PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.6.1031eng

UDC: 636.39:575.17

Acknowledgements:
Supported financially by Russian Science Foundation (project No. 19-76-20006, analysis of SNP-markers and search for loci under selection pressure in the Karachaev goat genome; No. 21-76-20008, analysis of microsatellite and DNA markers of goat productivity)

 

GENETIC MARKERS OF GOATS (review)

M.I. Selionova1 , V.I. Trukhachev1, A-M.M. Aybazov1,
Yu.A. Stolpovsky2, N.A. Zinovieva3

1Russian State Agrarian University — Timiryazev Moscow Agricultural Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail m_selin@mail.ru ( corresponding author), rector@rgau-msha.ru, velikii-1@yandex.ru;
2Vavilov Institute of General Genetics RAS, 3, ul. Gubkina, Moscow, 119333 Russia, e-mail stolpovsky@mail.ru;
3Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail n_zinovieva@mail.ru

ORCID:
Selionova M.I. orcid.org/0000-0002-9501-8080
Stolpovsky Yu.A. orcid.org/0000-0003-2537-1900
Trukhachev V.I. orcid.org/0000-0002-4650-1893
Zinovieva N.A. orcid.org/0000-0002-6926-2055
Aybazov A-M.M. orcid.org/0000-0002-3704-3210

Received October 1, 2021

 

Goat biodiversity comprises 635 breeds from in 170 countries (https://www.fao.org/dad-is). Wide geographical distribution and positive dynamics of goat populations in recent decades are due to high adaptability to various climatic conditions and the uniqueness of goat products (I.N. Skidan et al., 2015; A.I. Erokhin et al., 2020). DNA microsatellite markers have been widely used to study genetic differentiation of goat breeds and populations in many countries (C. Wei et al., 2014; G. Mekuriaw et al., 2016). Insignificant genetic distances (FST 0.033-0.069) between goat breeds bred in Europe confirm the frequent exchange of the gene pool between them. A more significant genetic differentiation (FST 0.134-0.183) is characteristic of breeds from East and Southeast Asia due to the ecological and geographical features and the remoteness of their habitats (K. Nomura et al., 2012; G. Wang et al., 2017; P. Azhar et al., 2018). The CSN1S1, CSN1S2, CSN2, and BLG gene polymorphisms are of most interest in dairy goat breeding (N. Silanikove et al., 2010; Vorozhko I.V. et al., 2016). Eighteen allelic variants have been described in the CSN1S1 gene, eight in CSN2, and 16 in CSN3 (S. Ollier et al., 2008; T.G. Devold et al., 2010). The CSN1S1AA association with more protein in milk and less total lipids and medium chain fatty acids has been found (Y. Chilliard et al., 2006; D. Marletta et al., 2007). Goats with BLGAB genotype have longer lactation period, produce more milk with higher fat and protein contents (A.S. Shuvarikov et al., 2019). The sequencing of the goat genome (the AdaptMap project) and the development of the 52K SNP BeadChipGoat chip has expanded the search for genome regions involved in breeding (G. Tosser-Klopp et al., 2014; A. Stella et al., 2018). There is evidence that the RARA, STAT, PTX3, IL6, IL8, and DGAT1 genes are linked to dairy performance traits (P. Martin et al., 2018; D. Ilie et al., 2018). At the genomic level, the MC1R, ASIP and KIT are associated with wool fiber coloration, FGF5, EPAS1 and NOXA1 with wool productivity of goats and their high-altitude adaptation (X. Wang et al., 2016; S. Song et al., 2016; Guo J. et al., 2018). Thus, the evaluation of genetic relationships between breeds, the search for genes associated with economically important traits are promising for use in breeding programs and further development of goat breeding (L.F. Brito et al., 2016; S. Desire, 2016; A. Molina et al., 2018; T.E. Deniskova et al., 2020). However, despite certain achievements, until now, loci associated with economically important traits in goats, such as breeding characteristics, the level of down, wool and milk productivity, as well as determining resistance to diseases, remain largely unknown.

Keywords: goats, microsatellites, breeds, productivity, genetic differentiation, genetic markers, GWAS.

