PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.6.1099eng

UDC: 636.5:573.6.086.83:577.21

Acknowledgements:
Supported financially by Russian Foundation for Basic Research, grant No. 18-29-07079

 

CREATION OF GENOME EDITING SYSTEMS BASED ON CRISPR-CAS9 FOR KNOCKOUT IN FGF20 AND HR GENES OF EMBRYONIC AND GENERATIVE CELLS FROM CHICKEN AND QUAILS

A.N. Vetokh1 , P.V. Sergiev2, 3, 4, M.P. Rubtsova2, 5, N.A. Volkova1,
E.K. Tomgorova1, L.A. Volkova1, N.A. Zinovieva1

1Ernst Federal Research Center for Animal Husbandry,60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail anastezuya@mail.ru ( corresponding author), natavolkova@inbox.ru, tomgorova@rambler.ru, ludavolkova@inbox.ru, n_zinovieva@mail.ru;
2Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3, Leninskie Gory, Moscow, 119991 Russia, e-mail petya@genebee.msu.ru, mprubtsova@gmail.com;
3Center of Life Sciences, Skolkovo Institute of Science and Technology, 30-1, Bolshoi bulvar, Skolkovo, Moscow Province, 143026 Russia, e-mail petya@genebee.msu.ru;
4Institute of Functional Genomics, Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991 Russia, e-mail petya@genebee.msu.ru;
5Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10, ul. Mikluho-Maklaya, Moscow, 117997 Russia, e-mail mprubtsova@gmail.com

ORCID:
Vetokh A.N. orcid.org/0000-0002-2865-5960
Tomgorova E.K. orcid.org/0000-0001-5398-8815
Sergiev P.V. orcid.org/0000-0001-8866-1863
Volkova L.A. orcid.org/0000-0002-9407-3686
Rubtsova M.P. orcid.org/0000-0002-4808-5416
Zinovieva N.A. orcid.org/0000-0003-4017-6863
Volkova N.A. orcid.org/0000-0001-7191-3550

Received September 30, 2021

 

Genome editing technologies using site-specific nucleases (ZNF, TALEN, CRISPR/Cas9) are used more and more in animal husbandry, including poultry farming. With the use of these technologies, scientists hope not only to speed up the process of creating breeds with improved economically useful traits, high resistance to infectious diseases, but also to create individuals carrying phenotypes, the introduction of which into animal and bird populations by traditional breeding methods is impossible or difficult. The creation of individuals devoid of plumage in order to improve the commercial qualities of poultry product is of interest for industrial poultry farming. For this, we selected the FGF20 and HR genes associated with the development and growth of hair in mammals (F. Benavides et al., 2009) and feathers in birds (K.L. Wells et al., 2012). The aim of the study was to create a system for knocking out the FGF20and HR genes in chickens and FGF20 in quails by genome editing techniques. We inactivated FGF20 and HR genes in the region of the third exons based on the analysis of their structure. The optimal cutting regions of these genes and guide RNAs and primers for amplifying the FGF20 and HR DNA fragments were selected bioinformatically and using internet resources (https://zlab.bio/guide-design-resources, https://www.ncbi.nlm.nih.gov/). To create genetic constructs for cutting in the regions encoding FGF20 and HR, the vector pX458 was selected (F.A. Ran et al., 2013). The hybridized oligonucleotides 5´-CACCGAAAGATGGTACTCCCAGAGA-3´ and 3´-CT-TTCTACCATGAGGGTCTCTCAAA-5´ (for FGF20 gene in chicken), 5´-CACCGTCCATGTTTGTACACGTTGG-3´ and 3´-CAGGTACAAACATGTGCAACCCAAA-5´ (for FGF20 gene in chicken and in quails); 5´-CACCGACGTGGCTGACGCGGCACT-3´ and 3´-CTGCACCGACTGCGC-CGTGACAAA-5´ (for gene HR) were used for ligation. The effectiveness of cloning constructs was confirmed by sequencing. The plasmids that were obtained were used for edit the genome of embryonic (fibroblasts) and generative (primordial germ cells — PGCs, spermatogonia) chicken and quail cells in in vitro experiments. Target cells were transfected by electroporation. Efficiency of electroporation was evaluated on a high-performance fluorescent cell sorter BD FacsAria III («BD Biosciences», USA) by expression of the eGFP marker gene. The proportion of in vitro transfected embryonic fibroblasts, PGCs and spermatogonia from chickens with a knockout of the FGF20 gene reached 5.7, 0.9, and 1.2 %, with a knockout of the HR gene — 7.4, 0.8, and 1.0 %, respectively. The percentage of embryonic fibroblasts, PGCs and spermatogonia from quails with a knockout of the FGF20 gene was 6.3, 0.9, and 1.1 %, respectively. Genomic DNA was isolated from transformed chicken and quail cells and used for amplification and sequencing of the regions of the FGF20 and HR genes in which deletions were introduced. The presence of multiple mutations in the amplified DNA regions was shown. The data obtained indicate the success of the knockout system creation for FGF20 and HRgenes in chickens and for FGF20 gene in quails using genetic constructs based on the pX458 vector.

