PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.6.1136eng

UDC: 636.5:636.064.6:577.21

Acknowledgements:
Supported financially by Russian Science Foundation, grant No. 21-16-00086

 

GENOME-WIDE ASSOCIATION STUDIES OF GROWTH DYNAMICS IN QUAILS Coturnix coturnix

N.Yu. German1, N.A. Volkova1✉, P.V. Larionova1, A.N. Vetokh1,
L.A. Volkova1, A.A. Sermyagin1, A.V. Shakhin1, D.V. Anshakov2,
V.I. Fisinin3, N.A. Zinovieva1

1Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail ngerman9@gmail.comnatavolkova@inbox.ru (✉ corresponding author), volpolina@mail.ruanastezuya@mail.ru,alex_sermyagin85@mail.ru, lexshahin@mail.ru, n_zinovieva@mail.ru;
2Zagorsk Experimental Pedigree Breeding and Genetics Center — Branch of Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 44, ul. Maslieva, Sergiev Posad, Moscow Province, 141311 Russia, e-mail a89265594669@rambler.ru;
3Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141311 Russia, e-mail fisinin@land.ru

ORCID:
German N.Yu. orcid.org/0000-0001-5888-4695
Shakhin A.V. orcid.org/0000-0003-4959-878X
Volkova N.A. orcid.org/0000-0001-7191-3550
Anshakov D.V. orcid.org/0000-0001-5542-0828
Larionova P.V. orcid.org/0000-0001-5047-1888
Fisinin V.I. orcid.org/0000-0003-0081-6336
Vetokh A.N. orcid.org/0000-0002-2865-5960
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Sermyagin A.A. orcid.org/0000-0002-1799-6014

Received September 12, 2022

Identification and mapping genes that determine economically important traits in farm animals, including poultry, is a key task of genomic selection aimed at improving the efficiency of animal husbandry. In recent years, genome-wide association studies have identified many important candidate genes in various farm animals. Of poultry species, a significant proportion of studies on the search and identification of quantitative trait loci (QTL) was carried out on chickens. On quails, such studies are relatively few primarily due to the lack of commercial chips, which makes it difficult to search for SNPs and identify genes associated with valuable traits. To date, there is little information on the quantitative traits loci reliably associated with productivity performance of quails. The meat productivity of quails, e.g., bodyweight and growth rate, depend on feeding and keeping conditions and is genetically determined by a set of QTL. This report submits the results of a genome-wide association study of the growth rate of F2quails in a model resource population. We aimed to identify the QTL in the quail genome, to analyze the association of the found mutations with body weight parameters, and to characterize allelic variants in the studied F2 quail population. The F2 model resource population was obtained by crossing two breeds, the Japanese quails with a slow growth and the Texas quails with a fast growth. After filtering the data of GBS genotyping of the obtained F2 individuals (n = 232), the 92686 SNPs were selected for further analysis. We used PLINK 1.9 software (https://www.cog-genomics.org/plink/) options geno 0.1, mind 0.2, and maf 0.05 to analyze the associations of whole genome genotyping data with the bodyweight which reflects growth and development of birds. High variability of bodyweight was found to be typical of the created resource population. In 1-day-old quails, this indicator varied from 5 to 11 g and averaged 9±0.1 g. At the age of 2, 4, 6, and 8 weeks, the bodyweight reached 69±1, 157±2, 219±2 and 252±2 g, respectively. GWAS identified 149 SNPs that were associated with bodyweight at a high statistical significance (p < 0.00001).These SNPs are located on chromosomes 1, 2, 3, 5, 6, 8, 11, 14, 15, 20, 24, 25 and 26. On chromosomes 1, 2, 3, 5, 11 and 26, there were blocks of 2-9 SNPs linked to the same gene. Seven candidate genes (PCDH9, SMAD9, PAN4, EGFR, WDPCP, MDGA2, and PEPD) were identified that were associated (p < 0.00001) with bodyweight of quails at 8 weeks of age. We intend to further study the detected SNPs as genetic markers in breeding quails for an increased bodyweight. Additionally, associations of these SNPs with other parameters of growth intensity and productivity performance in quails will be under consideration.

Keywords: Coturnix japonica, quail, QTL, SNP, GBS, GWAS, bodyweight, growth dynamics.

