PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.6.1063eng

UDC: 636.2:619:618.177-089.888.11

Acknowledgements:
The work was done within the framework of the State assignment No. 121052600344-8.

 

EMBRYO SURVIVAL TO ACCELERATE GENETIC PROGRESS IN DAIRY HERDS (review)

O.A. Skachkova , A.V. Brigida

Institute of Innovative Biotechnology in Animal Husbandry — Branch of the Ernst Federal Research Center for Animal Husbandry, 12/4, ul. Kostyakova, Moscow, 127422 Russia, e-mail oaskachkova@mail.ru ( corresponding author), brigida_86@mail.ru

ORCID:
Skachkova O.A. orcid.org/0000-0003-4960-0712
Brigida A.V orcid.org/0000-0002-0139-8087

Received July 14, 2021

 

Continuity of genetic progress and the use of advanced technologies in the breeding of highly productive livestock are the distinctive features of modern dairy cattle breeding (G.R. Wiggans et al., 2017; B.V. Sanches et al., 2019). An example of Holstein cows of North American selection indicates the achievement of genetic changes (more than 56,0 %) in animals over 50 years (1963-2013), when milk yield doubled from 6619 kg to 12662 kg (A. Garcia-Ruiz et al., 2016). Along with this, genetic improvements aimed at higher milk yields have decreased the reproductive capacity and impaired health of cows (J. Kropp et al., 2014; L. Hyun-Joo et al., 2015, B. Fessenden et al., 2020) that is a global problem (E.S. Ribeiro et al., 2012; K.J. Perkel et al., 2015). High-yielding cows are 30-50 % susceptible to mastitis, metritis, lameness and other diseases (I. Cruz et al., 2021), and the average calving rate is about 40-50 % with 90-95 % fertilization (M.G. Diskin et al., 1980; P. Humblot, 2001). The embryonic period of cows which is up to 42-45 days of gestation (J. Peippo et al., 2011) is characterized by high (up to 40 %) embryonic mortality (D.C. Wathes, 1992; K.J. Perkel et al., 2015; P. Rani et al., 2018), the multifactorial etiology of which has not yet been elucidated. Loss of genetic potential (unborn bull sires, replacement heifers, mothers of bull sires, and embryo donor cows) slows down selection process in dairy herds (M. Ptaszynska, 2009). This review focuses on the genetic predisposition of the embryo to survival as one of the important factors determining the onset and development of pregnancy of dairy cows. Blastocysts retain the ability to survive in stressful conditions of in vivo or in vitro production after cryopreservation-thawing (J.L.M. Vasconcelos et al., 2011; C. Galli, 2017; H. Erdem et al., 2020) and bisection (microsurgical division of the embryo in half for two demi-embryos) (Y. Hashiyada, 2017). The information on embryo survivability becomes more genetically founded as candidate genes associated with high embryo competence to development are found (M.C. Summers and J.D. Biggers, 2003; A. El-Sayed et al., 2006). Molecular genetic technologies make it possible to study the entire set of genes that endow the blastocyst with the ability to develop sustainably (A.M. Zolini et al., 2020), as well as epigenetic changes of gene expression patterns before and after embryo implantation (A. Gad et al., 2012; P. Humblot, 2018). It will help to develop methods for marker-assessed diagnostics of embryonic disorders, to regulate embryonic genes expression, to elevate the pregnancy rate in cows possessing economically valuable traits and, finally, to accelerate genetic progress in dairy cattle populations.

Keywords: genomic selection, transcriptomes, high-yielding cows, embryonic mortality, genetic progress, molecular genetic markers.

