PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.6.1015eng

UDC: 636.5:573.6.086.83:577.21

Acknowledgements:
Supported financially by Russian Science Foundation, grant No. 21-66-00007

 

GENOME EDITING: CURRENT STATE AND PROSPECTS FOR USE IN POULTRY (review)

N.A. Volkova , A.N. Vetokh, N.A. Zinovieva

Ernst Federal Research Center for Animal Husbandry,60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail natavolkova@inbox.ru ( corresponding author), anastezuya@mail.ru, n_zinovieva@mail.ru

ORCID:
Volkova N.A. orcid.org/0000-0001-7191-3550
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Vetokh A.N. orcid.org/0000-0002-2865-5960

September 27, 2021

 

To date, significant progress has been made in the poultry’s genetic modification. A sufficiently large number of methods and methodological approaches have been developed for the introduction of recombinant genes into bird cells. The efficiency of using these approaches for genetic modification of bird cells varies depending on the object of research, the selected target cells for the introduction of recombinant DNA and the method of their transformation. Blastoderm cells, primordial germ cells, spermatogonia, sperm cells, and oviduct cells can serve as target cells for gene modifications. Using retroviral, lentiviral and adenoviral vectors, electroporation and lipofection, genetic transformation of these target cells can be carried out. In general, three main strategies for creating a genetically modified bird can be distinguished: i) the introduction of genetic constructs directly into the embryo (J. Love et al., 1994; Z. Zhang et al., 2012) or into individual organs and tissues of adults (D.V. Beloglazov et al., 2015; S. Min et al., 2011), ii) transfection of target cells in vitro and their subsequent transplantation into the embryo or target organs (M.-C. van de Lavoir et al., 2006; B. Benesova et al., 2014), and iii) sperm transformation in vitro and insemination of females with transformed sperm (E. Harel-Markowitz et al., 2009). These approaches were used to develop methods for editing the avian cell genome. A number of papers have studied the possibility of modifying bird cells using various editing systems, in particular, ZFN (zinc finger nuclease), TALEN (transcription activator-like effector nucleases), and CRISPR/Cas9 (clustered regularly interspaced palindromic repeats). Promising areas of using this technology in poultry farming are the following: studying the genes functions (N. Véron et al., 2015), obtaining recombinant proteins in the egg white composition (I. Oishi et al., 2018), improving economically useful and productive qualities (J. Ahn et al., 2017), and increasing resistance to infectious diseases (A. Koslová et al., 2020; R. Hellmich et al., 2020). Chickens with knockout of genes of the heavy chain of immunoglobulin (B. Schusser et al., 2013; L. Dimitrov et al., 2016), ovomucin (I. Oishi et al., 2016), myostatin (G.-D. Kim et al., 2020), as well as an integrated human interferon beta gene (I. Oishi et al., 2018) were obtained using genome editing technology. Quail with knockout of myostatin genes (J. Lee et al., 2020) and melanophilin (J. Lee et al., 2019) were also obtained. A number of studies have shown the simplicity, safety and availability of using the CRISPR/Cas9 editing system for modifying the poultry genome. This allows us to consider this system as an effective tool for the creation and commercial use of breeds and lines of birds with improved qualities in the framework of the implementation of large-scale breeding programs aimed at improving the quality of the resulting poultry products.

Keywords: poultry, quail, chicken, transgenesis, genome editing, CRISPR/Cas9, primordial germ cells, germ cells.

 

