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A b s t r a c t  
 

Solving problems related to the assessment of the status of agricultural plants during the 
growing season, allows us to effectively use fertilizers, obtain favorable yields, improve the quality 
characteristics of plants, as well as the ecological condition of the field. To solve such problems of 
precision farming, the use of various methods of mathematical statistics is becoming an increasingly 
promising direction. The aim of our work was to assess the state of agricultural plants using an ap-
proach based on the combined use of kriging and binary regression methods, as well as the determi-
nation of nitrogen planting using the NDVI (Normalized Difference Vegetation Index) index. The 
studies were carried out at the site of an experimental agricultural field located on the territory of the 
branch of the Agrophysical Institute (Menkovo, Leningrad region) in 2015. With the help of aerial 
photographs taken from the automatized unmanned aerial vehicle complex Geoscan-401 (Geoscan 
Group of Companies, Russia), a set of NDVI (Normalized Difference Vegetation Index) vegetation 
index values was obtained at arbitrary points of the plot. A number of ground-based measurements 
were also conducted on the studied area of the field. The proposed approach to assessing the state of 
agricultural plants consisted in the joint use of two methods of mathematical statistics: ordinary 
kriging and logistic regression. A preliminary variogram analysis was carried out, and a variogram 
model was constructed. After this, the kriging method was used to calculate a series of predicted 
values of the parameter being studied. At the next stage, the threshold value of the parameter for the 
study area was established, and also a dummy variable was entered, taking the value 1 if the parame-
ter value exceeded the threshold, and 0 otherwise. Then a logit model was built, in which one of the 
factors was a series of estimates of the parameter of interest, obtained using the ordinary kriging 
method. The input data for building logit models were as follows: N(xi) is the NDVI value at the 
location xi, i = 1.78; variable T = 1, if N(xi)  0.46, otherwise T = 0; the variables X and Y are the 
coordinates of the observations, are considered as explanatory variables; Npred(xi) is parameter values, 
predicted using the kriging method at the observed points. All calculations were performed using the 
R programming language. As a result of the experiment, three logit models were built with the de-
pendent variable T: in the first model, the explanatory variables X and Y; in the second model — X, 
Y and Npred; in the third model Npred. Testing showed that when adding the Npred variable, the logit 
model works better (2 times less than the erroneous determination of the level of the parameter un-
der study). The results obtained suggest that adding in the binary regression factors a set of values 
predicted by the kriging method can significantly improve the accuracy of calculations. 

 

Keywords: plant status, Normalized Difference Vegetation Index, NDVI, kriging, binary 
regression, language R 

 

Evaluating state of crops during the growing season (availability of nutri-
ents, watering parameters, weeds, diseases, etc.) is necessary for using fertilizers 
efficiently and producing a great and high-quality yield of [1-3]. In recent years, 
statistical testing and remote sensing data processing are becoming increasingly 
more effective ways to address these challenges [4-6]. 

One of the new approaches in agrophysics is based on binary regression 
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methods. Thus, Bure [7] describes the application of binary regression to yield 
forecasting. Norwegian and Dutch scientists have proposed methods for predict-
ing the spatial distribution of soil types by means of multinomial logistic regres-
sion using digital terrain analysis [8, 9]. More sophisticated and advanced areas 
of precision agriculture include geostatistics, which helps map the soil content of 
nutrients (nitrogen, phosphorus, potassium, etc.) [10, 11], and soil electrical 
conductivity, pH, density, and humidity estimates [12-14] used to optimize land 
management. In the geostatistical approach, the soil is treated as a set of spatial-
ly continuous variables, changes wherein are described in terms of spatial de-
pendency [15, 16]. It is only economics that combines geostatistics and binary 
regression methods [17]; no such methodology has yet been described in detail 
in relation to precision agriculture. 

This paper is the first to predict the spatial distribution of the Normalized 
Difference Vegetation Index (NDVI) in an experimental field using Gaussian 
process regression (kriging) in combination with logistic regression as a subtype 
of binary regression. Test results show that the proposed approach allows a suffi-
ciently accurate evaluation of the test-site parameter of interest. 

The goal was to characterize the condition of crops by combining kriging 
and binary regression, as well as to find the availability of nitrogen to crops in 
terms of NDVI. 

Techniques. Studies were carried out in 2015 (a test field of the Insti-
tute of Agrophysics in Menkovo, Leningrad Province). Aerial photographs tak-
en by a Geoskan-401 (Geoskan, Russia) unmanned aircraft were used to ob-
tain the Normalized Difference Vegetation Index (NDVI) values at arbitrary 
points, 78 in total. 

