PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.6.1208eng

UDC: 636.5:591.3:57.044

 

ANTIHYPOXIC AND ENERGY STIMULATING EFFECTS OF COBALT GLYCINATE DURING EMBRYOGENESIS OF QUAILS (Coturnix japonica)

I.I. Kochish, T.V. Monstakova, T.O. Azarnova

Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, ul. Akademika K.I. Skryabina, Moscow, 109472 Russia, e-mail kochish.i@mail.ru, tommi@list.ru (✉ corresponding author), azarena@list.ru

ORCID:
Kochish I.I. orcid.org/0000-0001-8892-9858
Azarnova T.O. orcid.org/0000-0001-6342-9355
Monstakova T.V. orcid.org/0000-0002-2030-6344

Received July 28, 2022

Hypoxic manifestations, including those associated with certain periods of bird embryogenesis, lead to slowdown in development, and in severe cases, to multifaceted morphological and functional disorders in embryos. Numerous studies have confirmed the effectiveness of biostimulants with pronounced antioxidant properties, which can neutralize negative effects of hypoxia and provide conditions for a faster transition to aerobic glycolysis. These biostimulants include cobalt glycinate, synthesized at Scriabin Moscow State Academy of Veterinary Medicine and Biotechnology. The choice of the biostimulant components was due to the properties of each component separately and their hypothetical complementary effect. In the present work, it was found for the first time that cobalt glycinate has an antihypoxic effect and stimulates energy metabolism in quail embryos and 1-day-old quails. The purpose of the work is to investigate the effect of cobalt glycinate on energy metabolism and to provide a background for correction of adverse effects of hypoxia that occur during embryogenesis in quails under incubation. The experiment was carried out on hatching eggs from Japanese quail (Coturnix japonica) of the same age (Shepilovskaya Poultry Farm, Moscow Province, 2020). The eggs were sorted in two batches (experimental and control, 220 eggs each). The experimental eggs were sprayed once with 0.05 % cobalt glycinate solution (an aerosol dispenser HURRICANE 2792, Curtis Dyna-Fog, USA). The control batch was not treated. The eggs were incubated in IUV-F-15-31 type incubators (Energomera, Russia; the temperature range from 38.1 to 36.8 °С, a 10-15 mm ventilation flaps’ opening). Key categories of incubation waste, hatchability rate of eggs, hatching, live weight of 1-day-old juveniles, body temperature, and the quality as per Pasgar and Optistart scaled criteria were assessed. Blood of 1-day-old juveniles was sampled by decapitation. Blood antioxidant activity (AOA), the content of lipid peroxidation products were measured using a Beckman DU-7 spectrophotometer (Beckman Coulter, Inc., USA). Concentrations of total blood proteins, lipids, glucose were measured using an automatic biochemical analyzer DIRUI CS-600B (Dirui Industrial Co., Ltd., China). The content of lactate and pyroracemic acid was analyzed by tandem chromatography-mass spectrometry (an Agilent 6410 Triple chromatograph, Agilent Technologies Inc., USA). The ATP content was determined by bioluminescent method (a luminometer and reagents from Lumtek, Russia), pH by direct potentiometry (an E-Lyte 5 blood electrolyte analyzer, High Technology Inc., USA). In the test group, the number of the main incubation wastes (blood rings and died-in-shell birds) was 1.82 and 2.28 times less, respectively, than in the control group, while the hatching rate increased by 8.64 % (p < 0,05) and hatchability by 7.97 % (p < 0.05). Treatment with an optimal dosage of cobalt glycinate prior to incubation contributed to a decrease in free-radical reactions and lipid peroxidation. The greatest differences (20 %) occurred in the concentration of oxodiene conjugates (p < 0.05). The reduced LPO intensity may be due to the stimulating effect of cobalt glycinate on the antioxidant system, which resulted in an increase in AOA by 12.9 % (p < 0.01) compared to control. The blood concentration of ATP in quails of the test group was 1.4 times higher (p < 0.01) than in the control group. The ATF level, along with an increase in glucose by 8.73 % (p < 0.01), pyroracemic acid by 12.5 % (p < 0.05), pH by 0.67 % and a decrease in the lactate by 16 %, were indicative of a more efficient use of energy substrates by the birds. The likelihood of development of an uncompensated acidosis decreased in the birds of the test group. Along with this, the stimulation of energy metabolism caused a statistically significant (p < 0.01) increase in body temperature measured rectally and under the wing, by 0.4 and 0.3 °С, respectively (39.1 and 37.5 °С vs. 38.7 and 37.2 °С). An increase in the blood concentration of total proteins by 3.88 % (p < 0.01) and an increase in live weight by 8.34 % (p < 0.05) should be especially noted. Therefore, under industrial conditions, the pre-incubation treatment of Japanese quail eggs with 0.05 % solution of cobalt glycinate reduces the free radical level and, as a result, lipid peroxidation in 1-day-old quails. Additionally, cobalt glycinate stimulates energy metabolism, providing a faster transition of quails to aerobic glycolysis and reducing the likelihood of uncompensated acidosis. A higher concentration of ATP in 1-day-old individuals of the test group indicates both a better thermoregulatory function to ensure natural resistance and viability, and the absence of depleted energy metabolism during the previous periods of development, which determines the superiority in viability of embryos.