REFERENCES

  1. Ivarie R. Avian transgenesis: progress towards the promise. Trends in Biotechnology, 2003, 21(1): 14-19 CrossRef
  2. Amro W.A., Al-Qaisi W., Al-Razem F. Production and purification of IgY antibodies from chicken egg yolk. Journal of Genetic Engineering and Biotechnology, 2018, 16(1): 99-103 CrossRef
  3. Lillico S.G., McGrew M.J., Sherman A., Sang H.M. Transgenic chickens as bioreactors for protein-based drugs. Drug Discovery Today, 2005, 10(3): 191-196 CrossRef
  4. Stern C.D. The marginal zone and its contribution to the hypoblast and primitive streak of the chick embryo. Development,1990, 109: 667-682.
  5. Mozdziak P.E., Petitte J.N. Status of transgenic chicken models for developmental biology. Developmental Dynamics, 2004, 229(3): 414-421 CrossRef
  6. Cooper C.A., Doran T.J., Challagulla A., Tizard M.L.V., Jenkins K.A. Innovative approaches to genome editing in avian species. Journal of Animal Science and Biotechnology,2018, 9: 15 CrossRef
  7. Bahrami S., Amiri-Yekta A., Daneshipour A., Jazayeri S.H., Mozdziak P.E., Sanati M.H., Gourabi H. Designing a transgenic chicken: applying new approaches toward a promising bioreactor. Cell Journal, 2020, 22(2): 133-139 CrossRef
  8. Véron N., Qu Z., Kipen P.A.S., Hirst C.E., Marcelle C. CRISPR mediated somatic cell genome engineering in the chicken. Developmental Biology, 2015, 407(1): 68-74 CrossRef
  9. Ahn J., Lee J., Park J.Y., Oh K.B., Hwang S., Lee C.-W., Lee K. Targeted genome editing in a quail cell line using a customized CRISPR/Cas9 system. Poultry Science, 2017, 96(1): 1445-1450 CrossRef
  10. Bhattacharya T.K., Shukla R., Chatterjee R.N., Bhanja S.K. Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knock down chicken. Scientific Reports, 2019, 9: 7789 CrossRef
  11. Koslová A., Trefil P., Mucksová J., Reinišová M., Plachý J., Kalina J., Kučerová D., Geryk J., Krchlíková V., Lejčková B., Hejnar J. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proceedings of the National Academy of Sciences, 2020, 117(4): 2108-2112 CrossRef
  12. Hellmich R., Sid H., Lengyel K., Flisikowski K., Schlickenrieder A., Bartsch D., Thoma T., Bertzbach L.D., Kaufer B.B., Nair V., Preisinger R., Schusser B. Acquiring resistance against a retroviral infection via CRISPR/Cas9 targeted genome editing in a commercial chicken line. Frontiers in Genome Editing, 2020, 2: 3 CrossRef
  13. Petersen B. Basics of genome editing technology and its application in livestock species. Reproduction in Domestic Animals, 2017, 52(S3): 4-13 CrossRef
  14. Sander J.D., Joung J.K. CRISPR-Cas systems for genome editing, regulation and targeting. Nature Biotechnology, 2014, 32(4): 347-355 CrossRef
  15. Panda S.K., Wefers B., Ortiz O., Floss T., Schmid B., Haass C., Wurst W., Kühn R. Highly efficient targeted mutagenesis in mice using TALENs. Genetics, 2013, 195(3): 703-713 CrossRef
  16. Chu V.T., Weber T., Wefers B., Wurst W., Sander S., Rajewsky K., Kühn R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology, 2015, 33: 543-548 CrossRef
  17. Wefers B., Panda S.K., Ortiz O., Brandl C., Hensler S., Hansen J., Wurst W., Kühn R. Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nature Protocols, 2013, 8: 2355-2379 CrossRef
  18. Menzorov A.G., Luk'yanchikova V.A., Korablev A.N., Serova I.A., Fishman V.S. Vavilovskii zhurnal genetiki i selektsii, 2016, 20(6): 930-944 CrossRef (in Russ.).
  19. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712 CrossRef
  20. Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L. A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823 CrossRef
  21. Anders C., Niewoehner O., Duerst A., Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014, 513: 569-573 CrossRef
