PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.6.1123eng

UDC: 636.2:577.21:575.174:575.2

Acknowledgements:
Supported financially by the grant 19-76-20061 of the Russian Science Foundation (http://rscf.ru)

 

ТHE POPULATION-GENETIC STRUCTURE OF NATIVE TAGIL CATTLE BY STR- AND SNP-MARKERS

Yu.A. Stolpovsky1 , S.V. Beketov1, E.V. Solodneva1, V.M. Absalikov2, A.S. Abdelmanova3, E.A. Gladyr3, N.A. Zinovieva3

1Vavilov Institute of General Genetics RAS, 3, ul. Gubkina, Moscow, 119333 Russia, e-mail stolpovsky@mail.ru ( corresponding author), svbeketov@gmail.com, eugenia.575.2012@yandex.ru;
2Department of Agriculture, Oktyabrsky District of Perm Krai, 57, ul. Lenina, Oktyabrsky District, Perm Krai, 617860 Russia, e-mail vabs1966@gmail.com;
3Ernst Federal Research Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail preevetic@mail.ru, elenagladyr@mail.ru, n_zinovieva@mail.ru

ORCID:
Stolpovsky Yu.A. orcid.org/0000-0003-2537-1900
Abdelmanova A.S. orcid.org/0000-0003-4752-0727
Beketov S.V., orcid.org/0000-0001-7947-8688
Gladyr E.A. orcid.org/0000-0002-5210-8932
Solodneva E.V. orcid.org/0000-0002-7178-4012
Zinovieva N.A. orcid.org/0000-0003-4017-6863

Received September 1, 2021

 

Rearing specialized cattle breeds or several intra-breed lines reduces the breed and genetic diversity and creates a real threat of extinction of native livestock. Microsatellite analysis and genome-wide SNP (single nucleotide polymorphism) genotyping are common methods to study the population genetic structure of local breeds with unique adaptive traits and diseases resistance. The history of the Tagil breed is more than 200 years old. Currently, in Russia and the world, there is the only herd of Tagil cattle of about 600 animals molecular genetic characteristics of which remain insufficiently poor studied. Here we present the first results of identification of STR and SNP genotypes of the unique local Tagil breed. The work aimed to assess genetic diversity and survey the population structure of the modern population of indigenous Tagil cattle by microsatellite analysis (STR) and genome-wide analysis of single nucleotide polymorphism (SNPs). Genotypes of the Tagil animals (TAGIL, n = 98; SPK Shorokhov, Perm Territory, 2021) were studied by multiplex analysis using 11 microsatellites (TGLA227, BM2113, TGLA53, ETH10, SPS115, TGLA122, INRA0623, TGL1812 ETH225, BM1824). For interbreed differentiation by STR markers in PCA, we used a set of breeds that could be potentially involved in the formation of the modern population of Tagil cattle (TAGIL) — Holstein (HLST), Kholmogory Holsteinized (Tatarstan type) (TAT), Kholmogorsk purebred (Pechora type) (PECH), black-and-white (old type) (Ch_P_OLD), Tagil (TAG) (samples from the ONIS BioTechZh database, 2020, https://www.vij.ru/2-obshchaya/226-infrastruktura-test). To cover maximum genetic diversity in genotyping of TAGIL by SNP markers, the most unrelated animals (n = 48) were selected based on the results of analysis of STR genotypes. Genome-wide genotyping for SNP markers was performed using a high density GGP Bovine HD 150K BeadChip DNA chip (150,000 SNPs, Illumina, Inc., USA) (10,8432 SNPs before and 62,809 SNPs after LD filtration). A database of genome-wide SNP genotypes of Tagil cattle (TAGIL) was formed to analyze the results of SNP genotyping (population genetic and phylogenetic studies). Holstein animals (HLST) (n = 45) were the reference group. We clearly differentiated the Tagil (TAGIL) and Holstein animals by PCA method. Cluster analysis based on genetic distances FST divided the Tagil and Holstein animals into two separate groups. Genome-wide SNP genotyping revealed genomic regions in which allelic variants are specific for the Tagil cattle (TAGIL). The hapFLK analysis showed five regions (p < 0.01) (chromosomes 4, 5, 8, 11, and 15, from 1.20 Mb on BTA8 to 9.61 Mb on BTA5, the number of SNPs within the regions from 24 to 92) under selection pressure in the Tagil animals (TAGIL). The STR genotyping data showed the participation of the Kholmogory cattle, Black-and-White and Holstein breeds in the Tagil breed formation with the greatest introgression of Holstein cattle which most likely was used to improve Tagil cattle in recent decades. We reveled that more than 50 % of the Tagil animals (TAGIL) have the ROH (BTA14, positions 24437778-25098364, 0.661 Mb) previously identified in the Yaroslavl and Kholmogor breeds as a region under selection pressure. This ROH region may be an element of the adaptive genetic system in indigenous Russian breeds. In 40 % Tagil animals, we additionally identified five ROH islands. The findings of the research will be used to identify genes and their variants that determine adaptive and commercial traits of the Tagil breed, study the formation of its genetic structure, develop monitoring regulations to preserve the Tagil cattle breed specificity and biodiversity.