 

REFERENCES

  1. Skapetas B., Bampidis V. Goat production in the world: present situation and trends. Livestock Research for Rural Development, 2016, 28(11): 200
  2. Erokhin A.I., Karasev E.A., Erokhin S.A. Dinamika pogolov'ya koz i proizvodstva koz'ego moloka i myasa v mire i v Rossii. Ovtsy, kozy, sherstyanoe delo, 2020, 4: 22-25 CrossRef (in Russ.).
  3. Skidan I.N., Gulyaev A.E., Kaznacheev K.S. Voprosy pitaniya, 2015, 84(2): 81-95 (in Russ.).
  4. Shuvarikov A.S., Kanina K.A., Robkova T.O., Yurova E.A. Fermer. Povolzh'e, 2019, 7(84): 92-93 (in Russ.).
  5. Grigoryan L.N., Khatataev S.A., Sverchkova S.V. V sbornike: Ezhegodnik po plemennoi rabote v ovtsevodstve i kozovodstve v khozyaistvakh Rossiiskoi Federatsii (2005 god) [In: Yearbook on breeding sheep and goat on the farms of the Russian Federation (2005)]. Moscow, 2006: 312-313 (in Russ.).
  6. Dunin I.M., Amerkhanov Kh.A., Safina G.F., Grigoryan L.N., Khatataev S.A., Khmelevskaya G.N. Kozovodstvo Rossii i ego plemennye resursy. Ezhegodnik po plemennoi rabote v ovtsevodstve i kozovodstve v khozyaistvakh Rossiiskoi Federatsii (2019 god) [Yearbook on breeding sheep and goat on the farms of the Russian Federation (2019)]. Moscow, 2020: 323-325 (in Russ.).
  7. Novopashina S.I., Sannikov M.Yu., Khatataev S.A., Kuz'mina T.N., Khmelevskaya G.N., Stepanova N.G., Tikhomirov A.I., Marinchenko T.E. Sostoyanie i perspektivnye napravleniya uluchsheniya geneticheskogo potentsiala melkogo rogatogo skota: nauchnyi i analiticheskii obzor [State and promising ways for improving the genetic potential of small ruminants: scientific and analytical review]. Moscow, 2019 (in Russ.).
  8. Deniskova T.E., Dotsev A.V., Fornara M.S., Sermyagin A.A., Reyer H., Wimmers K., Brem G., Zinov'eva N.A. The genomic architecture of the Russian population of saanen goats in comparison with worldwide Saanen gene pool from five countries. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2020, 55(2): 285-294 CrossRef
  9. Koshkina O.A., Deniskova T.E., Zinov'eva N.A. Agrarnaya nauka Evro-Severo-Vostoka, 2020, 21(4): 355-368 CrossRef (in Russ.).
  10. Mekuriaw G., Gizaw S., Dessie T., Mwai O., Djikeng A., Tesfaye K. A review on current knowledge of genetic diversity of domestic goats (Capra hircus) identified by microsatellite loci: how those efforts are strong to support the breeding programs? Journal of Life Science and Biomedicine, 2016, 6(2): 22-32.
  11. Azhar P., Chakraborty D., Iqbal Z., Malik A., Ajaz qaudir, Asfar A., Bhat I.A. Microsatellite markers as a tool for characterization of small ruminants: a review. International Journal of Current Microbiology and Applied Sciences, 2018, 7(1): 1330-1342 CrossRef
  12. Wright S. The genetical structure of populations. Ann. Eugenics, 1951, 15: 323-354.
  13. Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 1973, 70(12): 3321-3323 CrossRef
  14. Nei M. Genetic distance between populations. The American Naturalist, 1972, 106(949): 283-392 CrossRef
  15. Wang Y., Wang J., Zi X.-D., Huatai C.-R., Ouyang X., Liu L.-S. Genetic diversity of Tibetan goats of Plateau type using microsatellite markers. Archives Animal Breeding, 2011, 54(2): 188-197 CrossRef
  16. Di R., Farhad Vahidi S.M., Ma Y.H., He X.H., Zhao Q.J., Han J.L., Guan W.J., Chu M.X., Sun W., Pu Y.P. Microsatellite analysis revealed genetic diversity and population structure among Chinese cashmere goats. Animal Genetics, 2011, 42(4): 428-431 CrossRef