  22. Gonatopoulos-Pournatzis T., Aregger M., Brown K.R., Farhangmehr S., Braunschweig U., Ward H.N., Ward H.N., Ha K.C.H., Weiss A., Billmann M., Durbic T., Myers C.L., Blencowe B.J., Moffat J. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9-Cas12a platform. Nature Biotechnology,2020, 38: 638-648 CrossRef
  23. Najm F.J., Strand C., Donovan K.F., Hegde M., Sanson K.R., Vaimberg E.W., Sullender M.E., Hartenian E., Kalani Z., Fusi N., Listgarten J., Younger S.T., Bernstein B.E., Root D.E., Doen J.G. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nature Biotechnology, 2018, 36(2): 179-189 CrossRef
  24. Pennisi E. The CRISPR craze. Science, 2013, 341(6148): 833-836 CrossRef
  25. Wilson L.O.W., Reti D., O’Brien A.R., Dunne R.A., Bauer D.C. High activity target-site identification using phenotypic independent CRISPR-Cas9 core functionality. The CRISPR Journal, 2018, 1(2): 182-190 CrossRef
  26. Salsman J., Dellaire G. Precision genome editing in the CRISPR era. Biochemistry and Cell Biology, 2017, 95: 187-201 CrossRef
  27. Love J., Gribbin C., Mather C., Sang H. Transgenic birds by DNA microinjection. Nat. Biotechnol., 1994, 12(1): 60-63 CrossRef
  28. Zhang Z., Sun P., Yu F., Yan L., Yuan F., Zhang W., Wang T., Wan Z., Shao Q., Li Z. Transgenic quail production by microinjection of lentiviral vector into the early embryo blood vessels. PLoS ONE, 2012, 7(12): e50817 CrossRef
  29. Beloglazov D.V., Volkova N.A., Volkova L.A., Zinov'eva N.A. Efficiency of local transgenesis of the oviductal cells in chicken as influenced by hormonal stimulation. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(6): 729-735 CrossRef
  30. Min S., Qing S.Q., Hui Y.Y., Zhi F.D., Rong Q.Y., Feng X., Chun L.B. Generation of antiviral transgenic chicken using spermatogonial stem cell transfected in vivo. African Journal of Biotechnology, 2011, 10(70): 15678-15683 CrossRef
  31. van de Lavoir M.-C., Diamond J.H., Leighton P.A., Mather-Love C., Heyer B.S., Bradshaw R., Kerchner A., Hooi L.T., Gessaro T.M., Swanberg S.E., Delany M.E., Etches R.J. Germline transmission of genetically modified primordial germ cells. Nature, 2006, 441: 766-769 CrossRef
  32. Benesova B., Mucksova J., Kalina J., Trefil P. Restoration of spermatogenesis in infertile male chickens after transplantation of cryopreserved testicular cells. British Poultry Science, 2014, 55(6): 837-845 CrossRef
  33. Harel-Markowitz E., Gurevich M., Shore L.S., Katz A., Stram Y., Shemesh M. Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating hormone Biology of Reproduction, 2009, 80(5): 1046-1052 CrossRef
  34. Salter D.W., Smith E.J., Hughes S.H., Wright S.E., Crittenden L.B. Transgenic chickens: insertion of retroviral genes into the chicken germ line. Virology, 1987, 157(1): 236-240 CrossRef
  35. Chen H.Y., Garber E.A., Mills E., Smith J., Kopchick J.J., Dilella A.G., Smith R.G. Vectors, promoters, and expression of genes in chick embryos. Journal of Reproduction and Fertility. Supplement, 1990, 41: 173-182.
  36. Bosselman R.A., Hsu R.Y., Boggs T., Hu S., Bruszewski J., Ou S.,  Kozar L., Martin F., Green C., Jacobsen F., Nicolson M., Schultz J.A., Semon K.M., Rishell W., Stewart R.G. Germline transmission of exogenous genes in the chicken. Science, 1989, 243(4890): 533-535 CrossRef
  37. Mozdziak P.E., Borwornpinyo S., McCoy D.W., Petitte J.N. Development of transgenic chickens expressing bacterial beta-galactosidase. Developmental Dynamics, 2003, 226(3): 439-445 CrossRef
  38. Mizuarai S., Ono K., Yamaguchi K., Nishijima M., Kamihira M., Iijima S. Production of transgenic quails with high frequency of germ-line transmission using VSV-G pseudotyped retroviral vector. Biochemical and Biophysical Research Communications,2001,286(3): 456-463 CrossRef
