dipping in the 

solution  

Increased aroma and resistance 

to Colletotrichum gloeosporioides 
[152] 

Malus domestica 
Borkh, Vitis vinifera 
L. 

Prohydrojasmone, 
⁓ 1 l/ha 

Treating fruits on the 

plant   

Enhance color, synthesis of 

anthocyanins, increase resistance 

to low temperatures, protection 

from pests 

[158] 

N o t е. MeJA — methyl jasmonate, JA — jasmonic acid.  

 

The phytohormones that regulate plant stress responses can be a promising 
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alternative to modern plant protection products used in agriculture. The table 

shows examples of treating various plants with phytohormones and a description 

of the effects caused by the treatment. 

Thus, the modern literature provides a significant amount of information 

on the effects of abscisic acid, jasmonates and salicylates on various crops, but 

most of the data is based on the results of lab tests, and there is an obvious lack 

of information on the physiological effects caused by these substances in field 

conditions. The widespread use of these compounds is largely limited by the pos-

sibility of their production, since the production of some phytohormones and their 

functional analogues on an industrial scale still remains a difficult task. If the cost 

of producing drugs based on salicylates is economically feasible, then the produc-

tion of jasmonates, and especially abscisic acid, requires the use of expensive pro-

cesses. Chemical stability of such compounds is an important aspect. It should be 

remembered that plant hormones are low-molecular substances ( 500 Da), except 

for polypeptide hormones, which serve as derivatives of basic biochemical com-

pounds of plants, namely amino acids, carotenoids, terpenoids, phytosterols and 

fatty acids. Therefore, the most promising way to produce phytohormones seems 

to be the reconstruction of biosynthetic pathways in a living cell and the creation 

of bioproducers. Most likely, it is the successful development of biotechnologies 

with the use of bioproducers that will determine the scale of production and in-

troduction of new drugs based on plant hormones in agriculture in the near future. 
. 
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