PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.6.1049eng

UDC: 636.32.38:636.082:577.21

Acknowledgements:
Funded by the Ministry of Science and Higher Education of the Russian Federation (theme No. АААА-А19-119051590015-1)

 

INTRAMUSCULAR FATTY ACID COMPOSITION IN SHEEP: PHENOTYPIC VARIABILITY, HERITABILITY, AND CANDIDATE GENES(review)

S.N. Kovalchuk

Institute of Innovative Biotechnologies in Animal Husbandry — the Branch of Ernst Federal Research Center for Animal Husbandry, 12/4, ul. Kostyakova, Moscow, 127422 Russia, e-mail s.n.kovalchuk@mail.ru ( corresponding author)

ORCID:
Kovalchuk S.N. orcid.org/0000-0002-5029-0750

Received October 2, 2021

 

Sheep husbandry contributes significantly to global food production. Improving the biochemical parameters of meat is one of the urgent goals of sheep breeding programs due to the changed customers’ requirements for food quality, in particular its dietary properties. The fatty acid composition is one of the important indicators of meat quality. High concentrations of saturated fatty acids in the human diet are known to increase plasma cholesterol concentrations which increases the risk of developing diabetes, obesity, and cardiovascular disease (A.P. Simopoulos, 2001; F.B. Hu et al., 2001). Improving the dietary properties of sheep meat by breeding animals with the increased content of unsaturated fatty acids is one of the possible measures that could reduce the incidence of these diseases. In addition, intramuscular fatty acid composition affects flavor, aroma, juiciness, and tenderness of the meat and the digestibility of fat. These reasons determine the relevance of identifying genetic markers associated with intramuscular fatty acid composition in sheep and their use in sheep breeding programs. This review analyzes data on phenotypic variability, inheritance of the intramuscu-lar fatty acid composition in sheep, and candidate genes identified due to genome-wide association studies (GWAS) with DNA microarrays technology (R. Bumgarner 2013) and high-throughput RNA sequencing method (RNA-seq) applicable in studying genetic mechanisms that are involved in the formation of animal phenotypes at the gene expression level (A. Oshlack et al., 2010; K.O. Mutz et al., 2013; R. Stark et al., 2019). Research results demonstrate that the quantitative indicators of the intramuscular fatty acid composition in different breeds of sheep and the degree of heritability of this trait vary widely which indicates the possibility of changing the profiles of the fatty acid composition of mutton through the use of genetic methods in sheep breeding programs (E. Karamichou et al., 2006; H.D. Daetwyler et al., 2012; S.I. Mortimer et al., 2014; S. Bolormaa et al., 2016; G.A. Rovadoscki et al., 2017).  Summarizing GWAS и RNA-seq results, the most significant candidate genes associated with the fatty acid composition of sheep meat are i) acot11, baat, pnpla3, lclat1, isyna1, elovl6, agpat9, me1, acaca, dgat2, plcxd3, fads2, scd, cpt1a, pisd, lipg, b4galt6, acsm1, acsl1, aacs,and fasn which encode the enzymes of fat and fatty acids metabolism; ii) the genes encoding fatty acid transporters FABP3, FABP4, FABP5, SLC27A6, APOL6, and COPB2; iii) mlxipl, ppard, wnt11, foxo3, tnfaip8, npas2, fndc5, adipoq, adipor2, trhde, cidec, ccdc88c, tysnd1 and sgk2 genes which encode the transcription factors and effector proteins, regulating energy and fat metabolism (X. Miao et al., 2015; S. Bolormaa et al., 2016; L. Sun et al., 2016; G.A. Rovadoscki et al., 2017; R. Arora et al., 2019). These data allow a deeper understanding of the genetic mechanisms underlying the phenotypic variability of intramuscular fatty acid composition in sheep, which is a necessary background for successful selection strategies in sheep husbandry.

Keywords: sheep, fatty acids, genetic markers, GWAS, RNA-seq, SNP.

 

