PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2022.6.1025eng

UDC: 636.087:591.132.7:631.95

Acknowledgements:
Supported financially by the Ministry of Science and Higher Education of the Russian Federation (FGGN-2022-0009).

 

RUMEN METHANE PRODUCTION AND ITS REDUCTION USING NUTRITIONAL FACTORS (review)

N.V. Bogolyubova, A.A. Zelenchenkova, N.S. Kolesnik, P.D. Lahonin

Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail 652202@mail.ru (✉ corresponding author), aly4383@mail.ru, kominisiko@mail.ru, lakhonin.99@mail.ru

ORCID:
Bogolyubova N.V. orcid.org /0000-0002-0520-7022
Kolesnik N.S. orcid.org/0000-0002-4267-5300
Zelenchenkova A.A orcid.org/0000-0001-8862-3648
Lahonin P.D. orcid.org/0000-0002-7354-0337

Received October 5, 2022

Methane is a powerful greenhouse gas with a higher global warming potential than carbon dioxide. Agriculture, especially animal husbandry, is considered the largest sector of anthropogenic methane production. Of farm animals, ruminants are the main producers of methane. Its world production and emissions are increasing due to abundant population of ruminants. The hydrogenotrophic scenario of methanogenesis from hydrogen and carbon dioxide, carried out by ruminal archaea, prevails. Over the past 50 years, numerous research papers have substantially improved our understanding of rumen fermentation and methanogenesis to develope strategies for assessing and reducing methan emission (K.A. Beauchemin et al., 2020). One of the proposed strategies is dietary intervention, i.e. improved dietes and the use of nutritional factors that affect the ruminal microbiota. The quality, feed preparation, the ratio of concentrated and roughage feeds affect methane emissions. Some feeds may increase propionate production or decrease acetate production by reducing the level of ruminal hydrogen converted to methane. Another strategy is the use of modifiers, the feed additives that directly or indirectly inhibit methanogenesis, and biocontrol manipulation using defaunization agents, bacteriocins, bacteriophages, and immunization aimed at reducing the counts of methanogens. The strategy may be also based on genetically or technologically improved productivity performance. With higher productivity, the relative methane emission per unit of meat or dairy product is reduced (M. Islam et al., 2019). Fat additives, organic acids, probiotics, ionophores, phytogenics can serve as strategies to reduce methane formation in ruminants (M. Wanapat et al., 2021; R.D. Marques et al., 2021; S.H. Kim et al., 2020). Feeding manipulation is a simplistic and pragmatic approach to improve animal productivity with a reduced CH4 emission (M.D. Najmul et al., 2018). In the review, along with a description of methanogenesis, we also summaraized modern research data on the influence of various alimentary factors (i.e., special diets, phytogenic saponins, tannins, flavonoids and essential oils) on CH4 emission. The type of diet, the quality of bulky and concentrated feeds, their chemical composition, ratio, pre-feeding preparation affect methane emission in ruminants. However, a promising approach to mitigate methane emissions is adding a small amount of grain to roughage and feeding high quality forages with less fiber and higher levels of soluble carbohydrates. Phytogenics made from various botanical parts of plants is a cheap and environmentally friendly agents to reduce greenhouse gas emissions. Phytogenics also positively affect animal resistance. There are few studies on the in vitro efficacy of flavonoids and other secondary plant metabolites as agents for reducing methane emissions. The data obtained are variable and depend on the type of herbal preparations, their characteristics and the diet fed to the animals. Further in vivo studies should establish the optimal dosages of phytogenics that provide a positive effect. The combination of various phytogenics seems to be relevant and promising. An integrated approach should provide high fragmentation activity, effective digestion and assimilation of feed nutrients.

Keywords: ruminants, greenhouse gases, methanogenesis, diet quality, diet composition, phytogenics, saponins, tannins, flavonoids, essential oils.  

 

REFERENCES

  1. Pachauri R.K., Allen M.R., Barros V.R., Broome J., Cramer W., Christ R., Church J.A., Clarke  L., Dahe Q., Dasgupta P., Dubash N.K., Edenhofer O., Elgizouli I., Field C.B., Forster P., Friedlingstein P., Fuglestvedt J., Gomez-Echeverri L., Hallegatte S., Hegerl G., Howden M., Jiang K., Jimenez Cisneroz B., Kattsov V., Lee H., Mach K.J., Marotzke J., Mastrandrea M.D., Meyer L., Minx J., Mulugetta Y., O’Brien K., Oppenheimer M., Pereira J.J., Pichs-Madruga R., Plattner G.-K., Pörtner H.-O., Power S.B., Preston B., Ravindranath N.H., Reisinger A., Riahi K., Rusticucci M., Scholes R., Seyboth K., Sokona Y., Stavins R., Stocker T.F., Tschakert P., van Vuuren D., van Ypserle J.-P. Climate change 2014: synthesis report. Contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change /R. Pachauri, L. Meyer (eds). Geneva, Switzerland, IPCC, 2014.
  2. Islam M., Lee S.S. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. Journal of Animal Science and Technology, 2019, 61(3): 122-137 CrossRef
  3. Skytt T., Nielsen S.N., Jonsson, B.G. Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability — a case study of Jämtland, Sweden. Ecological Indicators, 2020, 110: 105831 CrossRef
  4. Haque M.N. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. Journal of Animal Science and Technology, 2018, 60(1): 15 CrossRef
  5. Hristov A.N., Oh J., Lee C., Meinen R., Montes F., Ott T., Firkins J., Rotz A., Dell C., Adesogan A., Yang W., Tricarico J., Kebreab E., Waghorn G., Dijkstra J., Oosting S. Mitigation of greenhouse gas emissions in livestock production. A review of options for non-CO2 emissions. FAO Animal Production and Health Paper No.177. P.J. Gerber, B. Henderson, H.P.S. Makkar (eds.). FAO, Rome, 2013.