 

REFERENCES

  1. García-Ruiz A., Cole J.B., VanRaden P.M., Wiggans G. R., Ruiz-López F.J., Van Tassell C.P. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proceedings of the National Academy of Sciences, 2016, 113(28): 3995-4004 CrossRef
  2. Cruz I., Pereira I., Ruprechtera G., Barca J., Meikle A., Larriestra A. Clinical disease incidence during early lactation, risk factors and association with fertility and culling in grazing dairy cows in Uruguay. Preventive Veterinary Medicine, 2021, 191: 105359 CrossRef
  3. Royal M., Mann G.E., Flint A.P. Strategies for reversing the trend towards subfertility in dairy cattle. The Veterinary Journal,2000, 160(1): 53-60 CrossRef
  4. Lucy M.C. Reproductive loss in high-producing dairy cattle: where will it end? Journal of Dairy Science, 2001, 84(6): 1277-1293 CrossRef
  5. Kropp J., Peñagaricano F., Salih S.M., Khatib H. Invited review: Genetic contributions underlying the development of preimplantation bovine embryos. Journal of Dairy Science, 2014, 97(3): 1187-1201 CrossRef
  6. Hyun-Joo L., Ho-Beak Y., Harim I., Jihoo P., Yong-il C., Yeon-Seop J., Kwang-Seok K., Seok-Ki I. Survey on the incidence of reproductive disorders in dairy cattle. Journal of Embryo Transfer, 2015, 30(1): 59-64 CrossRef
  7. Fessenden B., Weigel D.J., Osterstock J., Galligan D.T., Di Croce F. Validation of genomic predictions for a lifetime merit selection index for the US dairy industry. Journal of Dairy Science, 2020, 103(11): 10414-10428 CrossRef
  8. Randel R.D., Welsh T.H. Jr. Joint alpharma-beef species symposium: interactions of feed efficiency with beef heifer reproduction development. Journal of Animal Science, 2013, 91(3): 1323-1328 CrossRef
  9. Ribeiro E.S., Galvão K.N., Thatcher W.W., Santos J.E.P. Economic aspects of applying reproductive technologies to dairy herds. Animal Reproduction, 2012, 9(3): 370-387.
  10. Perkel K.J., Tscherner A., Merrill C., Lamarre J., Madan P. The ART of selecting the best embryo: a review of early embryonic mortality and bovine tmbryo viability assessment methods. Molecular Reproduction Development, 2015, 82(11): 822-838 CrossRef
  11. Diskin M.G., Sreenan J.M. Fertilization and embryonic mortality rates in beef heifers after artificial insemination. Journal Reproduction Fertility, 1980, 59: 463-468 CrossRef
  12. Humblot P. Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality in ruminants. Theriogenology, 2001, 56(9): 1417-1433 CrossRef
  13. Wathes D.C. Embryonic mortality and the uterine environment. Journal of Endocrinology, 1992, 134(3): 321-325 CrossRef
  14. Reese S.T., Pereira M.C., Vasconcelos J.L.M., Smith M.F., Geary T.V., Peres R.F.G., Perry G.A., Pohler K.G. Markers of pregnancy: how early can we detect pregnancies in cattle using pregnancy-associated (PAGs) and microRNAs? Animal Reproduction, 2016, 13(3): 200-208 CrossRef
  15. Rani P., Dutt R., Singh G., Chandolia R.R. Embryonic mortality in cattle — a review. International Journal of Current Microbiology and Applied Sciences, 2018, 7(7): 1501-1516 CrossRef
  16. Peippo J., Machaty Z., Peter A. Terminologies for the pre-attachment bovine embryo. Theriogenology, 2011, 76(8): 1373-1379 CrossRef
  17. Zolini A.M., Block J., Rabaglino M.B., Rincon G., Hoelker M., Bromfield J.J., Salilew-Wondim D., Hansen P.J. Genes associated with survival of female bovine blastocysts produced in vivo. Cell and Tissue Research, 2020, 382: 665-678 CrossRef
  18. Bovine reproduction. In: Compendium of animal reproduction. M. Ptaszynska (ed.). Intervet International BV, 2009.
  19. Khatib H., Huang, W., Wang X., Tran, A H., Bindrim A.B., Schutzkus V., Monson R.L., Yandell B.S. Single gene and gene interaction effects on fertilization and embryonic survival rates in cattle. Journal of Dairy Science, 2009, 92(5): 2238-2247 CrossRef
  20. Santos J.E.P., Thatcher W.W., Chebel R.C., Cerri R.L.A., Galvão K.N. The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Animal Reproduction Science, 2004, 82-83: 513-535 CrossRef
  21. Watson A.J., Westhusin M.E., Winger Q.A. IGF paracrine and autocrine interactions between conceptus and oviduct. Journal of Reproduction and Fertility, 1999, 54: 303-315.