  17. Kharzinova V.R., Petrov S.N., Dotsev A.V., Bezborodova N.A., Zinov'eva N.A. Ovtsy, kozy, sherstyanoe delo, 2019, 3: 7-12 (in Russ.).
  18. Selionova M.I., Aibazov M.M., Mamontova T.V., Petrov S.N., Kharzinova V.R., Dotsev A.V. Zinovieva N. A. Genetic differentiation of Russian goats and wild relatives based on microsatellite loci. Journal of Animal Science, 2020, 98(4): 19-20 CrossRef
  19. Beketov S.V., Piskunov A.K., Voronkova V.N., Petrov S.N., Kharzinova V.R., Dotsev A.V., Zinov'eva N.A., Selionova M.I., Stolpovskii Yu.A. Genetika, 2021, 57(7): 810-819 CrossRef (in Russ.).
  20. Wang G.Z., Chen S.S., Chao T.L., Ji Z.B., Hou L., Qin Z.J., Wang J.M. Analysis of genetic diversity of Chinese dairy goats via microsatellite markers. Journal of Animal Science, 2017, 95(5): 2304-2313 CrossRef
  21. Araújo A.M., Guimarães S.E.F., Machado T.M.M., Lopes P.S., Pereira C.S., Silva F.L.R., Rodrigues M.T., Columbiano V.S., da Fonseca C.G. Genetic diversity between herds of Alpine and Saanen dairy goats and the naturalized Brazilian Moxotó breed. Genetics and Molecular Biology, 2006, 29(1): 67-74 CrossRef
  22. Seilsuth S., Seo J.H., Kong H.S., Jeon G.J. Microsatellite analysis of the genetic diversity and population structure in dairy goats in Thailand. Anim. Biosci., 2016, 29(3): 327-332 CrossRef
  23. Mastrangelo S., Tolone M., Montalbano M., Tortorici L., Gerlando R., Sardina M.T., Portolano B. Population genetic structure and milk production traits in Girgentana goat breed. Animal Production Science, 2016, 57(3): 430-440 CrossRef
  24. Sardina M., Tortorici L., Mastrangelo S., Di Gerlando R., Tolone M., Portolano B. Application of  microsatellite markers as potential tools for traceability of Girgentana goat breed dairy products. Food Research International, 2015, 74: 115-122 CrossRef
  25. Wei C., Lu J., Xu L., Liu G., Wang Z., Zhang L., Zhao F., Han X., Du L., Liu C. Genetic structure of Chinese indigenous goats and the special geographical structure in the Southwest China as a geographic barrier driving the fragmentation of a large population. PLoS ONE, 2014, 9(4): e94435 CrossRef
  26. Dixit S.P., Verma N.K., Aggarwal R.A.K., Vyas M.K., Rana J., Sharma A., Tyagi P., Arya P., Ulmek B.R. Genetic diversity and relationship among Indian goat breeds based on microsatellite markers. Small Ruminant Research, 2010, 91(2): 153-159 CrossRef
  27. Nomura K., Ishii K., Dadi H., Takahashi Y., Minezawa M., Cho C.Y., Sutopo, Faruque M.O., Nyamsamba D., Amano T. Microsatellite DNA markers indicate three genetic lineages in East Asian indigenous goat populations. Animal Genetics, 2012, 43(6): 760-767 CrossRef
  28. Cañón J., García D., García-Atance M.A., Obexer-Ruff G., Lenstra J.A., Ajmone-Marsan P., Dunner S., The ECONOGENE Consortium. Geographical partitioning of goat diversity in Europe and the Middle East. Animal Genetics, 2006, 37(4): 327-334 CrossRef
  29. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38(6): 1358-1370 CrossRef
  30. Kalinowski S.T. Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conservation Genetics, 2004, 5(4): 539-543 CrossRef
  31. Nicoloso L., Bomba L., Colli L., Negrini R., Milanesi M., Mazza R., Sechi T., Frattini S., Talenti A., Coizet B., Chessa S., Marletta D., D'Andrea M., Bordonaro S., Ptak G., Carta A., Pagnacco G., Valentini A., Pilla F., Ajmone-Marsan P., Crepaldi P., the Italian Goat Consortium. Genetic diversity of Italian goat breeds assessed with a medium-density SNP chip. Genetics, Selection, Evolution, 2015, 47(1): 62 CrossRef