The condition of agricultural plants was evaluated by a combination of two 
methods of mathematical statistics: ordinary kriging and logistic regression. A logit 
model was used as an approach that enabled simple parametric evaluation. 

The spatial distribution of the parameter of interest was predicted by ordi-
nary kriging for a set of measurements [18, 19]: 

푍(푥 ) =   푍(푥 ),  = 1
  

, (1)

where n is the number of observations, Z(xi) is the value of the observed parame-
ter at the location xi, i is the unknown weight for the parameter, Z(x0) is the 
parameter value predicted for the location x0.   

 The unknown weight was found by variogram analysis and constructing a 
theoretical variogram model (h) based on the obtained experimental curve (h).  

To run a logistic regression, the value d (the threshold) was recorded for 
the test site and a dummy variable was inserted: 
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The values of y(xi) were known for the observed points, as the point-
specific values of the parameter of interest, as well as its level in relation to the 
threshold, were known. At the preceding stage, a set of kriging-predicted values 
of the parameter was produced. This gave a set of inputs for logistic regression 
that would reflect that correlation between the threshold exceedance probability 
and the explanatory variables [20, 21]: 
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where i are the factors that explain the dummy variable y(xi).  
The set of kriging-predicted values was used as one of the factors in the 
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logit model. The adequacy of the build logit model [2] was tested by the classical 
statistical tests i.e. the Walt test, W, and the likelihood ratio test, LR [22]. 

For each point of the test site, the research team computed the prob-
ability P(y(x) = 1), which, when tending to 1 indicates that the parameter of 
interest exceeds the threshold d, while when tending to 0, it indicates that the 
parameter is below the threshold. 

Calculations were run in R software (https://www.r-project.org), which 
is a popular solution used in precision agriculture [23]. 

Results. Fig. 1 presents an aerial photograph of the test field, as well as a 
data distribution map (circle parameters are proportional to the original values) 
made in R-statistics. The result is a set of NDVI values, which are known to 
correlate with the point-specific in-plant nitrogen content [24, 25]. 

The approach proposed herein 
is to use a set of kriging-predicted val-
ues as one of the model factors. Ac-
cordingly, the first stage (predicting 
the spatial distribution of the parameter 
of interest) was to check whether the 
geostatistical conditions of stationarity 
and multinormality are held [26]. The 
detected outliers were cut at 2.5% bi-
lateral quantiles. Besides, the research 
team would evaluate the linear correla-
tion of the parameter with the coordi-
nates. No spatial trend was identified. 
Verification by the Kolmogorov-Smir-
nov test did not allow rejecting the 
hypothesis of normal distribution (the 
attained significance was 89.75%). 

The next stage was to run vari-
ogram analysis and to build a vario-
gram model using the vgm function. 
Fig. 2 shows an experimental vario-
gram of four directions (0, 90, 135, 
and 270) for the configured variogram 
model. It was used for ordinary kriging 
(1): from a set of input observations, 
point-specific values were removed 
one-by-one, each time predicting the 
removed value by kriging using the 
krige function. As a result, the glm 
function produced three logit models. 
The value d = 0.46 was set as a 

threshold. The significance of the built models was evaluated by the LR test. 
The inputs for building logit models were as follows: N(xi) was the NDVI value at 
xi, i = 1.78; the variable T = 1 if N(xi)  0.46, else T = 0; the variables X and Y 
were the coordinates of observations used as the explanatory variables; Npred(xi) 
were the kriging-predicted point-specific values of the parameter. 

The estimated coefficients of the second logit model were largely insig-
nificant. The value  was assumed to equal 0.05, see Table 1. Statistical testing 
proved that the equation of this logit model is generally not significant, whereas 

 
Fig. 1. Aerial view of the test site and observation 
distribution map (map location): X and Y are the 
observation coordinates. The diameters of the cir-
cles are proportional to the value of the analyzed 
indicator, NDVI, as measured in Menkovo, Len-
ingrad Province, 2015. 
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the equations of Models 1 and 2 
are; testing those showed the third 
model was better. 

The next stage was to test 
the adequacy of the three obtained 
models; to that end, points were 
removed from the input data one 
by one, the logit models were built 
again and revaluated to find how 
accurately each model would pre-
dict the probability of exceeding the 
threshold in the removed point. 
Testing showed that the first model 
made errors for 26 points (33.3%), 
the second one was wrong in 12 
points (15.38%), see Table 2. 