  6. McAllister T.A., Meale S.J., Valle E., Guan L.L., Zhou M., Kelly W.J., Henderson G., Attwood G.T., Janssen P.H. Ruminant nutrition symposium: use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis. Journal of Animal Science, 2015, 93(4): 1431-1449 CrossRef
  7. Sandoval-Pelcastre A.A., Ramírez-Mella M., Rodríguez-Ávila N.L., Candelaria-Martínez B. Árboles y arbustos tropicales con potencial para disminuir la producción de metano en ruminates. Tropical and Subtropical Agroecosystems, 2020, 23(33): 1-16.
  8. Opio C., Gerber P., Mottet A., Falcucci A., Tempio G., MacLeod M., Vellinga T., Henderson B., Steinfeld H. Greenhouse gas emissions from ruminant supply chains — a global life cycle assessment. FAO, Rome, 2013.
  9. Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A., Tempio G. Tackling climate change through livestock — a global assessment of emissions and mitigation opportunities. FAO, Rome, 2013.
  10. Ukaz Prezidenta RF ot 4 noyabrya 2020 g. № 666 «O sokrashchenii vybrosov parnikovykh gazov» [Decree of the President of the Russian Federation of November 4, 2020 No. 666 «On the reduction of greenhouse gas emissions»]. Available: https://www.garant.ru/products/ipo/prime/doc/74756623. Accessed: 22.08.2022 (in Russ.).
  11. Petrunina I.V., Gorbunova N.A. Pishchevye sistemy, 2022, 5(3): 202-211 CrossRef (in Russ.).
  12. Beauchemin K.A., Ungerfeld E.M., Eckard R.J., Wang M. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 2020, 14(S1): 2-6 CrossRef
  13. Calabrò S. Plant secondary metabolites. In: Rumen microbiology: from evolution to revolution. A.K. Puniya, R. Singh, D.N. Kamra (eds.). Springer, New Delhi, India, 2015: 153-189 CrossRef
  14. Rooke J.A., Wallace R.J., Duthie C.A., McKain N., de Souza S.M., Hyslop J.J., Ross D.W., Waterhouse T., Roehe R. Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. British Journal of Nutrition, 2014, 112(3): 398-407 CrossRef
  15. Cammack K.M., Austin K.J., Lamberson W.R., Conant G.C., Cunningham H.C. Tiny but mighty: the role of the rumen microbes in livestock production. Journal of Animal Science, 2018, 96(2): 752-770 CrossRef
  16. Stewart R.D., Auffret M.D., Warr A., Wiser A.H., Press M.O., Langford K.W., Liachko I., Snelling T.J., Dewhurst R.J., Walker A.W., Roehe R., Watson M. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nature Communications, 2018, 9: 870 CrossRef
  17. De la Fuente G., Yañez-Ruiz D.R., Seradj A.R., Balcells J., Belanche A. Methanogenesis in animals with foregut and hindgut fermentation: a review. Animal Production Science, 2019, 59(12): 2109-2122 CrossRef
  18. Poulsen M., Schwab C., Borg Jensen B., Engberg R.M., Spang A., Canibe N., Højberg O., Milinovich G., Fragner L., Schleper C., Weckwerth W., Lund P., Schramm A., Urich T. Methylotrophic methanogenic thermoplasmata implicated in reduced methane emissions from bovine rumen. Nature Communications, 2013, 4(1): 1428 CrossRef
  19. Solden L.M., Naas A.E., Roux S., Daly R.A., Collins W.B., Nicora C.D., Purvine S.O., Hoyt D.W., Schückel J., Jørgensen B., Willats W., Spalinger D.E., Firkins J.L., Lipton M.S., Sullivan M.B., Pope P.B., Wrighton K.C. Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nature Microbiology, 2018, 3(11): 1274-1284 CrossRef
  20. Wolin M., Millert L.C., Stewart S. Microbe-microbe interactions. In: The rumen microbial ecosystem. P.N. Hobson, S. Stewart (eds.). Springer, Dordrecht, 1997: 467–491 CrossRef
  21. Patra A., Park T., Kim M., Yu Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 2017, 8(1): 13 CrossRef
  22. Van Lingen H.J., Plugge C.M., Fadel J.G., Kebreab E., Bannink A., Dijkstra J. Thermodynamic driving force of hydrogen on rumen microbial metabolism: a theoretical investigation. PLoS ONE, 2016, 11(10): e0161362 CrossRef
  23. Huws S.A., Creevey C.J., Oyama L.B., Mizrahi I., Denman S.E., Popova M., Muñoz-Tamayo R., Forano E., Waters S.M., Hess M., Tapio I., Smidt H., Krizsan S.J., Yáñez-Ruiz D.R., Belanche A., Guan L., Gruninger R.J., McAllister T.A., Newbold C.J., Roehe R., Dewhurst R.J., Snelling T.J., Watson M., Suen G., Hart E.H., Kingston-Smith A.H., Scollan N.D., do Prado R.M., Pilau E.J., Mantovani H.C., Attwood G.T., Edwards J.E., McEwan N.R., Morrisson S., Mayorga O.L., Elliott C., Morgavi D.P. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Frontiers in Microbiology, 2018, 9: 2161 CrossRef