 

REFERENCES

  1. Rossii: sovremennoe sostoyanie i perspektivy innovatsionnogo razvitiya. Agrarnaya nauka, 2018, 2:30-38 (in Russ.).
  2. Zykov S.A. Еffektivnoe zhivotnovodstvo, 2019, 4(152): 51-54 (in Russ.).
  3. Lukanov H. Domestic quail (Coturnix japonica domestica), is there such farm animal? World's Poultry Science Journal, 2019, 75(4): 547-558 CrossRef
  4. Lukanov H., Pavlova I. Domestication changes in Japanese quail (Coturnix japonica): a review. World's Poultry Science Journal, 2020, 76(4): 787-801 CrossRef
  5. Krapchina L.N., Gemayurova K.S. Rossiyskoe predprinimatel’stvo, 2013, 5(227): 84-89 (in Russ.).
  6. Hu Z.-L., Park C.A., Reecy J.M. Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Research, 2022, 50(D1): D956-D961 CrossRef
  7. Goto T., Tsudzuki M. Genetic mapping of quantitative trait loci for egg production and egg quality traits in chickens: a review. J. Poult. Sci., 2017, 54(1): 1-12 CrossRef
  8. Schreiweis M.A., Hester P.Y., Settar P., Moody D. E. Identification of quantitative trait loci associated with egg quality, egg production, and body weight in an F2 resource population of chickens. Animal Genetic, 2006, 37(2): 106-112 CrossRef
  9. Campos R.L.R., Ambo M., Rosario M.F., Moura A.S.A.M.T., Boschiero C., Nones K., Ledur M.C., Coutinho L.L. Potential association between microsatellite markers on chicken chromosomes 6, 7 and 8 and body weight. International Journal of Poultry Science, 2009, 8(7): 696-699 CrossRef
  10. Barkova O.Yu. Assotsiatsiya odnonukleotidnoy zameny SNP2-1 s priznakami kachestva yaytsa u kur-nesushek. Ptitsevodstvo, 2019, 7-8: 14-18 CrossRef
  11. Moreira G.C.M., Poleti M.D., Pértille F., Boschiero C., Cesar A.S.M., Godoy T.F., Ledur M.C., Reecy J.M., Garrick D.J., Coutinho L.L. Unraveling genomic associations with feed efficiency and body weight traits in chickens through an integrative approach. BMC Genet., 2019, 20(1): 83 CrossRef
  12. Li W., Zheng M., Zhao G., Wang J., Liu J., Wang S., Feng F., D. Liu, D. Zhu, Q. Li, Guo L., Guo Yu., Liu R., Wen J. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers. Genetics Selection Evolution, 2021, 53(1): 13 CrossRef
  13. Ori R.J., Esmailizadeh A.K., Charati H., Mohammadabadi M.R., Sohrabi S.S. Identification of QTL for live weight and growth rate using DNA markers on chromosome 3 in an F2 population of Japanese quail. Molecular Biology Reports, 2014, 41: 10491057 CrossRef
  14. Sohrabi S.S., Esmailizadeh A.K., Baghizadeh B., Hasan M., Mohammad M., Nahid A., Ehsan N. Quantitative trait loci underlying hatching weight and growth traits in an F2 intercross between two strains of Japanese quail. Animal Production Science, 2012, 52(11): 1012-1018 CrossRef
  15. Esmailizadeh A.K. Baghizadeh A., Ahmadizadeh M. Genetic mapping of quantitative trait loci affecting bodyweight on chromosome 1 in a commercial strain of Japanese quail. Animal Production Science, 2011, 52(1): 64-68 CrossRef
  16. Nasirifar E., Talebi M., Esmailizadeh A.K., Moradian H., Sohrabi S.S., Askari N.  A chromosome-wide QTL mapping on chromosome 2 to identify loci affecting live weight and carcass traits in F2 population of Japanese quail. Czech J. Anim. Sci., 2016, 61: 290-297 CrossRef
  17. Tavaniello S., Maiorano G., Siwek M., Knaga S., Witkowski A., Di Memmo D., Bednarczyk M. Growth performance, meat quality traits, and genetic mapping of quantitative trait loci in 3 generations of Japanese quail populations (Coturnix japonica). Poultry Science, 2014, 93(8): 2129-2140 CrossRef