Similar experiments on sim-
ulated data show that the second 
complete model is better as long as 

it is statistically significant. 

1. Results of constructing the logit models of spatial NDVI distribution; the models 
use different explanatory variables based on the aerial photography data (Menko-
vo, Leningrad Province, 2015). 

L o g i t  m o d e l  1 (the dependent variable is T, the explaining variables are X and Y) 

푃(푇 = 1) =  
1

1 + 푒
 

Coefficient 2 5.53 
Significance of  

coefficient 1 (constant term) 0.0263 
coefficient 2 at X 0.0458 
coefficient 3 at Y 0.0236 

L o g i t  M o d e l  2 (the dependent variable is T, the explanatory variables are X, Y, and Npred) 

푃(푇 = 1) =  
1

1 + 푒 , , , ,  

Coefficient 2 11.049 
Significance of  

coefficient 1 (constant term) 0.2424 
coefficient 2 at X 0.3488 
coefficient 3 at Y 0.2052 
coefficient 4 at Npred 0.0238 

L o g i t  M o d e l  3 (the dependent variable is T, the explanatory variable is Npred) 

푃(푇 = 1) =  
1

1 + 푒 ,   ,  

Coefficient 2 9.207 
Significance of  

coefficient 1 (constant term) 0.00416 
coefficient 2 at переменной Npred 0.00439 

N o t e. The observation coordinates X and Y, as well as the set of the kriging-predicted values Npred(xi), were used 
as the explanatory variables for logistic regression. 

 

Similar results were obtained by Fernandes et al. [17] who studied a 
credit scoring logit model using a spatial variable as an explanatory one. They 
compared two models, one that contained a spatial variable and one that did 
not. The results showed that the author-proposed method had better performance 
than conventional methods. In this paper, we studied an approach for predicting 
the spatial distribution of the parameter of interest, which is based on the com-
bined use of kriging and binary regression; the complete model (where the logit 

 
Fig. 2. Experimental variogram of the (h) spatial 
NDVI distribution on the test site (1), with the theoretical 
model superimposed (2) in four directions (0, 90, 135, 
270) (Menkovo, Leningrad Province, 2015). 
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model incorporates a set of kriging-predicted parameter values) was better than the 
alternatives. Notably, it was only in the 2000s that binary regression found applica-
tion in precision agriculture in Russia. Some reports [7, 20] give detail upon the 
opportunities to use logit and probit models in plant growing; however, those do 
not take into account the spatial variable. 

2. Sample of the NDVI logit model testing results as obtained on the basis of aerial 
photography data (Menkovo, Leningrad Region, 2015) 

Coordinate 
point No. 

X Y N T Npred 
Р 

Model 1 Model 3 
1 30.032934 59.418484 0.527 1 0.4894404 6.187555e-11 0.7519646 
2 30.032902 59.418514 0.517 1 0.5037567 4.848053e-12 0.8326184 
3 30.032835 59.418605 0.527 1 0.4917005 0.9999989 0.7661754 
4 30.032695 59.418778 0.407 0 0.4396790 0.9999876 0.3652577 
5 30.032673 59.418811 0.455 0 0.4261240 4.863455e-12 0.2654931 
6 30.032588 59.418940 0.461 1 0.4387105 6.46559e-13 0.3366613 
7 30.032477 59.419087 0.517 1 0.4614526 0.8979254 0.5382949 
8 30.032327 59.419302 0.496 1 0.4600064 2.212942e-11 0.5256631 
9 30.032472 59.419176 0.468 1 0.4688632 2.652915e-10 0.6007014 
10 30.032528 59.419119 0.411 0 0.4656420 1.943197e-06 0.5943595 
N o t e. X and Y are the observation coordinates, N are the values of input observations, T is the dependent varia-
ble, Npred(xi) are the kriging-predicted parameter values. For models 1 and 3, the probabilities of threshold exceed-
ance, predicted for the removed observation points, are presented. 

 

Thus, the approach proposed herein is to use a set of the parameter-of-
interest values predicted by ordinary kriging as one of the binary regression fac-
tors in the logit model. In general, combining kriging and binary regression to 
evaluate the plant condition seems to be promising and relevant. However, the 
experiments sometimes produced statistically insignificant models, this is why it 
is recommendable to use more examples to evaluate the proposed approach. 
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