Keywords: genome editing, CRISPR/Cas9, chicken, quail, primordial germ cells (PGCs), spermatogonia cells, FGF20, HR.

 

REFERENCES

  1. Bahrami S., Amiri-Yekta A., Daneshipour A., Jazayeri S.H., Mozdziak P.E., Sanati M.H., Gourabi H. Designing a transgenic chicken: applying new approaches toward a promising bioreactor. Cell Journal, 2020, 22(2): 133-139 CrossRef
  2. Cooper C. A., Doran T.J., Challagulla A., Tizard M.L.V., Jenkins K.A. Innovative approaches to genome editing in avian species. Journal of Animal Science and Biotechnology, 2018, 9: 15 CrossRef
  3. Petersen B. Basics of genome editing technology and its application in livestock species. Reproduction in Domestic Animals, 2017, 52(S3): 4-13 CrossRef
  4. Bhattacharya T.K., Shukla R., Chatterjee R.N., Bhanja S.K. Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knock down chicken. Scientific Reports, 2019, 9: 7789 CrossRef
  5. Kim G-D., Lee J.H., Song S., Kim S.W., Han J.S., Shin S.P., Park B.-C., Park T.S. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB, 2020, 34: 5688-5696 CrossRef 
  6. Hellmich R., Sid H., Lengyel K., Flisikowski K., Schlickenrieder A., Bartsch D., Thoma T., Bertzbach L.D., Kaufer B.B., Nair V., Preisinger R., Schusser B. Acquiring resistance against a retroviral infection via CRISPR/Cas9 targeted genome editing in a commercial chicken line. Frontiers in Genome Editing, 2020, 2: 3 CrossRef 
  7. Koslová A., Trefil P., Mucksová J., Reinišová M., Plachý J., Kalina J., Kučerová D., Geryk J., Krchlíková V., Lejčková B., Hejnar J. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. PNAS, 2020, 117(4): 2108-2112 CrossRef
  8. Oishi I., Yoshii K., Miyahara D., Kagami H., Tagami T. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Scientific Reports, 2016, 6: 23980 CrossRef
  9. Oishi I., Yoshii K., Miyahara D., Tagami T. Efficient production of human interferon beta in the white of eggs from ovalbumin gene-targeted hens. Scientific Reports, 2018, 8: 10203 CrossRef
  10. Stern C.D. The marginal zone and its contribution to the hypoblast and primitive streak of the chick embryo. Development, 1990, 109: 667-682 CrossRef
  11. Mozdziak P.E., Petitte J.N. Status of transgenic chicken models for developmental biology. Developmental Dynamics, 2004, 229: 414-421 CrossRef
  12. Korshunova L.G., Karapetyan R.V., Ziadinova O.F., Fisinin V.I. Transgenic poultry: derivation and areas of application (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(6): 1080-1094 CrossRef
  13. Mozdziak P.E., Borwornpinyo S., Mccoy D.W.,  Petitte J.N. Development of transgenic chickens expressing bacterial beta-galactosidase. Developmental Dynamics, 2003, 226: 439-445 CrossRef
  14. Byun S.J., Kim S.W., Kim K.W., Kim J.S., Hwang I.S., Chung H.K., Kan I.S., Jeon I.S., Chang W.K., Park S.B., Yoo J.G. Oviduct-specific enhanced green fluorescent protein expression in transgenic chickens. Bioscience, Biotechnology, and Biochemistry, 2011, 75(4): 646-649 CrossRef
  15. Harvey A.J., Speksnijder G., Baugh L.R., Morris J.A., Ivarie R. Expression of exogenous protein in the egg white of transgenic chickens. Nature Biotechnology, 2002, 20: 396 CrossRef
  16. Rapp J.C., Harvey A.J., Speksnijder G.L., Hu W., Ivarie R. Biologically active human interferon a-2b produced in the egg white of transgenic hens. Transgenic Research, 2003, 12(5): 569-575 CrossRef
  17. Lillico S.G., Sherman A., McGrew M.J., Robertson C.D., Smith J., Haslam C., Barnard P., Radcliffe P.A., Mitrophanous K.A., Elliot E.A., Sang H.M. Oviduct-specific expression of two therapeutic proteins in transgenic hens. PNAS, 2007, 104(6): 1771-1776 CrossRef