Keywords: hypoxia, embryogenesis, quail, antioxidant, cobalt glycinate, hatchability rate.

 

REFERENCES

  1. Smith F., Hu D., Young N.M., Lainoff A.J., Jamniczky H.A., Maltepe E., Hallgrimsson B., Marcucio R.S. The effect of hypoxia on facial shape variation and disease phenotypes in chicken embryos. Disease Models and Mechanisms, 2013, 6(4): 915-924 CrossRef
  2. Cruz S.R., Romanoff A.L. Effect of oxygen concentration on the development of the chick embryo. Physiological Zoology, 1944, 17(2): 184-187 CrossRef
  3. Tintu A., Rouwet E., Verlohren S., Brinkmann J., Ahmad S., Crispi F., van Bilsen M., Carmeliet P., Staff A.C., Tjwa M., Cetin I., Gratacos E., Hernandez-Andrade E., Hofstra L., Jacobs M., Lamers W.H., Morano I., Safak E., Ahmed A., le Noble F. Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences. PLoS ONE, 2009, 4(4): e5155 CrossRef
  4. Tagirov M.T. Vestnik Khar’kovskogo natsional’nogo universiteta imeni V.N. Karazina. Seriya: biologiya, 2009, 10: 48-59 (in Russ.).
  5. De Oliveira J., Uni Z., Ferket P. Important metabolic pathways in poultry embryos prior to hatch. World's Poultry Science Journal, 2008, 64(4): 488-499 CrossRef
  6. Otrygan’ev G.K. Tekhnologiya inkubatsii [Incubation technology]. Moscow, 1989 (in Russ.).
  7. Salekh Kh.K. Klassifikatsiya i analiz prichin еmbrional’noy smertnosti pri inkubatsii yaits kur. Avtoreferat kandidatskoy dissertatsii[Classification and analysis of the causes of embryonic mortality during the incubation of chicken eggs. PhD Thesis]. Moscow, 1981 (in Russ.).
  8. Slepneva L.V. Transfuziologiya, 2013, 14(2): 49-65 (in Russ.).
  9. Fisinin V.I. Ptitsevodstvo, 2012, 2: 11-15 (in Russ.).
  10. Epimakhova E.Е. Nauchno-prakticheskoe obosnovanie povysheniya vykhoda inkubatsionnykh yaits i konditsionnogo molodnyaka sel’skokhozyaystvennoy ptitsy v ranniy postnatal’nyy period. Avtoreferat doktorskoy dissertatsii [Scientific and practical justification for increasing the yield of hatching eggs and conditioned young poultry in the early postnatal period. DSc Thesis]. Stavropol’, 2013 (in Russ.).
  11. Karmoliev P.X. Veterinariya, 2005, 4: 42-47 (in Russ.).
  12. Zarubina I.V., Lukk M.V., Shabanov P.D. Antihypoxic and antioxidant effects of exogenous succinic acid and aminothiol succinate-containing antihypoxants. Bulletin of Experimental Biology and Medicine, 2012, 153(3): 336-339 CrossRef
  13. Gonchar O, Klyuchko E, Seredenko M, Oliynik S. Corrections of prooxidant-antioxidant homeostasis of organism under hypoxia of different genesis by yackton, a new pharmacological preparation. Acta Physiol. Pharmacol. Bulg., 2003, 27(2-3): 53-58.
  14. Azarnova T.O. Nauchno-prakticheskie aspekty profilaktiki oksidativnogo stressa, kak sposoba optimizatsii usloviy inkubatsii i akseleratsii еmbrionov kur. Doktorskaya dissertatsiya [Scientific and practical aspects of oxidative stress prevention to optimize incubation conditions and accelerated development of chicken embryos. DSc Thesis]. Moscow, 2013 (in Russ.).
  15. Schlüter T, Struy H, Schönfeld P. Protection of mitochondrial integrity from oxidative stress by the triaminopyridine derivative flupirtine. FEBS Letters, 2000, 481(1): 42-46 CrossRef