Keywords: dairy cattle, Tagil breed, microsatellites, SNP genotyping, biodiversity.

 

REFERENCES

  1. Most common of cattle in GB (NUTS 1 areas) in 01 April 2005. London, 2005, Version 1.
  2. Holstein Association USA. Available: http://holsteinusa.com. No date.
  3. Ezhegodnik po plemennoi rabote v molochnom skotovodstve v khozyaistvakh Rossiiskoi Federatsii (2019 g.) [Yearbook on pedigree work in dairy cattle breeding on the farms of the Russian Federation (2019)]. Moscow, 2020 (in Russ.).
  4. Mwai O., Hanotte O., Kwon Y.-J., Cho S. African indigenous cattle: unique genetic resources in a rapidly changing world. Asian Australas. J. Anim. Sci., 2015, 28(7): 911-921 CrossRef
  5. Elsik C.G., Bovine Genome Sequencing and Analysis Consortium. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science, 2009, 324(5926): 522-528 CrossRef
  6. Kale D.S., Rank D.N., Joshi C.G., Yadav B.R., Koringa P.G., Thakkar K.M., Tolenkhomba T.C., Solanki J.V. Genetic diversity among Indian Gir, Deoni and Kankrej cattle breeds based on microsatellite markers. Indian Journal of Biotechnology, 2010, 9: 126-130.
  7. Ulloa-Arvizu R., Gayosso-Vazquez A., Ramos-Kuri M., Estrada F.J., Montano M., Alonso R.A. Genetic analysis of Mexican Criollo cattle populations. Journal of Animal Breeding and Genetics, 2008, 125: 351-359 CrossRef
  8. Kramarenko A.S., Gladyr E.A., Kramarenko S.S., Pidpala T.V., Strikha L.A., Zinovieva N.A. Genetic diversity and bottleneck analysis of the Red Steppe cattle based on microsatellite markers. Ukrainian Journal of Ecology, 2018, 8(2): 12-17 CrossRef
  9. Kiseleva T.Yu., Kantanen J., Vorobyov N.I., Podoba B.E., Terletsky V.P. Linkage disequilibrium analysis for microsatellite loci in six cattle breeds. Russian Journal of Genetics, 2014, 50(4): 406-414 CrossRef
  10. Zwane A.A., Schnabel R.D., Hoff J., Choudhury A., Makgahlela M.L., Maiwashe A., Van Marle-Koster E., Taylor J.T. Genome-Wide SNP discovery in indigenous cattle breeds of South Africa. Front. Genet., 2019, 10(273): 1-16 CrossRef
  11. Bhuiyan M.S.A., Lee S.-H., Hossain S.M.J., Deb G.K., Afroz M.F., Lee, S.-H., Bhuiyan A.K.F.H. Unraveling the genetic diversity and population structure of Bangladeshi indigenous cattle populations using 50K SNP markers. Animals, 2021, 11(2381): 1-15 CrossRef
  12. Wang W., Gan J., Fang D., Tang H., Wang H., Yi J., Fu M. Genome-wide SNP discovery and evaluation of genetic diversity among six Chinese indigenous cattle breeds in Sichuan. PLoS ONE, 2018, 13(8): e0201534 CrossRef
  13. Browett S., McHugo G., Richardson I.W., Magee D.A., Park S.D.E., Fahey A.G., Kearney J.F., Correia C.N., Randhawa I.A.S., MacHugh D.E. Genomic characterisation of the indigenous Irish Kerry Cattle breed. Front. Genet., 2018, 9(51): 1-17 CrossRef
  14. Zinov'eva N.A., Dotsev A.V., Sermyagin A.A., Vimmers K., Reier Kh., Solkner I., Deniskova T.E., Brem G. Study of genetic diversity and population structure of five Russian cattle breeds using whole-genome SNP analysis. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(6): 788-800 CrossRef
  15. Zinovieva N.A., Dotsev A.V., Sermyagin A.A., Deniskova T.E., Abdelmanova A.S., Kharzinova V.R., Sölkner J., Reyer H., Wimmers K., Brem G. Selection signatures in two oldest Russian native cattle breeds revealed using high-density single nucleotide polymorphism analysis. PLoS ONE, 2020, 15(11): e0242200 CrossRef