  24. Wang M., Wang R., Xie T.Y., Janssen P.H., Sun X.Z., Beauchemin K.A., Tan Z.L., Gao M. Shifts in rumen fermentation and microbiota are associated with dissolved ruminal hydrogen concentrations in lactating dairy cows fed different types of carbohydrates. Journal of Nutrition, 2016, 146(9): 1714-1721 CrossRef
  25. Cantalapiedra-Hijar G., Abo-Ismail M., Carstens G.E., Guan L.L., Hegarty R., Kenny D.A., McGee M., Plastow G., Relling A., Ortigues-Marty I. Biological determinants of between-animal variation in feed efficiency of growing beef cattle: Review. Animal, 2018, 12(s2): s321-s335 CrossRef
  26. Ungerfeld E.M. Inhibition of rumen methanogenesis and ruminant productivity: a meta-analysis. Frontiers in Veterinary Science, 2018, 5: 113 CrossRef
  27. Zhang Q., Difford G., Sahana G., Lovendahl P., Lassen J., Lund M.S., Guldbrandtsen B., Janss L. Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows. The ISME Journal, 2020, 14(8): 2019-2033 CrossRef
  28. Broucek J. Production of methane emissions from ruminant husbandry: a review. Journal of Environmental Protection, 2014, 5(15): 1482-1493 CrossRef
  29. Bernier J.N., Undi M., Plaizier J.C., Wittenberg K.M., Donohoe G.R., Ominski K.H. Impact of prolonged cold exposure on dry matter intake and enteric methane emissions of beef cows overwintered on low-quality forage diets with and without supplemented wheat and corn dried distillers’ grain with solubles. Canadian Journal of Animal Science, 2012, 92(4): 493-500 CrossRef
  30. Wang S., Pisarcikova J., Kreuzer M., Schwarm A. Utility of an in vitro test with rumen fluid from slaughtered cattle for capturing variation in methane emission potential between cattle types and with age. Canadian Journal of Animal Science, 2017, 98(1): 61-72 CrossRef
  31. Dong L., Li B., Diao Q. Effects of dietary forage proportion on feed intake, growth performance, nutrient digestibility, and enteric methane emissions of Holstein heifers at various growth stages. Animals, 2019, 9(10): 725 CrossRef
  32. Boadi D.A., Wittenberg K.M. Methane production from dairy and beef heifers fed forages differing in nutrient density using the Sulphur hexafluoride (sf6) tracer gas technique. Canadian Journal of Animal Science, 2002, 82(2): 201-206 CrossRef
  33. Shreck A.L., Zeltwanger J.M., Bailey E.A., Jennings J.S., Meyer B.E., Cole N.A. Effects of protein supplementation to steers consuming low-quality forages on greenhouse gas emissions. Journal of Animal Science, 2021, 99(7): skab147 CrossRef
  34. Li Z., Liao W., Yang Y., Gao Z., Ma W., Wang D., Cai Z. CH4 and N2O emissions from China’s beef feedlots with ad libitum and restricted feeding in fall and spring seasons. Environmental Research, 2015, 138: 391-400 CrossRef
  35. Warner D., Bannink A., Hatew B., Van Laar H., Dijkstra J. Effects of grass silage quality and level of feed intake on enteric methane production in lactating dairy cows. Journal of Animal Science, 2017, 95(8): 3687-3699 CrossRef
  36. Rowe S.J., Hickey S.M., Jonker A., Hess M.K., Janssen P., Johnson T., Bryson B., Knowler K., Pinares-Patino C., Bain W., Elmes S., Young E., Wing J., Waller E., Pickering N., McEwan J.C. Selection for divergent methane yield in New Zealand sheep — a ten-year perspective. Proc. of the 23rd Conf. of the association for the advancement of animal breeding and genetics (AAABG). Armidale, New South Wales, Australia, 2019: 306-309.
  37. Korotkiy V.P., Zaytsev V.V., Buryakov N.P., Kuchin A.V., Ryzhov V.A., Turubanov A.I. Sposob snizheniya metanogeneza u krupnogo rogatogo skota. C1 2777053 (RF), A 61 K 38/00. OOO Nauchno-tekhnicheskiy tsentr «Khiminvest» (RF), № 2021137457. Zayav. 16.12.2021. Opubl. 01.08.2022 [Method for reducing methanogenesis in cattle. C1 2777053 (RF), A 61 K 38/00. LLC Scientific and Technical Center Khiminvest (RF), № 2021137457. Appl. 12.16.2021. Publ. 08.01.2022] (in Russ.).