  22. Avilés M., Coy P., Rizos D. The oviduct: a key organ for the success of early reproductive events. Animal Fronttiers, 2015, 5(1): 25-31 CrossRef
  23. Rizos D., Maillo V., Lonergan P. Role of the oviduct and oviduct-derived products in ruminant embryo development. Animal Reproducrion, 2016, 13(3): 160-167 CrossRef
  24. Forde N., Spencer T.E., Bazer F.W., Song G., Roche J.F., Lonergan P. Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium. Physiological Genomics, 2010, 41(1): 53-62 CrossRef
  25. Talukder A.K., Marey M.A., Shirasuna K., Kusama K., Shimada M., Imakawa K., Miyamoto A. Roadmap to pregnancy in the first 7 days post-insemination in the cow: Immune crosstalk in the corpus luteum, oviduct, and uterus. Theriogenology, 2020, 150: 313-320 CrossRef
  26. Kues W.A., Sudheer S., Herrmann D., Carnwath J. W., Havlicek V., Besenfelder U., Lehrach H., Adjaye J., Niemann H. Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. Proceedings of the National Academy of Sciences, 2008, 105(50): 19768-19773 CrossRef
  27. Zolini A.M., Block J., Rabaglino M.B., Tríbulo P., Hoelker M., Rincon G., Bromfield J.J., Hansen P.J. Molecular fingerprint of female bovine embryos produced in vitro with high competence to establish and maintain pregnancy. Biology of Reproduction, 2020, 102(2): 292-305 CrossRef
  28. Ledoux D., Ponsart C., Grimard B., Gatien J., Deloche M.C., Fritz S., Lefebvre R., Humblot P. Sire effect on early and late embryonic death in French Holstein cattle. Animal, 2015, 9(5): 766-774 CrossRef
  29. Hansen P.J., Block J., Loureiro B., Bonilla L., Hendricks K.E.M. Effects of gamete source and culture conditions on the competence of in vitro-produced embryos for post-transfer survival in cattle. Reproduction, Fertility and Development, 2010, 22(1): 59-66 CrossRef
  30. Trasler J.M., Hales B.F., Robaire B. Paternal cyclophosphamide treatment of rats causes fetal loss and malformations without affecting male fertility. Nature, 1985, 316(6024): 144-146 CrossRef
  31. Kumaresan A., Gupta M.D., Datta T.K., Morrell J.M. Sperm DNA integrity and male fertility in farm animals: a review. Frontiers in Veterinary Science, 2020, 7: 321 CrossRef
  32. Church R.B., Shea B.F. The role of embryo transfer in cattle improvement programs. Canadian Journal of Animal Science, 1977, 57(1): 33 CrossRef
  33. Hasler J.F. Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces. Theriogenology, 2014, 81(1): 152-169 CrossRef
  34. Thomasen J.R., Willam A., Egger-Danner C., Sørensen A.C. Reproductive technologies combine well with genomic selection in dairy breeding programs. Journal of Dairy Science, 2016, 99(2): 1331-1340 CrossRef
  35. Camargo L.S.A., Viana J.H.M., Sá W.F., Ferreira A.M., Ramos A.A., Vale Filho V.R. Factors influencing in vitro embryo production. Animal Reproduction, 2006, 3(1): 19-28.
  36. Patel D., Haque N., Patel G., Chaudhari A., Madhavatar M., Bhalakiya N. Jamnesha N., Patel P. Implication of embryo transfer technology in livestock productivity. International Journal of Current Microbiology and Applied Sciences, 2018, 7: 1498-1510.
  37. Sirard M.-A. 40 years of bovine IVF in the new genomic selection context. Reproduction, 2018, 156(1): R1-R7 CrossRef
  38. Viana J. 2019 Statistics of embryo production and transfer in domestic farm animals. Embryo Technology Newsletter, 2020, 38(4): 7-26.
  39. Lonergan P., Fair T., Forde N., Rizos D. Embryo development in dairy cattle. Theriogenology, 2016, 86(1): 270-277 CrossRef
  40. Petroman I., Pacala N., Petroman C. Utilization of gestagen hormones and pituitary FSH extracts in inducing the superovulation at embryo donor cows. Journal of Food Agriculture & Environment, 2009, 7(2): 193-195.