  39. Kwon M.S., Koo B.C., Choi B.R., Park Y.Y., Lee Y.M., Suh H.S., Park Y.S., Lee H.T., Kim J.H., Roh J.Y., Kim N.H., Kim T. Generation of transgenic chickens that produce bioactive human granulocyte-colony stimulating factor. Molecular Reproduction and Development, 2008, 75(7): 1120-1126 CrossRef
  40. Harvey A.J., Ivarie R. Validating the hen as a bioreactor for the production of exogenous proteins in egg white. Poultry Science, 2003, 82(6): 927-930 CrossRef
  41. Harvey A.J., Speksnijder G., Baugh L.R., Morris J.A., Ivarie R. Expression of exogenous protein in the egg white of transgenic chickens. Nature Biotechnology, 2002, 20(4): 396 CrossRef
  42. Smith C.A., Roeszler K.N., Sinclair A.H. Robust and ubiquitous GFP expression in a single generation of chicken embryos using the avian retroviral vector, RCASBP. Differentiation, 2009, 77(5): 473-482 CrossRef
  43. Kamihira M., Ono K., Esaka K., Nishijima K., Kigaku R., Komatsu H., Yamashita T., Kyogoku K., Iijima S. High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. Journal of Virology, 2005, 79(17): 10864-10874 CrossRef
  44. Kodama D., Nishimiya D., Nishijima K., Okino Y., Inayoshi Y., Kojima Y., Ono K., Motono M., Miyake K., Kawabe Y., Kyogoku K., Yamashita T., Kamihira M., Iijima S. Chicken oviduct-specific expression of transgene by a hybrid ovalbumin enhancer and the Tet expression system. Journal of Bioscience and Bioengineering, 2012, 113(2): 146-153 CrossRef
  45. Rapp J.C., Harvey A.J., Speksnijder G.L., Hu W., Ivarie R. Biologically active human interferon a-2b produced in the egg white of transgenic hens. Transgenic Research, 2003, 12(5): 569-575 CrossRef
  46. Scott B.B., Velho T.A., Sim S., Lois C. Applications of avian transgenesis. ILAR Journal, 2010, 51(4): 353-361 CrossRef
  47. McGrew M.J., Sherman A., Ellard F.M., Lillico S.G., Gilhooley H.J., Kingsman A.J., Mitrophanous K.A., Sang H. Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Reproduction, 2004, 5(7): 728-733 CrossRef
  48. Lillico S.G., Sherman A., McGrew M.J., Robertson C.D., Smith J., Haslam C., Barnard P., Radcliffe P.A., Mitrophanous K.A., Elliot E.A., Sang H.M. Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proceedings of the National Academy of Sciences, 2007, 104(6): 1771-1776 CrossRef
  49. Chapman S.C., Lawson A., Macarthur W.C., Wiese R.J., Loechel R.H., Burgos-Trinidad M., Wakefield J.K., Ramabhadran R., Mauch T.J., Schoenwolf G.C. Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development, 2005, 132(5): 935-940 CrossRef
  50. Byun S.J., Kim S.W., Kim K.W., Kim J.S., Hwang I.S., Chung H.K., Kan I.S., Jeon I.S., Chang W.K., Park S.B., Yoo J.G. Oviduct-specific enhanced green fluorescent protein expression in transgenic chickens. Bioscience, Biotechnology, and Biochemistry, 2011, 75(4): 646-649 CrossRef
  51. Kwon S.C., Choi J.W., Jang H.J., Shin S.S., Lee S.K., Park T.S., Choi I.Y., Lee G.S., Song G., Han J.Y. Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biology of Reproduction, 2010, 82(6): 1057-1064 CrossRef
  52. Cao D.N., Wu H.Y., Li Q.Y., Sun Y.M., Liu T.X., Fei J., Zhao Y.F., Wu S., Hu X.X., Li N. Expression of recombinant human lysozyme in egg whites of transgenic hens. PLoS ONE, 2015, 10(2): e0118626 CrossRef
  53. Liu T.X., Wu H.Y., Cao D.N., Li Q.Y., Zhang Y.Q., Li N., Hu X.X. Oviduct-specific expression of human neutrophil defensin 4 in lentivirally generated transgenic chickens. PLoS ONE, 2015, 10(5): e0127922 CrossRef
  54. Chojnacka-Puchta L., Kasperczyk K., Płucienniczak G., Sawicka D., Bednarczyk M. Primordial germ cells (PGCs) as a tool for creating transgenic chickens. Polish Journal of Veterinary Sciences, 2012, 15(1): 181-188 CrossRef
  55. Macdonald J., Glover J.D., Taylor L., Sang H.M., McGrew M.J. Characterisation and germline transmission of cultured avian primordial germ cells. PLoS ONE, 2010, 5(11): e15518 CrossRef