  38. De Mulder T., Peiren N., Vandaele L., Ruttink T., De Campeneere S., Van de Wiele T., Goossens K. Impact of breed on the rumen microbial community composition and methane emission of Holstein Friesian and Belgian Blue heifers. Livestock Science, 2018, 207: 38-44 CrossRef
  39. Hristov A.N., Kebreab E., Niu M., Oh J., Bannink A., Bayat A.R., Boland T.M., Brito A.F., Casper D.P., Crompton L.A., Dijkstra J., Eugène M., Garnsworthy P.C., Haque N., Hellwing A.L.F., Huhtanen P., Kreuzer M., Kuhla B., Lund P., Madsen J., Martin C., Moate P.J., Muetzel S., Muñoz C., Peiren N., Powell J.M., Reynolds C.K., Schwarm A., Shingfield K.J., Storlien T.M., Weisbjerg M.R., Yáñez-Ruiz D.R., Yu Z. Symposium review: uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 2018, 101(7): 6655-6674 CrossRef
  40. Huhtanen P., Cabezas-Garcia E.H., Utsumi S., Zimmerman S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. Journal of Dairy Science, 2015, 98(5): 3394-3409 CrossRef
  41. Kumar S., Choudhury P.K., Carro M.D., Griffith G.W., Dagar S.S., Puniya M., Calabro S., Ravella S.R., Dhewa T., Upadhyay R.C., Sirohi S.K., Kundu S.S., Wanapat M., Puniya A.K. New aspects and strategies for methane mitigation from ruminants. Applied Microbiology and Biotechnology, 2014, 98(1): 31-44 CrossRef
  42. Knapp J.R., Laur G.L., Vadas P.A., Weiss W.P., Tricarico J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 2014, 97(6): 3231-3261 CrossRef
  43. Negussie E., de Haas Y., Dehareng F., Dewhurst R.J., Dijkstra J., Gengler N., Morgavi D.P., Soyeurt H., van Gastelen S., Yan T., Biscarini F. Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: a review of proxies and their potential for use in management and breeding decisions. Journal of Dairy Science, 2017, 100(4): 2433-2453 CrossRef
  44. Tapio I., Snelling T.J., Strozzi F., Wallace R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of Animal Science and Biotechnology, 2017, 8(1): 7 CrossRef
  45. Montenegro J., Barrantes E., DiLorenzo N. Methane emissions by beef cattle consuming hay of varying quality in the dry forest ecosystem of Costa Rica. Livestock Science, 2016, 193: 45-50 CrossRef
  46. Chiavegato M.B., Rowntree J.E., Carmichael D., Powers W.J. Enteric methane from lactating beef cows managed with high- and low-input grazing systems. Journal of Animal Science, 2015, 93(3): 1365-1375 CrossRef
  47. Hatew B. Low emission feed: opportunities to mitigate enteric methane production of dairy cows.  Wageningen University, 2015.
  48. Molano G., Clark H. The effect of level of intake and forage quality on methane production by sheep. Australian Journal of Experimental Agriculture, 2008, 48(2): 219 CrossRef
  49. Gere J.I., Bualó R.A., Perini A.L., Arias R.D., Ortega F.M., Wulff A.E., Berra G. Methane emission factors for beef cows in Argentina: effect of diet quality. New Zealand Journal of Agricultural Research, 2021, 64(2): 260-268 CrossRef
  50. Alvarado-Bolovich V., Medrano J., Haro J., Castro-Montoya J., Dickhoefer U., Gómez C. Enteric methane emissions from lactating dairy cows grazing cultivated and native pastures in the high Andes of Peru. Livestock Science, 2021, 243: 104385 CrossRef
  51. Benchaar C., Pomar C., Chiquette J. Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Canadian Journal of Animal Science, 2001, 81(4): 563-574 CrossRef
  52. Gislon G., Colombini S., Borreani G., Crovetto G.M., Sandrucci A., Galassi G., Rapetti L. Milk production, methane emissions, nitrogen, and energy balance of cows fed diets based on different forage systems. Journal of Dairy Science, 2020, 103(9): 8048-8061 CrossRef
  53. Beauchemin K.A., Kreuzer M., O’Mara F., McAllister T.A. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture, 2008, 48(2): 21-27 CrossRef
  54. Wang C., Zhang C., Yan T., Chang S., Zhu W., Wanapat M., Hou F. Increasing roughage quality by using alfalfa hay as a substitute for concentrate mitigates CH4 emissions and urinary N and ammonia excretion from dry ewes. Journal of Animal Physiology and Animal Nutrition, 2019, 104(1): 22-31 CrossRef
  55. Martin C., Morgavi D.P., Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Animal, 2010, 4(3): 351-365 CrossRef
  56. Albores-Moreno S., Alayón-Gamboa J.A., Ayala-Burgos A.J., Solorio-Sánchez F.J., Aguilar-Pérez C.F., Olivera-Castillo L., Ku-Vera J.C. Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass. Tropical Animal Health and Production, 2017, 49(4): 857-866 CrossRef
  57. Lovett D., Lovell S., Stack L., Callan J., Finlay M., Conolly J., O’Mara F.P. Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livestock Production Science, 2003, 84(2): 135-146 CrossRef
  58. Beauchemin K.A., McAllister T.A., McGinn S.M. Dietary mitigation of enteric methane from cattle. Perspectives in Agriculture. Veterinary Science, Nutrition and Natural Resources, 2009, 4(035): 1-18 CrossRef
  59. Murphy M.R., Baldwin R.L., Koong L.J. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. Journal of Animal Science, 1982, 55(2): 411-421 CrossRef
  60. Orskov E.R. Starch digestion and utilization in ruminants. Journal of Animal Science, 1986, 63(5): 1624-1633 CrossRef
  61. Hindrichsen I.K., Kreuzer M. High methanogenic potential of sucrose compared with starch at high ruminal ph. Journal of Animal Physiology and Animal Nutrition, 2009, 93(1): 61-65 CrossRef
  62. Beauchemin K.A., McGinn S.M., Benchaar C., Holtshausen L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production. Journal of Dairy Science, 2009, 92(5): 2118-2127 CrossRef
  63. Llonch P., Haskel M.J., Dewhurs R.J., Turner S.P. Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal, 2017, 11(2): 274-284 CrossRef
  64. Patra A.K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: a meta-analysis. Livestock Science, 2013, 155(2-3): 244-254 CrossRef
  65. Sheyda E.V., Lebedev S.V., Miroshnikov S.A., Duskaev G.K., Ryazanov V.A., Grechkina V.V., Rakhmatullin Sh.G. Zhivotnovodstvo i kormoproizvodstvo, 2021, 104(2): 84-95 CrossRef (in Russ.).