  41. Desaulniers D.M., Lussier J.G., Gaff A.K., Bousquet D., Guilbault L.A. Follicular development and reproductive endocrinology during and after superovulation in heifers and mature cows displaying contrasting superovulatory responses. Theriogenology, 1995, 44(4): 479-497 CrossRef
  42. Bó G.A., Mapletoft R.J. Historical perspectives and recent research on superovulation in cattle. Theriogenology, 2014, 81(1): 38-48 CrossRef
  43. Naranjo-Chacón F., Montiel-Palacios F., Canseco-Sedano R., Ahuja-Aguirre C. Embryo production in middle-aged and mature Bos taurus ½ Bos indicus cows induced to multiple ovulation in a tropical environment. Tropical Animal Health and Production, 2019, 51: 2641-2644 CrossRef
  44. Wohlres-Viana S., Arashiro E.K.N., Minare T.P., Fernandes C.A.C., Grazia J.G.V., Siqueira L.G.B., Machado M.A., Viana J.H.M. Differential expression of LHCGR and its isoforms is associated to the variability in superovulation responses of Gir cattle. Theriogenology, 2019, 26: 68-74 CrossRef
  45. Bekele T., Mekuriaw E., Walelegn B. Bovine embryo transfer and its application: arwiew. Journal of Health, Medicine and Nursing, 2016, 26: 48-60.
  46. Brigida А., Skachkova О., Bykova О., Sorokin V. Comparative evaluation of the efficiency of poliovulation induction in donor cows using “FSH-super” drug with various injection schemes. Atlantis Press, 2019, 167: 491-497 CrossRef
  47. Cirit Ü., Özmen M.F., Küçükaslan İ., Köse M., Kutsal H.G., Çinar E.M. Effect of the interval from follicle aspiration to initiation of lengthened FSH treatment on follicular superstimulatory and superovulatory responses and embryo production in lactating Simmental cows. Theriogenology, 2019, 128: 218-224 CrossRef
  48. Hackett A.J., Durnford R., Mapletoft R.J., Marcus G.J. Location and status of embryos in the gential tract of superovulated cows 4 to 6 days after insemination. Theriogenology, 1993, 40(6): 1147-1153 CrossRef
  49. Seidel G.E., Elsen R.E. Embryo transfer in dairy cattle. Hoards Dairyman, 1989.
  50. Spencer T.E., Forde N., Dorniak P., Hansen T.R., Romero J.J., Lonergan P. Conceptus derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction, 2013, 146(4): 377-387 CrossRef
  51. Binelli M., Scolari S.C., Pugliesi G., Hoeck V., Gonella-Diaza A.M., Andrade S.C.S., Gasparin G.R., Coutinho L.L. The transcriptome signature of the receptive bovine uterus determined at early gestation. PLoS ONE, 2015, 10(4): e0122874 CrossRef
  52. Hsieh-Li H.M., Witte D.P., Weinstein M., Branford W., Li H., Small K., Potter S.S. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development, 1995, 121(5): 1373-1385.
  53. Kwon H.E., Taylor H.S. The role of HOX genes in human implantation. Annals of the New York Academy of Sciences, 2004, 1034 (1): 1-18 CrossRef
  54. Spell A.R., Beal W.E., Corah L.R., Lamb G.C. Evaluating recipient and embryo factors that affect pregnancy rates of embryo transfer in beef cattle. Theriogenology, 2001, 56(2): 287-297 CrossRef
  55. Sartori R., Suárez-Fernández C.A., Monson R.L., Guenther J.N., Rosa G.J.M., Wiltbank M.C. Improvement in recovery of embryos/ova using a shallow uterine horn flushing technique in superovulated Holstein heifers. Theriogenology, 2003, 60(7): 1319-1330 CrossRef
  56. Bó G.A., Mapletoft R.J. Evaluation and classification of bovine embryos. Animal Reproduction, 2013, 10(3): 344-348.
  57. Mapletoft R.J., Bo G.A. Bovine embryo transfer. In: Reviews in veterinary medicine. I. Revah (ed.). International Veterinary Information Service, 2016.