  56. Zheng Y., Zhang Y., Qu R., He Y., Tian X., Zeng W. Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction, 2014, 147(3): 65-74 CrossRef
  57. Li B., Sun G., Sun H., Xu Q., Gao B., Zhou G., Zhau W., Wu X., Bao W., Yu F., Wang K., Chen G. Efficient generation of transgenic chickens using the SSCs in vivo and ex vivo transfection. Science China Life Sciences, 2008, 51: 734-742 CrossRef
  58. Han J.Y. Germ cells and transgenesis in chickens. Comparative Immunology, Microbiology & Infectious Diseases, 2009, 32(2): 61-80 CrossRef
  59. Nakamura Y., Usui F., Miyahara D., Mori T., Ono T., Takeda K., Nira-sawa K., Kagami H., Tagami T. Efficient system for preservation and regeneration of genetic resources in chicken: concurrent storage of primordial germ cells and live animals from early embryos of a rare indigenous fowl (Gifujidori). Reproduction, Fertility and Development, 2010, 22(8): 1237-1246 CrossRef
  60. Takashima S. Biology and manipulation technologies of male germline stem cells in mammals. Reproductive Medicine and Biology, 2018, 17(4): 398-406 CrossRef
  61. Eyal-Giladi H., Kochav S. From cleavage to primitive streak formation: a com-plementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Developmental Biology, 1976, 49(2): 321-337 CrossRef
  62. Zhao D.-F., Kuwana T. Purification of avian circulating primordial germ cells by nycodenz density gradient centrifugation. British Poultry Science, 2003, 44(1): 30-35 CrossRef
  63. Mozdziak P.E., Angerman-Stewart J., Rushton B., Pardue S.L., Petitte J.N. Isolation of chicken primordial germ cells using fluorescence-activated cell sorting. Poultry Science, 2005, 84(4): 594-600 CrossRef
  64. Sisakhtnezhad S., Bahrami A.R., Matin M.M., Dehghani H., Momeni-Moghaddam M., Boozarpour S., Farshchian M., Dastpak M. The molecular sig-nature and spermatogenesis potential of newborn chicken spermatogonial stem cells in vitro. In Vitro Cellular & Developmental Biology — Animal, 2015, 51: 415-425 CrossRef
  65. Li B., Wang X.-Y., Tian Z., Xiao X.-J., Xu Q., Wei C.-X., Sun H.-C., Chen G.-H. Directional differentiation of chicken spermatogonial stem cells in vitro. Cytotherapy, 2010, 12(3): 326-331 CrossRef
  66. Yu F., Ding L.-J., Sun G.-B., Sun P.-X., He X.-H., Ni L.-G., Li B.-C. Transgenic sperm produced by electrotransfection and allogeneic transplantation of chicken fetal spermatogonial stem cells. Molecular Reproduction and Development, 2010, 77(4): 340-347 CrossRef
  67. Hong Y.H., Moon Y.K., Jeong D.K., Han J.Y. Improved transfection efficiency of chicken gonadal primordial germ cells for the production of transgenic poultry. Transgenic Research, 1998, 7(4): 247-252 CrossRef
  68. Naito M., Harumi T., Kuwana T. Long term in vitro culture of chicken primordial germ cells isolated from embryonic blood and incorporation into germline of recipient embryo. Poultry Science, 2010, 47(1): 57-64 CrossRef
  69. Tyack S.G., Jenkins K.A., O’Neil T.E., Wise T.G., Morris K.R., Bruce M.P., McLeod S., Wade A.J., McKay J., Moore R.J., Schat K.A., Lowenthal J.W., Doran T.J. A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells. Transgenic Research, 2013, 22(6): 1257-1264 CrossRef
  70. Sawicka D., Chojnacka-Puchta L. Effective transfection of chicken primordial germ cells (PGCs) using transposon vectors and lipofection. Folia Biologica, 2019, 67(1): 45-52 CrossRef
  71. Kalina J., Senigl F., Micáková A., Mucksová J., Blazková J., Yan H., Poplstein M., Hejnar J., Trefil P. Retrovirus-mediated in vitro gene transfer into chicken male germ line cells. Reproduction, 2007, 134(3): 445-453 CrossRef
  72. Allioli N., Thomas J.-L., Chebloune Y., Nigon V.-M., Verdier G., Legras C. Use of retroviral vectors to introduce and express the β-galactosidase marker gene in cultured chicken primordial germ cell. Developmental Biology, 1994, 165(1): 30-37 CrossRef