  18. Kwon M.S., Koo B.C., Choi B.R., Park Y.Y., Lee Y.M., Suh H.S., Park Y.S., Lee H.T., Kim J.H., Roh J.Y., Kim N.H., Kim T. Generation of transgenic chickens that produce bioactive human granulocyte-colony stimulating factor. Molecular Reproduction and Development, 2008, 75(7): 1120-1126 CrossRef
  19. Kamihira M., Ono K., Esaka K., Nishijima K., Kigaku R., Komatsu H., Yamashita T., Kyogoku K., Iijima S. High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. Journal of Virology, 2005, 79(17): 10864-10874 CrossRef
  20. Kwon S.C., Choi J.W., Jang H.J., Shin S.S., Lee S.K., Park T.S., Choi I.Y., Lee G.S., Song G., Han J.Y. Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biology of Reproduction, 2010, 82: 1057-1064 CrossRef
  21. Kodama D., Nishimiya D., Nishijima K., Okino Y., Inayoshi Y., Kojima Y., Ono K., Motono M., Miyake K,. Kawabe Y., Kyogoku K., Yamashita T., Kamihira M., Iijima S. Chicken oviduct-specific expression of transgene by a hybrid ovalbumin enhancer and the Tet expression system. Journal of Bioscience and Bioengineering, 2012, 113(2): 146-153 CrossRef
  22. Li W.R., Liu C.X., Zhang X.M., Chen L., Peng X.R., He S.G., Lin J.P., Han B, Wang L.Q., Huang J.C., Liu M.J. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep. FEBS Journal, 2017 284(17): 2764-2773 CrossRef
  23. Wang X., Niu Y., Zhou J., Zhu H., Ma B., Yu H., Yan H., Hua J., Huang X., Qu L., Chen Y. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Animal Genetics, 2018, 49(1): 43-51 CrossRef
  24. Scott B.B., Velho T.A., Sim S., Lois C. Applications of avian transgenesis. ILAR Journal, 2010, 51(4): 353-361 CrossRef
  25. Véron N., Qu Z., Kipen P.A.S., Hirst C.E., Marcelle C. CRISPR mediated somatic cell genome engineering in the chicken. Developmental Biology, 2015, 407(1): 68-74 CrossRef 
  26. Park T.S., Lee H.J., Kim K.H., Kim J.-S., Han J.Y. Targeted gene knockout in chickens mediated by TALENs. PNAS, 2014, 111(35): 12716-12721 CrossRef
  27. Cooper C.A., Challagulla A., Jenkins K.A., Wise T.G., O’Neil T.E., Morris K.R., Tizard M.L, Doran T.J. Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE). Transgenic Research, 2017, 26: 331-347 CrossRef
  28. Lee J., Kim D. H., Lee K. Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide. International Journal of Molecular Sciences, 2020, 21: 1504 CrossRef
  29. Benavides F., Oberyszyn T.M., Van Buskirk A.M., Reeved V.E., Kusewit D.F. The hairless mouse in skin research. Journal of Dermatological Science, 2009, 53(1): 10-18 CrossRef
  30. Wells K.L., Hadad Y., Ben-Avraham D., Hillel J., Cahaner A., Headon D.J. Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the scaleless line of featherless chickens. BMC Genomics, 2012, 13: 257 CrossRef
  31. Ran F., Hsu P., Wright J., Agarwala V., Scott D.A., Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013, 8: 2281-2308 CrossRef
  32. Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene, 1990, 96(1): 23-28 CrossRef
  33. Volkova N.A., Bagirov V.A., Tomgorova E.K., Vetokh A.N., Volkova L.A., Zinov'eva N.A. Isolation, cultivation and characterization of quail primordial germ cells. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(2): 261-267 CrossRef
  34. Dimitrov L., Pedersen D., Ching K.H., Yi H., Collarini E. J., Izquierdo S., van de Lavoir M.-C., Leighton P.A.  Germline gene editing in chickens by efficient CRISPR-mediated homologous recombination in primordial germ cells. PLoS ONE, 2016, 11: e0154303 CrossRef
  35. Taylor L., Carlson D.F., Nandi S., Sherman A., Fahrenkrug S.C., McGrew M.J. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development, 2017, 144: 928-934 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)