  58. Castro Neto A.S., Sanches B.V., Binelli M., Seneda M.M., Perri S.H., Garcia J.F. Improvement in embryo recovery using double uterine flushing author links open overlay panel. Theriogenology, 2005, 63(5): 1249-1255 CrossRef
  59. Quinton H. Commercial embryo transfer activity in Europe 2020. Association of embryo technology in Europe, 2020. Available: https://www.aete.eu/publications/statistics/. No date.
  60. Baruselli P.S., Souza A.H., Sá Filho M.F., Marques M.O., Sousa Sales J.N. Genetic market in cattle (Bull, AI, FTAI, MOET and IVP): financial payback based on reproductive efficiency in beef and dairy herds in Brazil. Animal Reproduction, 2018, 15(3): 247-255 CrossRef
  61. Smith A.K., Grimmer S.P. Pregnancy rates for Grade 2 embryos following administration of synthetic GnRH at the time of transfer in embryo-recipient cattle. Theriogenology, 2002, 57(8): 2083-2091 CrossRef
  62. Dochi O., Yamamoto Y., Saga H., Yoshiba N., Kano N., Maeda J., Miyata K., Yamauchi A., Tominaga K., Oda Y., Nakashima T., Inohae S. Direct transfer of bovine embryos frozen-thawed in the presence of propylene glycol or ethylene glycol under on-farm conditions in an integrated embryo transfer program. Theriogenology, 1998, 49(5): 1051-1058 CrossRef
  63. Vasconcelos J.L.M., Jardina D.T.G., Sá Filho O.G., Aragon F.L., Veras M.B. Comparison of progesterone-based protocols with gonadotropin-releasing hormone or estradiol benzoate for timed artificial insemination or embryo transfer in lactating dairy cows. Theriogenelogy, 2011, 75(6): 1153-1160 CrossRef
  64. Galli C. Achievements and unmet promises of assisted reproduction technologies in large animals: a personal perspective. Animal Reproduction, 2017, 14(3): 614-621 CrossRef
  65. Erdem H., Karasahin T., Alkan H., Dursun S., Satilmis F., Guler M. Effect of embryo quality and developmental stages on pregnancy rate during fresh embryo transfer in beef heifers. Tropical Animal Health and Production, 2020, 52: 2541-2547 CrossRef
  66. Guemra S., Santo E., Zanin R., Monzani P.S., Sovernigo T.C., Ohashi O.M., Leal C.L.V., Adona P.R. Effect of temporary meiosis block during prematuration of bovine cumulus—oocyte complexes on pregnancy rates in a commercial setting for in vitro embryo production. Theriogenology, 2014, 81(7): 982-987 CrossRef
  67. Humblot P., Bourhis D.L., Fritz S., Colleau J.J., Gonzalez C., Joly C.G., Malafosse A., Heyman Y., Amigues Y., Tissier M., Ponsart C. Reproductive technologies and genomic selection in cattle. Veterinary Medicine International, 2010: 192787 CrossRef
  68. Varga E., Kiss R., Papp A.B. In vitro maturation of porcine, bovine and equine oocytes. Literature review. Magyar Allatorvosok Lapja, 2008, 130(9): 542-549.