  32. Mdladla K., Dzomba E.F., Huson H.J., Muchadeyi F.C. Population genomic structure and linkage disequilibrium analysis of South African goat breeds using genome-wide SNP data. Animal Genetics, 2016, 47(4): 471-482 CrossRef
  33. Brito L.F., Kijas J.W., Ventura R.V., Sargolzaei M., Porto-Neto L.R., Cánovas A., Feng Z., Jafarikia M., Schenkel F.S. Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers. BMC Genomics, 2017, 18: 229 CrossRef
  34. Zhang B., Chang L., Lan Y.X., Nadeem A., Guan F.L., Fu K.D., Li B., Yan X.C., Zhang B.H., Zhang Y.X., Huang Z.A., Chen H., Yu J., Li B.S. Genome-wide definition of selective sweeps reveals molecular evidence of trait-driven domestication among elite goat (Capra species) breeds for the production of dairy, cashmere, and meat. GigaScience, 2018, 7(12): giy105 CrossRef
  35. Zonaed Siddiki A.M.A.M., Miah G., Islam M.S., Kumkum M., Rumi M.H., Baten A., Hossain M.A. Goat genomic resources: the search for genes associated with its economic traits. International Journal of Genomics, 2020, 2020(1): 5940205 CrossRef
  36. Khaertdinov R.R., Gafiatullin F.I., Afanas'ev M.P. Features of milk protein content in main species of agricultural animals. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 2: 81-85 (in Russ.).
  37. Vorozhko I.V., Skidan I.N., Chernyak O.O., Gulyaev A.E. Voprosy pitaniya, 2016, 85 (5): 13-21 (in Russ.).
  38. Barillet F. Genetic improvement for dairy production in sheep and goats. Small Ruminant Research, 2007, 70(1): 60-75 CrossRef
  39. Dodds K.G., McEwan J.C., Davis G.H. Integration of molecular and quantitative information in sheep and goat industry breeding programmes. Small Ruminant Research, 2007, 70(1): 32-41 CrossRef
  40. Marletta D., Criscione A., Bordonaro S., Guastella A.M., D’Urso G. Casein polymorphism in goat’s milk. Lait, 2008, 87(6): 491-504 CrossRef
  41. Devold T.G., Nordbø R., Langsrud T., Svenning C., Brovold M.J., Sørensen E.S., Christensen B., Ådnøy T., Vegarud G.E. Extreme frequencies of the as1-casein ‘null’ variant in milk from Norwegian dairy goats – implications for milk composition, micellar size and renneting properties. Dairy Science and Technology, 2010, 91(1): 39-51 CrossRef
  42. Ollier S., Chauvet S., Martin P., Chilliard Y., Leroux C. Goat’s as1-casein polymorphism affects gene expression profile of lactating mammary gland. Animal, 2008, 2(4): 566-573 CrossRef
  43. Jordana J., Amills M., Diaz E., Angulo C., Serradilla J.M., Sanchez A. Gene frequencies of caprine as1-casein polymorphism in Spanish goat breeds. Small Ruminant Research, 1996, 20(3): 215-221 CrossRef
  44. Enne G., Feligini M., Greppi G.F., Iametti S., Pagani S. Gene frequencies of caprine as1-casein polymorphism in dairy goats, IDF Seminar «Milk Protein Polymorphism II». Palmerston North, 1997: 275-279.
  45. Küpper J., Chessa S., Rignanese D., Caroli A., Erhardt G. Divergence at the casein haplotypes in dairy and meat goat breeds. Journal Dairy Research, 2010, 77(1): 56-62 CrossRef
  46. Chilliard Y., Rouel J., Leroux C. Goat’s alpha-s1 casein genotype influences its milk fatty acid composition and delta-9 desaturation ratios. Animal Feed Science and Technology, 2006, 131(3-4): 474-487 CrossRef
  47. Silanikove N., Leitner G., Merin U., Prosser C.G. Recent advances in exploiting goat’s milk: quality, safety and production aspects. Small Ruminant Research, 2010, 89(2): 110-124 CrossRef