  16. Romanov A.I. V sbornike: Trudy soveshchaniya veterinarnykh vrachei i predstavitelei zemstv [In: Proceedings of the meeting of veterinarians and representatives of zemstvos]. Perm', 1913: 11-129 (in Russ.).
  17. Puti i formy sozdaniya i sokhraneniya genofonda tsennykh lokal'nykh porod [Ways and forms of creating and preserving the gene pool of valuable local breeds]. Leningrad, 1979 (in Russ.)
  18. Kremer L.A. Tagil'skii skot [Tagil cattle]. Moscow-Leningrad, 1931 (in Russ.).
  19. Moiseeva I.G., Ukhanov S.V., Stolpovskii Yu.A. et al. Genofondy sel'skokhozyaistvennykh zhivotnykh: geneticheskie resursy zhivotnovodstva Rossii /Pod red. I.A. Zakharova [Gene pools of farm animals: genetic resources of animal husbandry in Russia. I.A. Zakharov (ed.)]. Moscow, 2006 (in Russ.).
  20. Plink: Whole genome association analysis toolset. Available: http://zzz.bwh.harvard.edu/plink/. Accessed 25.01.2017.
  21. Keenan K., McGinnity P., Cross T.F., Crozier W.W., Prodöhl P.A. diveRsity: an R package for the estimation of population genetics parameters and their associated errors. Methods in Ecology and Evolution, 2013, 4(8): 782-788 CrossRef
  22. Wickham H. ggplot2: elegant graphics for data analysis. N.-Y., 2009.
  23. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38(6): 1358-1370 CrossRef
  24. Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 2006, 23(2): 254-267 CrossRef
  25. Alexander D.H., Novembre J., Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 2009, 19(9): 1655-1664 CrossRef
  26. Francis R.M. pophelper: An R package and web app to analyse and visualise population structure. Molecular Ecology Resources, 2017, 17(1): 27-32 CrossRef
  27. R Core Team. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, 2018. Available: https://www.R-project.org/. No date.
  28. Lindholm-Perry A.K., Kuehn L.A., Smith T.P., Ferrell C.L., Jenkins T.G., Freetly H.C., Snelling W.M. A region on BTA14 that includes the positional candidate genes LYPLA1, XKR4 AND TMEM68 is associated with feed intake and growth phenotypes in cattle. Anim Genet., 2012, 43: 216-219 CrossRef
  29. Pryce J.E., Arias J., Bowman P.J., Davis S.R., Macdonald K.A., Waghorn G.C., Wales W.J., Williams Y.J., Spelman R.J., Hayes B.J.Accuracy of genomic predictions of residual feed intake and 250-day body weight in growing heifers using 625,000 single nucleotide polymorphism markers. J. Dairy Sci., 2012, 95(4): 2108-2119 CrossRef
  30. Taye M., Yoon J., Dessie T., Cho S., Oh S.J., Lee H.K., Kim H. Deciphering signature of selection affecting beef quality traits in Angus cattle. Genes Genomics, 2018, 40(1): 63-75 CrossRef
  31. Cheruiyot E.K., Bett R.C., Amimo J.O., Zhang Y., Mrode R., Mujibi F.D.N. Signatures of selection in admixed dairy cattle in Tanzania. Front. Genet., 2018, 9(607): 1-15 CrossRef
  32. De Las Heras-Saldana S., Clark S.A., Duijvesteijn N., Gondro C., van der Werf J.H.J., Chen Y. Combining information from genome-wide association and multi-tissue gene expression studies to elucidate factors underlying genetic variation for residual feed intake in Australian Angus cattle. BMC Genomics, 2019, 20(1): 939 CrossRef
  33. Grigoletto L., Ferraz J.B.S., Oliveira H.R., Eler J.P., Bussiman F.O., Abreu Silva B.C., Baldi F., Brito L.F. Genetic architecture of carcass and meat quality traits in Montana tropical composite beef cattle. Front. Genet., 2020, 11(123): 1-13 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)