  69. Sirard M.-A., Richard F., Blondin P., Robert C. Contribution of the oocyte to embryo quality. Theriogenology, 2006, 65(1): 126-136 CrossRef
  70. Soto-Heras S., Paramio M.T. Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science, 2020, 132: 342-350 CrossRef
  71. Cagnone G., Sirard M.-A. The embryonic stress response to in vitro culture: insight from genomic analysis. Reproduction, 2016, 152(6): 247-261 CrossRef
  72. El-Sayed A., Hoelker M., Rings, F., Salilew D., Jennen D., Tholen E., Sirard M.A., Schellander K., Tesfaye D. Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiological Genomics, 2006, 28(1): 84-96 CrossRef
  73. Summers M.C., Biggers J.D. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Human Reproduction Update, 2003, 9(6): 557-582 CrossRef
  74. Farin P.W., Farin C.E. Transfer of bovine embryos produced in vivo or in vitro: Survival and fetal development. Biology of Reproduction, 1995, 52(3): 676-682 CrossRef
  75. Blondin P., Coenen K., Guilbault L.A., Sirard M.-A. In vitro production of bovine embryos: Developmental competence is acquired before maturation. Theriogenology, 1997, 47(5): 1061-1075 CrossRef
  76. Lonergan P., Fair T. In vitro-produced bovine embryos: dealing with the warts. Theriogenology, 2008, 69(1): 17-22 CrossRef
  77. Lonergan P., Forde N. Maternal-embryo interaction leading up to the initiation of implantation of pregnancy in cattle. Animal, 2014, 8(1): 64-69 CrossRef
  78. Suwik K., Boruszewska D., Sinderewicz E., Kowalczyk‐Zieba I., Staszkiewicz‐Chodor J., Woclawek‐Potocka I. Expression profile of developmental competence gene markers in comparison with prostaglandin F2asynthesis and action in the early- and late-cleaved pre-implantation bovine embryos. Reproduction in Domestic Animals, 2021, 56(3): 437-447 CrossRef
  79. Rizos D., Clemente M., Bermejo-Alvarez P., Fuente J., Lonergan P., Gutiérrez-Adán A. Consequences of in vitro culture conditions on embryo development and quality. Reproduction in Domestic Animals, 2008, 43(s4): 44-50 CrossRef
  80. Sanches B.V., Zangirolamo A.F., Seneda M.M. Intensive use of IVF by large-scale dairy programs. Animal Reproduction, 2019, 16(3): 394-401 CrossRef
  81. Aguila L., Treulen F., Therrien J., Felmer R., Valdivia M., Smith L.C. Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals, 2020, 10(12): 2196 CrossRef
  82. Ealy A.D., Wooldridge L.K., McCoski S.R. Post-transfer consequences of in vitro-produced embryos in cattle. Journal of Animal Science, 2019, 97(6): 2555-2568 CrossRef
  83. Pollard J.W., Leibo S.P. Chilling sensitivity of mammalian embryos. Theriogenology, 1994, 41(1): 101-106 CrossRef
  84. Rizos D., Ward F., Duffy P., Boland M.P., Lonergan P. Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Molecular Reproduction Development, 2002, 61(2): 234-248 CrossRef
  85. Canon-Beltran K., Giraldo-Giraldo J., Cajas Y.N., Beltrán-Breña P., Hidalgo C.O., Vásquez N., Leal C.L.V., Gutiérrez-Adán A., González E.M., Rizos D. Inhibiting diacylglycerol acyltransferase-1 reduces lipid biosynthesis in bovine blastocysts produced in vitro. Theriogenology, 2020, 158: 267-276 CrossRef
  86. Sanches B.V., Lunardelli P.A., Tannura J.H., Cardoso B.L., Pereira M.H.C., Gaitkoski G., Basso A.C., Arnold D.R., Seneda M.M. A new direct transfer protocol for cryopreserved IVF embryos. Theriogenology, 2016, 85(6): 1147-1151 CrossRef
  87. Wakchaure R., Ganguly S. Twinning in cattle: a review. ARC Journal of Gynecology and Obstetrics, 2016, 1(4): 1-3 CrossRef