  48. Wang K., Hailong Y., Xu H., Yang Q., Zhang S., Pan C., Chen H., Zhu H., Liu J., Qu L., Lan X. A novel indel within goat casein alpha S1 gene is significantly associated with litter size. Gene, 2018, 671: 161-169 CrossRef
  49. Shuvarikov A.S., Pastukh O.N., Zhukova E.V., Zhizhin N.A. Izvestiya TSKHA, 2019, 3: 130-148 CrossRef (in Russ.).
  50. Fatikhov A.G., Khaertdinov R.A., Kamaldinov I.N. Molochnokhozyaistvennyi vestnik, 2017, 1(25): 64-69 (in Russ.).
  51. Kravtsova O.A., Spiridonova S.V., Faizov T.Kh. Sposob geneticheskogo otbora molochnykh koz. Patent RU 2620977. Zayavka № 2015140586 ot 24.09.2015. Opubl. 30.05.2017 g. Byul. № 16 [Method for genetic selection of dairy goats. Patent RU 2620977. Appl. № 2015140586 24.09.2015. Publ. 30.05.2017. Bull. № 16](in Russ.).
  52. Goncharenko G.M., Grishina N.B., Khoroshilova T.S., Romanchuk I.V., Kargachakova T.B., Podkorytov N.A. Sibirskii vestnik sel'skokhozyaistvennoi nauki, 2018, 48(4): 63-71 CrossRef (in Russ.).
  53. Visscher P.M., Wray N.R., Zhang Q., Sklar P., McCarthy M.I., Brown M.A., Yang J. 10 Years of GWAS discovery: biology, function, and translation. American Journal of Human Genetics, 2017, 101(1): 5-22 CrossRef
  54. Meuwissen T., Hayes B., Goddard M. Genomic selection: a paradigm shift in animal breeding. Animai Frontiers, 2016, 6(1): 6-14 CrossRef
  55. Ibtisham F. Zhang L., Xiao M., An L., Ramzan M.B., Nawab A., Zhao Y., Li G., Xu Y. Genomic selection and its application in animal breeding. Thai Journal of Veterinary Medicine, 2017, 47(3): 301-310.
  56. Stella A., Nicolazzi E.L., Tassell C., Rothschild M., Colli L., Rosen B., Sonstegard T., Crepaldi P., Tosser-Klopp G., Joost S., the AdaptMap Consortium. AdaptMap: exploring goat diversity and adaptation. Genetics, Selection, Evolution, 2018, 50: 61 CrossRef
  57. Tosser-Klopp G., Bardou F., Bouchez O., Cabau C., Crooijmans R., Dong Y., Donnadieu-Tonon C., Eggen A., Heuven H.C.M., Jamli S., Jiken A.J., Klopp C., Lawley C.T., McEwan J., Martin P., Moreno C.R., Mulsant P., Nabihoudine I., Pailhoux E., Palhiere I., Rupp R., Sarry J., Sayre B.L., Tircazes A., Wang J., Wang W., Zhang W., the International Goat Genome Consortium. Design and characterization of a 52K SNP chip for goats. PLoS ONE, 2014, 9(1): e86227 CrossRef
  58. Rubin C.J., Megens H.-J., Barrio A.M., Maqboo K., Sayyab S., Schwochow D., Wang C., Carlborgd Ö., Jerna P., Jørgensene C.B., Archibald A.L., Fredholm M., Groenen M.A.M., Andersson L. Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences, 2012, 109(48): 19529-19536 CrossRef
  59. Rubin C.-J., Zody M.C., Eriksson J., Meadows J.R.S., Sherwood E., Webster M.T., Jiang L., Ingman M., Sharpe T., Ka S., Hallböök F., Besnier F., Carlborg O., Bed’hom B., Tixier-Boichard M., Jensen P., Siegel P., Lindblad-Toh K., Andersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 2010, 464(7288): 587-591 CrossRef
  60. Kemper K.E., Saxton S.J., Bolormaa S., Hayes B. J., Goddard M.E. Selection for complex traits leaves little or no classic signatures of selection. BMC Genomics, 2014, 15: 246 CrossRef
  61. Zhao F., McParland S., Kearney F., Du L., Berry D.P. Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genetics, Selection, Evolution,2015, 47: 49 CrossRef