  66. Wanapat M., Viennasay B., Matra M., Totakul P., Phesatcha B., Ampapon T., Wanapat S. Supplementation of fruit peel pellet containing phytonutrients to manipulate rumen pH, fermentation efficiency, nutrient digestibility and microbial protein synthesis. Journal of the Science of Food and Agriculture, 2021, 101(11): 4543-4550 CrossRef
  67. Marques R.D., Cooke R.F. Effects of ionophores on ruminal function of beef cattle. Animals, 2021, 11(10): 2871 CrossRef
  68. Appuhamy J.R., Strathe A.B., Jayasundara S., Wagner-Riddle C., Dijkstra J., France J., Kebreab E. Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis. Journal of Dairy Science, 2013, 96(8): 5161-5173 CrossRef
  69. Pedraza-Hernández J., Elghandour M.M.M.Y., Khusro A., Camacho-Diaz L.M., Vallejo L.H., Barbabosa-Pliego A., Salem A.Z.M. Mitigation of ruminal biogases production from goats using Moringa oleifera extract and live yeast culture for a cleaner agriculture environment. Journal of Cleaner Production, 2019, 234: 779-786 CrossRef
  70. Kim S.H., Mamuad L.L., Islam M., Lee S.S. Reductive acetogens isolated from ruminants and their effect on in vitro methane mitigation and milk performance in Holstein cows. Journal of Animal Science and Technology, 2020, 62(1): 1-13 CrossRef
  71. Abdelbagi M., Ridwan R., Fidriyanto R., Rohmatussolihat, Nahrowi, Jayanegara A. Effects of probiotics and encapsulated probiotics on enteric methane emission and nutrient digestibility in vitro. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 788: 012050 CrossRef
  72. Guo G., Shen C., Liu Q., Zhang S.L., Shao T., Wang C., Wang Y., Xu Q., Huo W. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. Journal of Integrative Agriculture, 2020, 19(3): 838-847 CrossRef
  73. Jeyanathan J., Martin C., Eugène M., Ferlay A., Popova M., Morgavi D.P. Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. Journal of Animal Science and Biotechnology, 2019, 10: 41 CrossRef
  74. Latham E.A., Pinchak W.E., Trachsel J., Allen H.K., Callaway T.R., Nisbet D.J., Anderson R.C. Paenibacillus 79R4, a potential rumen probiotic to enhance nitrite detoxification and methane mitigation in nitrate-treated ruminants. Science of The Total Environment, 2019, 671: 324-328 CrossRef
  75. Deng K.D., Xiao Y., Ma T., Tu Y., Diao Q.Y., Chen Y.H., Jiang J.J. Ruminal fermentation, nutrient metabolism, and methane emissions of sheep in response to dietary supplementation with Bacillus licheniformis. Animal Feed Science and Technology, 2018, 241: 38-44 CrossRef
  76. Partnerskiy material. Fitogeniki: nastoyashchee i budushchee. Agroinvestor, 30 aprelya 2019. Available: https://www.agroinvestor.ru/business-pages/31677-fitogeniki-nastoyashchee-i-budushchee/. No date (in Russ.).
  77. Kaur N., Agarwal A., Sabharwal M., Jaiswal N. Natural food toxins as anti-nutritional factors in plants and their reduction strategies.In: Food chemistry. M. Sen (ed.), Scrivener Publishing LLC, 2021: 217-248 CrossRef
  78. Vasta V., Daghio M., Cappucci A., Buccioni A., Serra A., Viti C., Mele M. Invited review: plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: experimental evidence and methodological approaches. Journal of Dairy Science, 2019, 102(5): 3781-3804 CrossRef
  79. De Nardi R., Marchesini G., Li S., Khafipour E., Plaizier K.J.C., Gianesella M., Ricci R., Andrighetto I., Segato S. Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols. BMC Veterinary Research, 2016, 12(1): 2074161 CrossRef
  80. Aboagye I.A., Oba M., Koenig K.M., Zhao G.Y., Beauchemin K.A. Use of gallic acid and hydrolyzable tannins to reduce methane emission and nitrogen excretion in beef cattle fed a diet containing alfalfa silage. Journal of Animal Science, 2019, 97(5): 2230-2244 CrossRef
  81. Ngámbi J.W., Selapa M.J., Brown D., Manyelo T.G. The effect of varying levels of purified condensed tannins on performance, blood profile, meat quality and methane emission in male Bapedi sheep fed grass hay and pellet-based diet. Tropical Animal Health and Production, 2022, 54(5): 263 CrossRef
  82. Suybeng B., Charmley E., Gardiner C.P., Malau-Aduli B.S., Malau-Aduli A.E.O. Supplementing Northern Australian beef cattle with desmanthus tropical legume reduces in-vivo methane emissions. Animals (Basel), 2020, 10(11): 2097 CrossRef
  83. Ku-Vera J.C., Jiménez-Ocampo R., Valencia-Salazar S.S., Montoya-Flores M.D., Molina-Botero I.C., Arango J., Gómez-Bravo C.A., Aguilar-Pérez C.F., Solorio-Sánchez F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science, 2020, 7: 584 CrossRef
  84. Min B.R., Pinchak W.E., Hume M.E., Anderson R.C. Effects of condensed tannins supplementation on animal performance, phylogenetic microbial changes, and in vitro methane emissions in steers grazing winter wheat. Animals (Basel), 2021, 11(8): 2391 CrossRef
  85. Jayanegara A., Goel G., Makkar H.P.S., Becker K. Reduction in methane emissions from ruminants by plant secondary metabolites: effects of polyphenols and saponins. In: Sustainable improvement of animal production and health. N.E. Odongo, M. Garcia, G.J. Viljoen (eds). FAO, Rome, Italy, 2010: 151-157.