  88. Winchester C.F. Monozygotic twin beef cattle in nutrition research. Science, 1952, 116(3002): 3.
  89. Ozil J.P. Production of identical twins by bisection of blastocysts in the cow. Journal of Reproduction and Fertility, 1983, 69(2): 463-468 CrossRef
  90. Williams T.J., Elsden R.P., Seidel G.E. Jr. Pregnancy rates with bisected bovine embryos. Theriogenology, 1984, 22(5): 521-531 CrossRef
  91. Warfield S.J., Seidel G.E. Jr., Elsden R.P. Transfer of bovine demi-embryos with and without the zone pellucid. Journal of Animal Science, 1987, 65(3): 756-761 CrossRef
  92. Matsumoto K., Miyake M., Utumi K., Iritani A. Bisection of rat, goat and cattle blastocysts by metal blade. The Japanese Journal of Animal Reproduction, 1987, 33(1): 1-5 CrossRef
  93. Ozil J.P., Heyman Y., Renard J.P. Production of monozygotic twins by micromanipulation and cervical transfer in the cow. Vet Rec., 1982, 110(6): 126-127 CrossRef
  94. Skrzyszowska, M., Smora̧g, Z., Ka̧tska, L. Demi-embryo production from hatching of zona-drilled bovine and rabbit blastocysts. Theriogenology, 1997, 48(4): 551-557 CrossRef
  95. Silva J.C.E., Diniz P., Costa L.L. Luteotrophic effect, growth and survival of whole versus half embryos and, their relationship with plasma progesterone concentrations of recipient dairy heifers. Animal Reproduction Science, 2008, 104(1): 18-27 CrossRef
  96. Iturbide A., Torres-Padilla M.-E. A cell in hand is worth two in the embryo: recent advances in 2-cell like cell reprogramming. Current Opinion in Genetics & Development, 2020, 64: 26-30 CrossRef
  97. Bredbacka P., Jaakma U., Muursepp I. Production of calves following nonsurgical transfer of fresh and refrigerated bovine demi-embryos. Agricultural and Food Science in Finland, 1996, 5(5): 521-527 CrossRef
  98. Saito S., Niemann H. In vitro and in vivo survival of bovine demi-embryos following simplified bisection and transfer of one or two halves per recipient. Journal of Reproduction Development, 1993, 39(3): 251-258 CrossRef
  99. Hashiyada Y. The contribution of efficient production of monozygotic twins to beef cattle breeding. Journal of Reproduction and Development, 2017, 63(6): 527-538 CrossRef
  100. Lopatarova M., Cech S., Krontorad P., Holy L., Hlavicov J., Dolezel R. Sex determination in bisected bovine embryos and conception rate after the transfer of female demi-embryos. Veterinarni medicina, 2008, 53(11): 595-603 CrossRef
  101. Skrzyszowska M., Smorag Z. Cell loss in bisected mouse, sheep and cow embryos. Theriogenology, 1989, 32: 115-122 CrossRef
  102. Casser E., Israel S., Boiani M. Multiplying embryos: experimental monozygotic polyembryony in mammals and its uses. The International Journal Developmental Biology, 2019, 63: 143-155 CrossRef
  103. Gladchuk I.Z., Doshchechkyn V.V. Subfertility: philosophy and methodology of the problem. Part II. Reproductive Endocrinology, 2018, 42: 8-15 CrossRef
  104. Sontag L.B., Lorincz М.С., Georg Luebeck Ε. Dynamics, stability and inheritance of somatic DNA methylation imprints. Journal of Theoretical Biology, 2006, 242(4): 890-899 CrossRef
  105. Weber W. Populations and genetic polymorphisms. Molecular Diagnosis, 1999, 4(4): 299-307 CrossRef
  106. Salehi R., Tsoi S.C.M., Colazo M.G., Ambrose D.J., Robert C., Dyck M.K. Transcriptome profiling of in-vivo produced bovine pre-implantation embryos using two-color microarray platform. Developmental Biology, 2017, 119: e53754 CrossRef
  107. Van Hoeck V., Rizos D., Gutierrez-Adan A., Pintelon I., Jorssen E., Dufort I., Sirard M.A., Verlaet A., Hermans N., Bols P.E.J., Leroy J.L.M.R. Interaction between differential gene expression profile and phenotype in bovine blastocysts originating from oocytes exposed to elevated non-esterified fatty acid concentrations. Reproduction, Fertility and Development, 2015, 27(2): 372-384 CrossRef
  108. Lee K.-F., Chow J.F.C., Xu J.S., Chan S.T.H., Ip S.M., Yeung W.S.B., Notes A. A comparative study of gene expression in murine embryos developed in vivo, cultured in vitro, and cocultured with human oviductal cells using messenger ribonucleic acid differential display. Biology of Reproduction, 2001, 64(3): 910-917 CrossRef