  73. Jiang Z.-Q., Wu H.-Y., Tian J., Li N., Hu X.-X. Targeting lentiviral vectors to primordial germ cells (PGCs): An efficient strategy for generating transgenic chickens. Zoological Research, 2020, 41(3): 281-291 CrossRef
  74. Vetokh A.N., Volkova L.A., Iolchiev B.S., Tomgorova E.K., Volkova N.A. Genetic modification of roosters’ germ cells using various methodological approaches. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(2): 306-314 CrossRef
  75. Macdonald J., Taylor L., Sherman A., Kawakami K., Takahashi Y., Sang H.M., McGrew M.J. Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proceedings of the National Academy of Sciences, 2012, 109(23): E1466-E1472 CrossRef
  76. Lambeth L.S., Morris K.R., Wise T.G., Cummins D.M., O’Neil T.E., Cao Y., Sinclair A.H., Doran T.J., Smith C.A. Transgenic chickens overexpressing aromatase have high estrogen levels but maintain a predominantly male phenotype. Endocrinology, 2016, 157(1): 83-90 CrossRef
  77. Zhao R., Zuo Q., Yuan X. Jin K., Jin J., Ding Y., Zhang C., Li T., Jiang J., Li J., Zhang M., Shi X., Sun H., Zhang Y., Xu Q., Chang G., Zhao Z., Li B., Wu X., Zhang Y., Song J., Chen G., Li B. Production of viable chicken by allogeneic transplantation of primordial germ cells induced from somatic cells. Nature Communications, 2021, 12: 2989 CrossRef
  78. Woodcock M.E., Gheyas A.A., Mason A.S., Nandi S., Taylor L., Sherman A., Smith J., Burt D.W., Hawken R., McGrew M.J. Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds. Proceedings of the National Academy of Sciences, 2019, 116(42): 20930-20937 CrossRef
  79. Kang S.J., Choi J.W., Kim S.Y., Park K.J., Kim T.M., Lee Y.M., Kim H., Lim J.M., Han J.Y. Reproduction of wild birds via interspecies germ cell transplantation. Biology of Reproduction, 2008, 79(5): 931-937 CrossRef
  80. Wernery U., Liu C., Baskar V., Guerineche Z., Khazanehdari K.A., Saleem S., Kinne J., Wernery R., Griffin D.K., Chang I.-K. Primordial germ cell-mediated chimera technology produces viable pure-line Houbara bustard off-spring: potential for repopulating an endangered species. PLoS ONE, 2010, 5(12): e15824 CrossRef
  81. Trefil P., Bakst M.R., Yan H., Hejnar J., Kalina J., Mucksová J. Restoration of spermatogenesis after transplantation of c-Kit positive testicular cells in the fowl. Theriogenology, 2010, 74(9): 1670-1676 CrossRef
  82. Kim Y.M., Park J.S., Yoon J.W., Choi H.J., Park K.J., Ono T., Han J.Y. Production of germline chimeric quails following spermatogonial cell transplantation in busulfan‑treated testis. Asian Journal of Andrology, 2018, 20(4): 414-416 CrossRef
  83. Park K.J., Kang S.J., Kim T.M., Lee Y.M., Lee H.C., Song G., Han J.Y. Gamma irradiation depletes endogenous germ cells and increases donor cell distribution in chimeric chickens. In Vitro Cellular & Developmental Biology, 2010, 46: 828-833 CrossRef
  84. Trefil P., Polak J., Poplstein M., Mikus T., Kotrbová A., Rozinek J. Preparation of fowl testes as recipient organs to germ-line chimeras by means of gamma-radiation. British Poultry Science, 2003, 44(4): 643-650 CrossRef
  85. Tagirov M., Golovan S. The effect of busulfan treatment on endogenous spermatogonial stem cells in immature roosters. Poultry Science, 2012, 91(7): 1680-1685 CrossRef
  86. Nakamura Y., Yamamoto Y., Usui F., Atsumi Y., Ito Y., Ono T., Takeda K., Nirasawa K., Kagami H., Tagami T. Increased proportion of donor primordial germ cells in chimeric gonads by sterilisation of recipient embryos using busulfan sustained-release emulsion in chickens. Reproduction, Fertility and Development, 2008, 20(8): 900-907 CrossRef