  86. Jayanegara A., Leiber F., Kreuzer M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of Animal Physiology and Animal Nutrition, 2012, 96(3): 365-375 CrossRef
  87. Min B.R., Solaiman S. Comparative aspects of plant tannins on digestive physiology, nutrition and microbial changes in sheep and goats: a review. Journal of Animal Physiology and Animal Nutrition, 2018, 102(5): 1181-1193 CrossRef
  88. Goel C., Makkar H.P.S., Becker K. Methane mitigation from ruminants using tannins and saponins. Tropical Animal Health and Production, 2011, 44(4): 729-739 CrossRef
  89. Naumann H.D., Tedeschi L.O., Zeller W.E., Huntley N.F. The role of condensed tannins in ruminant animal production: advances, limitations and future directions. Revista Brasileira de Zootecnia, 2017, 46: 929-949 CrossRef
  90. Bhatta R., Uyeno Y., Tajima K., Takenaka A., Yabumoto Y., Nonaka I., Enishi O., Kurihara M. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science, 2009, 92(11): 5512-5522 CrossRef
  91. Jayanegara A., Goel G., Makkar H.P.S., Becker K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Animal Feed Science and Technology, 2015, 209: 60-68 CrossRef
  92. Mannelli F., Daghio M., Alves S.P., Bessa R.J., Minieri S., Giovannetti L., Conte G., Mele M., Messini A., Rapaccini S., Viti C., Buccioni A. Effects of chestnut tannin extract, vescalagin and gallic acid on the dimethyl acetals profile and microbial community composition in rumen liquor: an in vitro study. Microorganisms, 2019, 7(7): 202 CrossRef
  93. Mueller-Harvey I. Unravelling the conundrum of tannins in animal nutrition and health. Journal of the Science of Food and Agriculture, 2006, 86(13): 2010-2037 CrossRef
  94. Costa M., Alves S.P., Cabo Â., Guerreiro O., Stilwell G., Dentinho M.T., Bessa R.J. Modulation of in vitro rumen biohydrogenation by Cistus ladanifer tannins compared with other tannin sources. Journal of the Science of Food and Agriculture, 2017, 97(2): 629-635 CrossRef
  95. Waghorn G.C., Woodward S.L. Ruminant contributions to methane and global warming — a New Zealand perspective. In: Climate change and managed ecosystems. J.S. Bhatti, R. Lal, M.J. Apps, M.A. Price (eds.). Taylor and Francis, Boca Raton, 2006: 233-261.
  96. Woodward S.L., Waghorn G.C., Ulyatt M.J., Lassey K.R. Early indication that feeding lotus will reduce methane emission from ruminants. Proceedings of New Zealand Society of Animal Production, 2001, 61: 23-26.
  97. Puchala R., Min B.R., Goetsch A.L., Sahlu T. The effect of a condensed tannin-containing forage on methane emission by goats. Journal of Animal Science, 2005, 83(1): 182-186 CrossRef
  98. Carulla J.E., Kreuzer M., Machmüller A., Hess H.D. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian Journal of Agricultural Research, 2005, 56(9): 961-970 CrossRef
  99. Animut G., Puchala R., Goetsch A.L., Patra A.K., Sahlu T., Varel V.H., Wells J. Methane emission by goats consuming diets with different levels of condensed tannins from Lespedeza. Animal Feed Science and Technology, 2008, 144: 212-227 CrossRef
  100. Tiemann T.T., Lascano C.E., Wettstein H.R., Mayer A.C., Kreuzer M., Hess H.D. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal, 2008, 2(5): 790-799 CrossRef
  101. De Oliveira S.G., Berchielli T.T., Pedreira M.D.S., Primavesi O., Frighetto R., Lima M.A. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Animal Feed Science and Technology, 2007, 135(3-4): 236-248 CrossRef
  102. Grainger C., Clarke T., Auldist M.J., Beauchemin K.A., McGinn S.M., Waghorn G.C. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian Journal of Animal Science, 2009, 89(2): 241-251 CrossRef
  103. Patra A.K., Kamra D.N., Bhar R., Kumar R., Aggarwal N. Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep. Journal of Animal Physiology and Animal Nutrition, 2011, 95(2): 187-191 CrossRef
  104. Santoso B., Mwenya B., Sar C., Gamo Y., Kobayashi T., Morikawa R., Kimura K., Mizukoshi H., Takahashi J. Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livestock Production Science, 2004, 91(3): 209-217 CrossRef
  105. Kozłowska M., CieŚlak A., JóŹwik A., El‐Sherbiny M., Stochmal A., Oleszek W., Kowalczyk M., Filipiak W., Szumacher‐Strabel M.  The effect of total and individual alfalfa saponins on rumen methane production. Journal of the Science of Food and Agriculture, 2019, 100(5): 1922-1930 CrossRef
  106. Kang J., Zeng B., Tang S., Wang M., Han X., Zhou C., Yan Q., He Z., Liu J., Tan Z. Effects of Momordica charantia saponins on in vitro ruminal fermentation and microbial population. Asian-Australasian Journal of Animal Sciences, 2016, 29(4): 500-508 CrossRef
  107. Canul-Solis J.R., Piñeiro-Vazquez A.T., Chay-Canul A.J., Castillo-Sánchez L.E., Alayón-Gamboa J.A., Ayala-Burgos A.J., Aguilar-Pérez A.J., Pedraza-Beltran, Castelan-Ortega O.A., Ku-Vera J.C. Effect of the source and concentration of saponins on in vitro and ruminal methane production. Archivos de Zootecnia, 2019, 68(263): 362-369 0.21071/az.v68i263.4194">CrossRef
  108. Wang B., Ma M.P., Diao Q.Y., Tu Y. Saponin-induced shifts in the rumen microbiome and metabolome of young cattle. Frontiers in Microbiology, 2019, 10: 356 CrossRef
  109. Wu H., Meng Q., Zhou Z., Yu Z. Ferric citrate, nitrate, saponin and their combinations affect in vitro ruminal fermentation, production of sulphide and methane and abundance of select microbial populations. Journal of Applied Microbiology, 2019, 127(1): 150-158 CrossRef
  110. Guyader J., Eugène M., Doreau M., Morgavi D.P., Gérard C., Martin C. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. Journal of Dairy Science, 2017, 100(3): 1845-1855 CrossRef