  109. Jones G.M., Cram D.S., Song B., Kokkali G., Pantos K., Trounson A.O. Novel strategy with potential to identify developmentally competent IVF blastocysts. Human Reproduction, 2008, 23(8): 1748-1759 CrossRef
  110. Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nature Reviews Genetics, 2016, 17: 487-500 CrossRef
  111. Wu C., Sirard M.-A. Parental effects on epigenetic programming in gametes and embryos of dairy cows. Frontiers in Genetics, 2020, 11: 557846 CrossRef
  112. Laskowski D., Humblot P., Sirard M.A., Sjunnesson Y., Jhamat N., Båge R., Andersson G. DNA methylation pattern of bovine blastocysts associated with hyperinsulinemia in vitro. Molecular Reproduction and Development, 2018, 85(7): 599-611 CrossRef
  113. Wrenzycki C., Herrmann D., Lucas-Hahn A., Korsawe K., Lemme E., Niemann H. Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reproduction, Fertility and Development, 2005, 17(2): 23-35 CrossRef
  114. Bressan F.F., De Bem T.H.C., Perecin F., Lopes F.L., Ambrosio C.E., Meirelles F.V., Miglino M.A. Unearthing the roles of imprinted genes in the placenta. Placenta, 2009; 30(10): 823-834 CrossRef
  115. Baroux C., Autran D., Gillmor C.S., Grimanelli D., Grossniklaus U. The maternal to zygotic transition in animals and plants. Cold Spring Harbor Symposia Quantitative Biology, 2008, 73: 89-100 CrossRef
  116. Dobbs K.B., Rodriguez M., Sudano M.J., Ortega M.S., Hansen P.J. Dynamics of DNA methylation during early development of the preimplantation bovine embryo. PLoS ONE, 2013, 8: 66230 CrossRef
  117. McKiernan S.H., Bavister B.D. Fertilization and early embryology: Timing of development is a critical parameter for predicting successful embryogenesis. Human Reproduction, 1994, 9(11): 2123-2129 CrossRef
  118. Soom A., Ysebaert M.T., Kruif A. Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Molecular Reproduction and Development, 1997, 47(1): 47-56 CrossRef
  119. Gad A., Hoelker M., Besenfelder U., Havlicek V., Cinar U., Rings F., Held E., Dufort I., Sirard M.-A., Schellander K., Tesfaye D. Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions. Biology of Reproduction, 2012, 87(4): 1-13 CrossRef
  120. Humblot P. From clinics to (cow) mics: a reproductive journey. Anim. Reprod., 2018, 15(3): 278-291 CrossRef
  121. Wiggans G.R., Cole J.B., Hubbard S.M., Sonstegard T.S. Genomic selection in dairy cattle: the USDA experience. Annual Review of Animal Biosciences, 2017, 5: 309-327 CrossRef
  122. McDaniel B.T., Cassell B.G. Effects of embryo transfer on genetic change in dairy cattle. Journal of Dairy Science, 1981, 64(12): 2484-2492 CrossRef
  123. Mäntysaari E.A., Koivula M., Strandén I. Symposium review: Single-step genomic evaluations in dairy cattle. Journal of Dairy Science, 2020, 103(6): 5314-5326 CrossRef
  124. Hayes B.J., Bowman P.J., Chamberlain A.J., Goddard M.E. Invited review: Genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science, 2009, 92(2): 433-443 CrossRef
  125. Hu Z.-L., Park C.A., Reecy J.M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Research, 2019, 47(D1): D701-D710 CrossRef
  126. Robert C., Nieminen J., Dufort I., Gagné D., Grant J.R., Cagnone G., Plourde D., Nivet A.L., Fournier É., Paquet É., Blazejczyk M., Rigault P., Juge N., Sirard M.A. Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays. Molecular Reproduction & Development, 2011, 78: 651-664 CrossRef
  127. Lund M.S., de Roos A.P., de Vries A.G., Druet T., Ducrocg V., Fritz S., Guillaume F., Guidbrandtsen B., Liu Z., Reents R., Schrooten C., Seefriehd F., Su G. A common reference population from four European Holstein populations increases reliability of genomic predictions. Genetics Selelection Evolution, 2011, 43(43) CrossRef
  128. Chesnais J.P., Cooper T.A., Wiggans G.R., Sargolzaei M., Pryce J.E., Miglior F. Using genomics to enhance selection of novel traits in North American dairy cattle. Journal of Dairy Science, 2016, 99(3): 2413-2427 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)