  16. Monstakova T.V. Ptitsevodstvo, 2020, 7-8: 44-50 (in Russ.).
  17. Loginov G.P. Vliyanie khelatov metallov s aminokislotami i gidrolizatami belkov na produktivnye funktsii i obmennye protsessy organizma zhivotnykh. Doktorskaya dissertatsiya[Influence of metal chelates with amino acids and protein hydrolysates on the productive functions and metabolic processes in animas. DSc Thesis]. Kazan’, 2005 (in Russ.).
  18. Senthilkumar R., Sengottuvelan M., Nalini N. Protective effect of glycine supplementation on the levels of lipid peroxidation and antioxidant enzymes in the erythrocyte of rats with alcohol-induced liver injury. Cell Biochemistry and Function, 2004, 22(2): 123-128 CrossRef
  19. Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids, 2013, 45(3): 463-477 CrossRef
  20. Marri R. Biokhimiya cheloveka [Human biochemistry]. Moscow, 2009.
  21. Razak M.A., Begum P.S., Viswanath B., Rajagopal S. Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxidative Medicine and Cellular Longevity, 2017: 1716701 CrossRef
  22. Kaliman P.A. Biokhimiya, 1986, 51(8): 1307-1308 (in Russ.).
  23. Binkevich V.Ya. Vliyanie margantsa i kobal’ta i ikh khelatіv na fiziologicheskie protsessy, proizvoditel’nost’ i myasnye kachestva tsyplyat-broylerov. Avtoreferat kandidatskoy dissertatsii [Influence of manganese and cobalt and their chelates on physiological processes, productivity and meat qualities of broiler chickens. PhD Thesis]. L’vov, 1997 (in Russ.).
  24. Levitin I.Ya. Еksperimental’naya onkologiya, 2002, 2: 128-134 (in Russ.).
  25. Miodragović D.U., Bogdanović G.A., Miodragović Z.M., Radulović M.D., Novaković S.B., Kaluderović G.N., Kozłowski H. Interesting coordination abilities of antiulcer drug famotidine and antimicrobial activity of drug and its cobalt (III) complex. Journal of Inorganic Biochemistry, 2006, 100(9): 1568-1574 CrossRef
  26. Osinskiy S. Еksperimental’naya onkologiya, 2004,2: 18-24 (in Russ.).
  27. Azarnova T.O., Yartseva I.S., Indyukhova Ye.N., Naydenskiy M.S., Zaitsev S.Yu. Effects of the nanostructured complex of biologically active compounds on the free-radical processes and the liver state of the chicken cross «Shaver 2000». Journal of Nanomaterials & Molecular Nanotechnology, 2013, 2(5): 1-3 CrossRef
  28. Piotrowska-Kirschling A., Drzeżdżon J., Kloska A., Wyrzykowski D., Chmurzyński L., Jacewicz D. Antioxidant and cytoprotective activity of oxydiacetate complexes of cobalt(ii) and nickel(ii) with 1,10-phenantroline and 2,2'-bipyridine. Biological Trace Element Research, 2018, 185(1): 244-251 CrossRef
  29. Inan C., Kilinç K., Kotiloğlu E., Akman H.O., Kiliç I., Michl J. Antioxidant therapy of cobalt and vitamin E in hemosiderosis. Journal of Laboratory and Clinical Medicine, 1998, 132(2): 157-65 CrossRef
  30. Kochish I.I. Patent RU №2706563. Sposob optimizatsii gomeostaza u еmbrionov i molodnyaka kur. MPK A01K 45/00, A01K 67/00. Opubl. 19.11.2019. Byul. № 32. Konventsionnyy prioritet 12.03.2019 [Patent RU №. 2706563. A method for optimizing homeostasis in embryos and young chickens. IPC A01K 45/00, A01K 67/00. Published 11.19.2019. Bull. № 32. Convention priority 12.03.2019](in Russ.).