  87. Motono M., Yamada Y., Hattori Y., Nakagawa R., Nishijima K., Iijima S. Production of transgenic chickens from purified primordial germ cells infected with a lentiviral vector. Journal of Bioscience and Bioengineering, 2010, 109(4): 315-321 CrossRef
  88. van de Lavoir M.C., Collarini E.J., Leighton P.A., Fesler J., Lu D.R., Harriman W.D., Thiyagasundaram T.S., Etches R.J. Interspecific germline transmission of cultured primordial germ cells. PLoS ONE, 2012, 7(5): e35664 CrossRef
  89. Han J.Y., Park Y.H. Primordial germ cell-mediated transgenesis and genome editing in birds. Journal of Animal Science and Biotechnology,2018, 9: 19 CrossRef
  90. Abu-Bonsrah K.D., Zhang D., Newgreen D.F. CRISPR/Cas9 targets chicken embryonic somatic cells in vitro and in vivo and generates phenotypic abnormalities. Scientific Report, 2016,6: 34524 CrossRef
  91. Zhang Y., Wang Y., Zuo Q., Li D., Zhang W., Wang F., Ji Y., Jin J., Lu Z., Wang M., Zhang C., Li B. CRISPR/Cas9 mediated chicken Stra8 gene knockout and inhibition of male germ cell differentiation. PLoS ONE,2017, 12(2): e0172207 CrossRef
  92. Koslová A., Kučerová D., Reinišová M., Geryk J., Trefil P., Hejnar J. Genetic resistance to avian leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells. Viruses, 2018, 10(11): 605 CrossRef
  93. Bai Y., He L., Li P., Xu K., Shao S., Ren C., Liu Z., Wei Z., Zhang Z. Efficient genome editing in chicken DF-1 cells using the CRISPR/Cas9 system. G3 Genes|Genomes|Genetics, 2016, 6(4): 917-923 CrossRef
  94. Lee J.H., Kim S.W., Park T.S. Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect. Asian-Australasian Journal of Animal Sciences, 2017, 30(5): 743-748 CrossRef
  95. Schusser B., Collarini E.J., Yi H., Izquierdo S. M., Fesler J., Pedersen D., Klasing, K. C. Kaspers B., Harriman W. D., van de Lavoir M.-C., Etches R.J., Leighton P.A. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proceedings of the National Academy of Sciences, 2013, 110(50): 20170-20175 CrossRef
  96. Dimitrov L., Pedersen D., Ching K.H., Yi H., Collarini E.J., Izquierdo S., van de Lavoir M.-C., Leighton P.A. Germline gene editing in chickens by efficient CRISPR-mediated homologous recombination in primordial germ cells. PLoS ONE, 2016, 11(4): e0154303 CrossRef
  97. Taylor L., Carlson D.F., Nandi S., Sherman A., Fahrenkrug S.C., McGrew M.J. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development, 2017, 144(5): 928-934 CrossRef
  98. Park T.S., Lee H.J., Kim K.H., Kim J.-S., Han J.Y. Targeted gene knockout in chickens mediated by TALENs. Proceedings of the National Academy of Sciences, 2014, 111(35): 12716-12721 CrossRef
  99. Oishi I., Yoshii K., Miyahara D., Kagami H., Tagami T. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Scientific Reports, 2016, 6: 23980 CrossRef
  100. Oishi I., Yoshii K., Miyahara D., Tagami T. Efficient production of human interferon beta in the white of eggs from ovalbumin gene—targeted hens. Scientific Reports,2018, 8: 10203 CrossRef
  101. Qin X., Xiao N., Xu Y., Yang F., Wang X., Hu H., Liu Q., Cui K., Tang X. Efficient knock-in at the chicken ovalbumin locus using adenovirus as a CRISPR/Cas9 delivery system. 3 Biotech, 2019, 9: 454 CrossRef
  102. Kim G.-D., Lee J.H., Song S., Kim S.W., Han J.S., Shin S.P., Park B.-C., Park T.S. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB, 2020, 34(4): 5688-5696 CrossRef
  103. Lee J., Kim D.-H., Lee K. Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide. International Journal of Molecular Sciences, 2020, 21(4): 1504 CrossRef
  104. Lee J., Ma J., Lee K. Direct delivery of adenoviral CRISPR/Cas9 vector into the blastoderm for generation of targeted gene knockout in quail. Proceedings of the National Academy of Sciences, 2019, 116(27): 13288-13292 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)