  111. Wallace R., McEwan N.R., McIntosh F.M., Teferedegne B., Newbold C.J. Natural products as manipulators of rumen fermentation. Asian-Australasian Journal of Animal Sciences, 2002, 15(10): 1458-1468 CrossRef
  112. Chen R.J., Chung T., Li F., Lin N., Tzen J.T. Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity. Acta Pharmacologica Sinica, 2009, 30(1): 61-69 CrossRef
  113. Ramos-Morales E., Arco-Pérez A., Martín-García A.I., Yáñez-Ruiz D.R., Frutos P., Hervás G. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Animal Feed Science and Technology, 2014, 198: 57-66 CrossRef
  114. Guo Y.Q., Liu J.X., Lu Y., Zhu W.Y., Denman S.E., McSweeney C.S. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Letters in Applied Microbiology, 2008, 47(5): 421-426 CrossRef
  115. Pen B., Sar C., Mwenya B., Kuwaki K., Morikawa R., Takahashi J. Effects of Yucca schidigera and Quillaja saponaria extracts on in vitro ruminal fermentation and methane emission. Animal Feed Science and Technology, 2006, 129: 175-186 CrossRef
  116. Holtshausen L., Chaves A.V., Beauchemin K.A., McGinn S.M., McAllister T., Odongo N.E., Cheeke P.R., Benchaar C. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of Dairy Science, 2009, 92(6): 2809-2821 CrossRef
  117. Mao H., Wang J., Zhou Y., Liu J. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Animal Feed Science and Technology, 2010, 129(1-3): 56-62 CrossRef
  118. Zhou Y.Y., Mao H.L., Jiang F., Wang J.K., Liu J.X., McSweeney C.S. Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep. Animal Feed Science and Technology, 2011, 166: 93-100 CrossRef
  119. Sliwinski B.J., Kreuzer M., Wettstein H.R., Machmuller A. Rumen fermentation and nitrogen balance of lambs fed diets containing plantextracts rich in tannins and saponins and associated emissions of nitrogen and methane. Archieves of Animal Nutrition, 2002, 56(6): 379-392 CrossRef
  120. Molina-Botero I.C., Arroyave-Jaramillo J., Valencia-Salazar S., Barahona-Rosales R., Aguilar-Pérez C.F., Ayala Burgos A., Jacobo A., Ku-Vera J.C. Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Animal Feed Science and Technology, 2019, 251: 1-11 CrossRef
  121. Montoya-Flores M.D., Molina-Botero I.C., Arango J., Romano-Muñoz J.L., Solorio-Sánchez F.J., Aguilar-Pérez C.F., Ku-Vera J.C. Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers. Animals, 2020, 10(2): 300 CrossRef
  122. Molina I.C., Angarita E.A., Mayorga O.L., Chará J., Barahona-Rosales R. Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livestock Science, 2016, 185: 24-29 CrossRef
  123. Valencia Salazar S.S., Piñeiro Vázquez A.T., Molina Botero I.C., Lazos Balbuena F.J., Uuh Narváez J.J., Segura Campos M.R., Avilés L.R., Solorio Sánchez F.J., Ku Vera J.C. Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agricultural and Forest Meteorology, 2018, 258: 108-116 CrossRef
  124. Yejun L., Su Kyoung L., Shin Ja L., Jong‐Su E., Sung Sill L. Effects of Lonicera japonica extract supplementation on in vitro ruminal fermentation, methane emission, and microbial population. Animal Science Journal, 2019, 90(9): 1170-1176 CrossRef
  125. Moiseeva E.A., Kravchenko I.V., Shepeleva L.F., Bordey R.Kh. Accumulation of photosynthetic pigments and secondary metabolites in leaves of galega (Galega orientalis Lam.) cv. Gale depending on stand age and agrotechnologies during introduction in the Middle taiga of Western Siberia. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2022, 57(1): 44-65 CrossRef
  126. Olagaray K.E., Bradford B.J. Plant flavonoids to improve productivity of ruminants — a review. Animal Feed Science and Technology, 2019, 251: 21-36 CrossRef
  127. Oskoueian E., Abdullah N., Oskoueian A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Research International, 2013, 2013: ID 349129 CrossRef
  128. Seradj A.R., Abecia L., Crespo J., Villalba D., Fondevila M., Balcells J. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Animal Feed Science and Technology, 2014, 197: 85-91 CrossRef
  129. Zhan J., Liu M., Su X., Zhan K., Zhang C., Zhao G. Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows. Asian-Australasian Journal of Animal Sciences, 2017, 30(10): 1416-1424 CrossRef
  130. Sinz S, Kunz C., Liesegang A., Braun U., Marquardt S., Soliva C.R., Kreuzer M. In vitro bioactivity of various pure flavonoids in ruminal fermentation, with special reference to methane formation. Czech Journal of Animal Science, 2018, 63: 293-304 CrossRef
  131. Ahmed E., Fukuma N., Hanada M., Nishida T. The efficacy of plant-based bioactives supplementation to different proportion of concentrate diets on methane production and rumen fermentation characteristics in vitro. Animals, 2021, 11(4): 1029 CrossRef
  132. Nurzhanov B.S., Ryazanov V.A., Sheyda E.V., Duskaev G.K., Rakhmatullin Sh.G. Sposob snizheniya kontsentratsii metana v rubtse zhvachnykh zhivotnykh. C1 2780832 (RF), A23K 10/30, A23K 50/10, 04.10.2022. Federal’noe gosudarstvennoe byudzhetnoe nauchnoe uchrezhdenie «Federal’nyy nauchnyy tsentr biologicheskikh sistem i agrotekhnologiy Rossiyskoy akademii nauk» (RF). № 2022106708. Zayavl. 15.03.2022. Opubl. 04.10.2022 [Method for reducing the concentration of methane in the rumen of ruminants. C1 2780832 (RF), A23K 10/30, A23K 50/10, 10.04.2022. Federal State Budgetary Scientific Institution «Federal Scientific Center for Biological Systems and Agrotechnologies of the Russian Academy of Sciences» (RF). №2022106708. Appl. 03.15.2022. Publ. 04.10.2022](in Russ.). 