  62. Xu L., Bickhart D.M., Cole J.B., Schroeder S.G., Song J., Tassell C.P., Sonstegard T.S., Liu G.E. Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Molecular Biology and Evolution, 2015, 32(3): 711-725 CrossRef
  63. Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Neto L.P., Cristobal M.S., Servin B., McCulloch R., Whan V., Gietzen K., Paiva S., Barendse W., Ciani E., Raadsma H., McEwan J., Dalrymple B. other members of the International Sheep Genomics Consortium. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 2012, 10(2): e1001258 CrossRef
  64. Kim E.-S., Elbeltagy A.R., Aboul-Naga A.M., Rischkowsky B., Sayre B., Mwacharo J.M., Rothschild M.F. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity, 2015, 116(3): 255-264 CrossRef
  65. Lachance J., Tishkoff S.A. SNP ascertainment bias in population genetic analyses: Why it is important, and how to correct it. BioEssays, 2013, 35(9): 780-786 CrossRef
  66. Mucha S., Mrode R., Coffey M., Kizilaslan M., Desire S., Conington J. Genome-wide association study of conformation and milk yield in mixed-breed dairy goats. Journal Dairy Science, 2018, 101(3): 2213-2225 CrossRef
  67. Wasike C.B., Rolf M., Silva N.C.D., Puchala R., Sahlu T., Goetsch A.L., Gipson T.A. 1683 Genome-wide association analysis of residual feed intake and milk yield in dairy goats. Journal of Animal Science, 2016, 94(5): 820 CrossRef
  68. Martin P., Palhière I., Maroteau C., Clément V., David I., Tosser Klopp G., Rupp R. Genome-wide association mapping for type and mammary health traits in French dairy goats identifies a pleiotropic region on chromosome 19 in the Saanen breed. Journal Dairy Science, 2018, 101(6): 5214-5226 CrossRef
  69. Ilie D.E., Kusza S., Sauer M., Gavojdian D. Genetic characterization of indigenous goat breeds in Romania and Hungary with a special focus on genetic resistance to mastitis and gastrointestinal parasitism based on 40 SNPs. PLoS ONE, 2018, 13(5): e0197051 CrossRef
  70. Martin P., Palhière I., Tosser-Klopp G., Rupp R. Heritability and genome-wide association mapping for supernumerary teats in French Alpine and Saanen dairy goats. Journal Dairy Science, 2016, 99(11): 8891-8900 CrossRef
  71. Desire S., Mucha S., Coffey M., Mrode R., Broadbent J., Conington J. Deriving genomic breeding values for feed intake and body weight in dairy goats. Proceedings of the World Congress on Genetics Applied to Livestock Production, 2016, 11: 818.
  72. Martin P., Palhière I., Maroteau C., Bardou P., Canale-Tabet K., Sarry J., Woloszyn F., Bertrand-Michel J., Racke I., Besir H., Rupp R., Tosser-Klopp G. A genome scan for milk production traits in dairy goats reveals two new mutations in DGAT1 reducing milk fat content. Scientific Reports, 2017, 7: 1872 CrossRef
  73. Cérillier C., Larroque H., Robert-Granié C. Comparison of joint versus purebred genomic evaluation in the French multi-breed dairy goat population. Genetics, Selection, Evolution, 2014, 46: 67 CrossRef
  74. Teissier M., Larroque H., Robert-Granié C. Weighted single-step genomic BLUP improves accuracy of genomic breeding values for protein content in French dairy goats: A quantitative trait influenced by a major gene. Genetics, Selection, Evolution, 2018, 50: 31 CrossRef
  75. Molina A., Muñoz E., Díaz C., Menéndez-Buxadera A., Ramón M., Sánchez M., Carabaño M.J., Serradilla J.M. Goat genomic selection: impact of the integration of genomic information in the genetic evaluations of the Spanish Florida goats. Small Ruminant Research, 2018, 163: 72-75 CrossRef