  18. Knaga S., Siwek M., Tavaniello S., Maiorano G., Witkowski A., Jeżewska-Witkowska G., Bednarczyk M., Zięba G. Identification of quantitative trait loci affecting production and biochemical traits in a unique Japanese quail resource population. Poultry Science, 2018, 97(7): 2267-2277 CrossRef
  19. Haqani M.I., Nomura S., Nakano M., Goto T., Nagano A.J., Takenouchi A., Nakamura Y., Ishikawa A., Tsudzuki M. Quantitative trait loci for growth-related traits in Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Molecular Genetics and Genomics, 2021, 296(5): 1147-1159 CrossRef
  20. Vollmar S., Haas V., Schmid M., Preuß S., Joshi R., Rodehutscord M., Bennewitz J. Mapping genes for phosphorus utilization and correlated traits using a 4k SNP linkage map in Japanese quail (Coturnix japonica). Animal Genetis, 2020, 52: 90-98 CrossRef
  21. Recoquillay J., Pitel A., Arnould S., Leroux S., Dehais P., Moréno C., Calandreau L., Bertin A., Gourichon D., Bouchez O., Vignal A., Fariello M. I., Minvielle F., Beaumont C., Leterrier C., Le Bihan-Duval E. A medium density genetic map and QTL for behavioral and production traits in Japanese quail. BMC Genomics, 2015, 16: 10 CrossRef
  22. Morris K.M., Hindle M.M., Boitard S., Burt D.W., Danner A.F., Eory L., Forrest H.L., Gourichon D., Gros J., Hillier L.W., Jaffredo Th., Khoury H., Lansford R., Leterrier C., Loudon A., Mason A.S., Meddle S.L., Minvielle F., Minx P., Pitel F., Seiler J.P., Shimmura T., Tomlinson C., Vignal A., Webster R.G., Yoshimura T., Warren W.C., Smith J. The quail genome: insights into social behaviour, seasonal biology and infectious disease response. BMC Biology, 2020, 18: 14 CrossRef
  23. Wu Y., Zhang Y., Hou Z., Hou Z., Fan G., Pi J., Sun S., Chen J., Liu H., Du X., Shen J., Hu G., Chen W., Pan A., Yin P., Chen X., Pu Y., Zhang H., Liang Z., Jian J., Zhang H., Wu B., Sun J., Chen J., Tao H., Yang T., Xiao H., Yang H., Zheng C., Bai M., Fang X., Burt D.W., Wang W., Li Q., Xu X., Li C., Yang H., Wang J., Yang N., Liu X., Du J. Population genomic data reveal genes related to important traits of quail. GigaScience, 2018, 7(5): giy049 CrossRef
  24. Wu Y., Xiaoet H., Pi J., Zhang H., Pan A., Pu Yu., Liang Z., Shen J., Du J. EGFR promotes the proliferation of quail follicular granulosa cells through the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway. Cell Cycle, 2019, 18(20): 2742-2756 CrossRef
  25. Haqani M., Nomura S., Nakano M., Goto T., Nagano A.J., Takenouchi A., Nakamura Y., Ishikawa A., Tsudzuki M. Mapping of quantitative trait loci controlling egg-quality and -production traits in Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Genes, 2021, 12(5): 735 CrossRef
  26. Perea C., De La Hoz J.F., Cruz D., Lobaton J.D., Izquierdo P., Quintero J.C., Raatz B., Duitama J. Bioinformatic analysis of genotype by sequencing (GBS) data with NGSEP. BMC Genomics, 2016, 17(S.5): 498 CrossRef
  27. Turner S.D. qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. Journal of Open Source Software, 2018, 3(25): 731 CrossRef
  28. Schreiweis M.A., Hester P.Y., Settar P., Moody D.E. Identification of quantitative trait loci associated with egg quality, egg production, and body weight in an F2 resource population of chickens. Animal Genetics, 2006, 37(2): 106-112 CrossRef
  29. Aslam M.L., Bastiaansen J.W., Crooijmans R.P., Vereijken A., Groenen M. Whole genome QTL mapping for growth, meat quality and breast meat yield traits in turkey. BMC Genetics, 2011, 12: 61 CrossRef
  30. Simao F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 2015, 31(19): 3210-3212 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)