  133. Bal’sel’s Teres Zh., Krespo Montero F.Sh. Sposob snizheniya metanogeneza u zhvachnykh zhivotnykh. C1 2576195 (RF). № 2014146434/13. Zayavl. 18.04.2013. Opubl. 27.02.2016 [Method for reducing methanogenesis in ruminants. C1 2576195 (RF). №2014146434/13. Appl. 04.18.2013. Publ. 27.02.2016] (in Russ.).   
  134. Hu Q., Zhou M., We, S. Progress on the antimicrobial activity research of clove oil and eugenol in the food antisepsis field. Journal of Food Science, 2018, 83(6): 1476-1483 CrossRef
  135. Benchaar C., Greathead H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology, 2011, 166-167: 338-355 CrossRef
  136. Zhou X., Zhang N., Zhang J., Gu Q., Dong C., Lin B., Zou C. Microbiome and fermentation parameters in the rumen of dairy buffalo in response to ingestion associated with a diet supplemented with cysteamine and hemp seed oil. Journal of Animal Physiology and Animal Nutrition, 2022, 106(3): 471-484 CrossRef
  137. Joch M., Mrázek J., Skřivanová E., Čermák L., Marounek M. Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro. Journal of Animal Physiology and Animal Nutrition, 2018, 102(4): 869-881 CrossRef
  138. Zeng Z., Sheng P., Zhang H., He L., Huang J., Wang D., Gui G.The effect of Macleaya cordata extract on in vitro ruminal fermentation and methanogenesis. Food Science & Nutrition, 2021, 9(8): 4561-4567 CrossRef
  139. Petrič D., Mravčáková D., Kucková K., Čobanová K., Kišidayová S., Cieslak A., Ślusarczyk S., Váradyová Z. Effect of dry medicinal plants (wormwood, chamomile, fumitory and mallow) on in vitro ruminal antioxidant capacity and fermentation patterns of sheep. Journal of Animal Physiology and Animal Nutrition, 2020, 104(5): 1219-1232 CrossRef
  140. Yu J., Cai L., Zhang J., Yang A., Wang Y., Zhang L., Guan L.L., Qi D. Effects of thymol supplementation on goat rumen fermentation and rumen microbiota in vitro. Microorganisms, 2020, 8(8): 1160 CrossRef
  141. Rossi C.A.S., Grossi S., Dell’Anno M., Compiani R., Rossi L. Effect of a blend of essential oils, bioflavonoids and tannins on in vitro methane production and in vivo production efficiency in dairy cows. Animals, 2022, 12(6): 728 CrossRef
  142. Castro-Montoya J., Peiren N., Cone J.W., Zweifel B., Fievez V., De Campeneere S. In vivo and in vitro effects of a blend of essential oils on rumen methane mitigation. Livestock Science, 2015, 180: 134-142 CrossRef
  143. Hart K., Jones, H., Waddams K., Worgan H., Zweifel B., Newbold C. An essential oil blend decreases methane emissions and increases milk yield in dairy cows. Open Journal of Animal Sciences, 2019, 9(03): 259-267 CrossRef
  144. Klop G., Dijkstra J., Dieho K., Hendriks W.H., Bannink A. Enteric methane production in lactating dairy cows with continuous feeding of essential oils or rotational feeding of essential oils and lauric acid. Journal of Dairy Science, 2017, 100(5): 3563-3575 CrossRef
  145. Rakhmatullin Sh.G., Nurzhanov B.S., Duskaev G.K., Kvan O.V., Sheyda E.V. Zhivotnovodstvo i kormoproizvodstvo, 2021, 3(104): 94-103 CrossRef (in Russ.).
  146. Alves T.P., Dall-Orsoletta A.C., Ribeiro-Filho H.M.N. The effects of supplementing acacia mearnsii tannin extract on dairy cow dry matter intake, milk production, and methane emission in a tropical pasture. Tropical Animal Health and Production, 2017, 49(8): 1663-1668 CrossRef
  147. Chen D., Chen X., Tu Y., Wang B., Lou C., Ma T., Diao Q. Effects of mulberry leaf flavonoid and resveratrol on methane emission and nutrient digestion in sheep. Animal Nutrition, 2015, 1(4): 362-367 CrossRef
  148. Dey A., Attri K., Dahiya S.S., Paul S.S. Influence of dietary phytogenic feed additives on lactation performance, methane emissions and health status of Murrah buffaloes (Bubalus bubalis). Journal of the Science of Food and Agriculture, 2021, 101(10): 4390-4397 CrossRef
  149. Van Gastelen S., Dijkstra J., Bannink A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? Journal of Dairy Science, 2019, 102(7): 6109-6130 CrossRef
  150. Boadi D.A., Wittenberg K.M., Scott S.L., Burton D., Buckley K., Small J.A., Ominski K.H.  Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Canadian Journal of Animal Science, 2004, 84(3): 445-453 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)