  76. Talenti A., Nicolazzi E.L., Chessa S., Frattini S., Moretti R., Coizet B., Nicoloso L., Colli L., Pagnacco G., Stella A., Ajmone-Marsan P., Ptak G., Crepaldi P. A method for single nucleotide polymorphism selection for parentage assessment in goats. Journal Dairy Science, 2016, 99(5): 3646-3653 CrossRef
  77. Talenti A., Palhière I., Tortereau F., Pagnacco G., Stella A., Nicolazzi E.L., Crepaldi P., Tosser-Klopp G. AdaptMap Consortium. Functional SNP panel for parentage assessment and assignment in worldwide goat breeds. Genetics, Selection, Evolution, 2018, 50: 55 CrossRef
  78. Sturm R.A., Teasdale R.D., Box N.F. Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene, 2001, 277(1-2): 49-62 CrossRef
  79. Switonski M., Mankowska M., Salamon S. Family of melanocortin receptor (MCR) genes in mammals — mutations, polymorphisms and phenotypic effects. Journal Applied Genetics, 2013, 54: 461-472 CrossRef
  80. Fontanesi L., Beretti F., Riggio V., Dall’Olio S., González E.G., Finocchiaro R., Davoli R., Russo V., Portolano B. Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences. BMC Genetics, 2009, 10: 47 CrossRef
  81. Adalsteinsson S., Sponenberg D.P., Alexieva S., Russel A.J.F. Inheritance of goat coat colors. Journal of Heredity,1994, 85(4): 267-272 CrossRef
  82. Martin P.M., Palhière I., Ricard A., Tosser-Klopp G., Rupp R. Genome wide association study identifies new loci associated with undesired coat color phenotypes in Saanen goats. PLoS ONE, 2016, 11(3): e0152426 CrossRef
  83. Norris B.J., Whan V.A. A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Research, 2008, 18(8): 1282-1293 CrossRef
  84. David V.A., Menotti-Raymond M., Wallace A.C., Roelke M., Kehler J., Leighty R., Eizirik E., Hannah S.S., Nelson G., Schäffer A.A., Connelly C.J., O'Brien S.J., Ryugo D.K. Endogenous retrovirus insertion in the KIT oncogene determines white and white spotting in domestic cats. G3 Genes|Genomes|Genetics, 2014, 4(10): 1881-1891 CrossRef
  85. Dürig N., Jude R., Holl H., Brooks S.A., Lafayette C., Jagannathan V., Leeb T. Whole genome sequencing reveals a novel deletion variant in the KIT gene in horses with white spotted coat colour phenotypes. Animal Genetics, 2017, 48(4): 483-485 CrossRef
  86. Holl H., Isaza R., Mohamoud Y., Ahmed A., Almathen F., Youcef C., Gaouar S.B.S., Antczak D.F., Brooks S.A. A frameshift mutation in KIT is associated with white spotting in the Arabian camel. Genes, 2017, 8(3): 102 CrossRef
  87. Wang X., Liu J., Zhou G., Guo J., Yan H., Niu Y., Li Y., Yuan C., Geng R., Lan X., An X., Tian X., Zhou H., Song J., Jiang Y., Chen Y. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Scientific Reports, 2016, 6: 38932 CrossRef
  88. Wang X., Cai B., Zhou J., Zhu H., Niu Y., Ma B., Yu H., Lei A., Yan H., Shen Y., Shi L., Zhao X., Hua J., Huang X., Qu L., Chen Y. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS ONE, 2016, 11(10): e0164640 CrossRef
  89. Guo J., Tao H., Li P., Li L., Zhong T., Wang L., Ma J., Chen X., Song T., Zhang H. Whole-genome sequencing reveals selection signatures associated with important traits in six goats’ breeds. Scientific Reports, 2018, 8: 10405 CrossRef
  90. Song S., Yao N., Yang M., Liu X., Dong K., Zhao Q., Pu Y., He X., Guan W., Yang N., Ma Y., Jiang L. Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Capra hircus). BMC Genomics, 2016, 17: 122 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)