  31. Kochish I.I. Voprosy normativno-pravovogo regulirovaniya v veterinarii, 2019, 1: 149-151 (in Russ.).
  32. Kondrakhin I.P. Metody veterinarnoy klinicheskoy laboratornoy diagnostiki [Methods of veterinary clinical laboratory diagnostic]. Moscow, 2004 (in Russ.).
  33. Vladimirov Yu.A. Perekisnoe okislenie lipidov v biologicheskikh membranakh [Lipid peroxidation in biological membranes]. Moscow, 1972 (in Russ.).
  34. Catalá A., Díaz M. Impact of lipid peroxidation on the physiology and pathophysiology of cell membranes. Front. Physiol., 2016, 7: 1-3 CrossRef
  35. Biokhimiya oksidativnogo stressa /Pod redaktsiey M.S. Karbysheva, Sh.P. Abdullaeva [Biochemistry of oxidative stress. M.S. Karbyshev, Sh.P. Abdullayev (eds.)]. Moscow, 2018 (in Russ.).
  36. Panov A.V., Dikalov S.I. Cardiolipin, perhydroxyl radicals, and lipid peroxidation in mitochondrial dysfunctions and aging. Oxidative Medicine and Cellular Longevity, 2020, 8: 1323028 CrossRef
  37. Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biology and Medicine, 1992, 13(4): 341-390 CrossRef
  38. Georgieva E., Ivanova D., Zhelev Z., Bakalova R., Gulubova M., Aoki I. Mitochondrial dysfunction and redox imbalance as a diagnostic marker of "free radical diseases". Anticancer Research, 2017, 37(10): 5373-5381 CrossRef
  39. Zentov N.K. Okislitel’nyy stress. Biokhimicheskie i patofiziologicheskie aspekty [Oxidative stress. Biochemical and pathophysiological aspect]. Moscow, 2001 (in Russ.).
  40. Tugusheva F.A. Nefrologiya, 2007, 11(3): 29-47 (in Russ.).
  41. Zemskov M.A. Sistemnyy analiz i upravlenie v biomeditsinskikh sistemakh, 2007, 2: 408-411 (in Russ.).
  42. Lugovaya I.S. Profilaktika stress-indutsirovannykh narusheniy u еmbrionov kur pri transovarial’nom primenenii estestvennykh metabolitov. Avtoreferat kandidatskoy dissertatsii[Prevention of stress-induced disorders in chicken embryos with transovarial use of natural metabolites. PhD Thesis]. Moscow, 2018 (in Russ.).
  43. Kochish I.I. Rossiyskiy zhurnal Problemy veterinarnoy sanitarii, gigieny i еkologii, 2017, 2: 117-119 (in Russ.).
  44. Zabudskiy Yu.I. Problemy biologii produktivnykh zhivotnykh, 2012, 1: 5-16 (in Russ.).
  45. Akbarian A., Michiels J., Degroote J., Majdeddin M., Golian A., De Smet S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechno, 2016, 7: 1-14 CrossRef
  46. Vasil’eva E.A. Klinicheskaya biokhimiya sel’skokhozyaystvennykh zhivotnykh [Clinical biochemistry of farm animals]. Moscow, 1982 (in Russ.).
  47. Ermolova Yu.S. Obrabotka yaits kur biologicheski aktivnymi preparatami dlya stimulyatsii rezistentnosti tsyplyat na razlichnykh stadiyakh ontogeneza. Avtoreferat kandidatskoy dissertatsii[Treatment of chicken eggs with bioactive preparations to stimulate resistance at various stages of chickens’ ontogenesis. PhD Thesis]. Moscow, 2010 (in Russ.).
  48. Kochish I.I. Profilaktika svobodnoradikal’nykh anomaliy u kur v rannem ontogeneze [Prevention of free-radical damage in chickens in early ontogenesis]. Moscow, 2019 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)