REFERENCES

  1. Ezhegodnik po plemennoi rabote v ovtsevodstve i kozovodstve v khozyaistvakh Rossiiskoi Federatsii (2020 god) /Pod redaktsiei T.A. Moroz [Yearbook on pedigree breeding in sheep and goat on the farms of the Russian Federation (2020). T.A. Moroz (ed.)]. Moscow, 2021 (in Russ.).
  2. Erokhin A.I., Karasev E.A., Yuldashbaev Yu.A. Zootekhniya, 2014, 12: 12-13 (in Russ.).
  3. Erokhin A.I., Karasev E.A., Erokhin S.A., Sycheva I.N. Ovtsy, kozy, sherstyanoe delo, 2021, 2: 20-22 CrossRef (in Russ.).
  4. Williams P. Nutritional composition of red meat. Nutrition & Dietetics, 2007, 64(s4): S113-S119 CrossRef
  5. Ikem A., Shanks B., Caldwell J., Garth J., Ahuja S. Estimating the daily intake of essential and nonessential elements from lamb m. longissimus thoracis et lumborum consumed by the population in Missouri (United States). Journal of Food Composition and Analysis, 2015, 40: 126-135 CrossRef
  6. Yehuda S., Rabinovitz S., Carasso R.L., Mostofsky D.I. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiology of Aging, 2002, 23(5): 843-853 CrossRef
  7. Bazinet R.P., Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience, 2014, 15: 771-785 CrossRef
  8. Poznyakovskii V.M. Gigienicheskie osnovy pitaniya, kachestvo i bezopasnost' pishchevykh produktov [Food hygiene, food quality and safety]. Novosibirsk, 2005 (in Russ.).
  9. Simopoulos A.P. n-3 fatty acids and human health: defining strategies for public policy. Lipids, 2001, 36(S1): S83-S89 CrossRef
  10. Hu F.B., Manson J.E., Willett W.C. Types of dietary fat and risk of coronary heart disease: a critical review. Journal of the American College of Nutrition, 2001, 20(1): 5-19 CrossRef
  11. Barba M., Czosnek H., Hadidi A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses, 2014, 6(1): 106-136 CrossRef
  12. Heather J.M., Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics, 2016, 107(1): 1-8 CrossRef
  13. Jiang Y., Xie M., Chen W., Talbot R., Maddox J.F., Faraut T., Wu C., Muzny D.M., Li Y., Zhang W., Stanton J.A., Brauning R., Barris W.C., Hourlier T., Aken B.L., Searle S.M.J., Adelson D.L., Bian C., Cam G.R., Chen Y., Cheng S., DeSilva U., Dixen K., Dong Y., Fan G., Franklin I.R., Fu S., Guan R., Highland M.A., Holder M.E., Huang G., Ingham A.B., Jhangiani S.N., Kalra D., Kovar C.L., Lee S.L., Liu W., Liu X., Lu C., Lv T., Mathew T., McWilliam S., Menzies M., Pan S., Robelin D., Servin B., Townley D., Wang W., Wei B., White S.N., Yang X., Ye C., Yue Y., Zeng P., Zhou Q., Hansen J.B., Kristensen K., Gibbs R.A., Flicek P., Warkup C.C., Jones H.E., Oddy V.H., Nicholas F.W., McEwan J.C., Kijas J., Wang J., Worley K.C., Archibald A.L., Cockett N., Xu X., Wang W., Dalrymple B.P. The sheep genome illuminates biology of the rumen and lipid metabolism. Science, 2014, 344(6188): 1168-1173 CrossRef
  14. Li X., Yang J., Shen M., Xie X.L., Liu G.J., Xu Y.X., Lv F.H., Yang H., Yang Y.L., Liu C.B., Zhou P., Wan P.C., Zhang Y.S., Gao L., Yang J.Q., Pi W.H., Ren Y.L., Shen Z.Q., Wang F., Deng J., Xu S.S., Salehian-Dehkordi H., Hehua E., Esmailizadeh A., Dehghani-Qanatqestani M., Štěpánek O., Weimann C., Erhardt G., Amane A., Mwacharo J.M., Han J.L., Hanotte O., Lenstra J.A., Kantanen J., Coltman D.W., Kijas J.W., Bruford M.W., Periasamy K., Wang X.H., Li M.H. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nature Communications, 2020, 11(1): 2815 CrossRef
  15. Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Current Protocols in Molecular Biology, 2013, 101: 22.1.1-22.1.11 CrossRef
  16. Dekkers J.C. Application of genomics tools to animal breeding. Current Genomics, 2012, 13(3): 207-212 CrossRef
  17. Koopaee H.K., Koshkoiyeh A.E. SNPs genotyping technologies and their applications in farm animals breeding programs. Brazilian Archives of Biology and Technology, 2014, 57(1): 87-95 CrossRef
  18. Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Porto Neto L.R., San Cristobal M., Servin B., McCulloch R., Whan V., Gietzen K., Paiva S., Barendse W., Ciani E., Raadsma H., McEwan J., Dalrymple B., other members of the International Sheep Genomics Consortium. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 2012, 10(2): e1001258 CrossRef
  19. Mardis E.R. The impact of next-generation sequencing technology on genetics. Trends in Genetics, 2008, 24(3): 133-141 CrossRef
  20. Mutz K.O., Heilkenbrinker A., Lönne M., Walter J.G., Stahl F. Transcriptome analysis using next-generation sequencing. Current Opinion in Biotechnology, 2013, 24(1): 22-30 CrossRef
  21. Oshlack A., Robinson M.D., Young M.D. From RNA-seq reads to differential expression results. Genome Biology, 2010, 11(12): 220 CrossRef
  22. Stark R., Grzelak M., Hadfield J. RNA sequencing: the teenage years. Nature Reviews Genetics, 2019, 20(11): 631-656 CrossRef
  23. VanRaden P.M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91(11): 4414-4423 CrossRef
  24. Goddard M.E., Hayes B.J. Genomic selection. Journal of Animal Breeding and Genetics, 2007, 124(6): 323-330 CrossRef
  25. Alekseeva A., Magomadov T., Yuldashbaev Yu. Glavnyi zootekhnik, 2018, 7: 32-37 (in Russ.).
  26. Glagoev A.Ch. Metody povysheniya produktivnosti i effektivnosti ispol'zovaniya porodnykh resursov v ovtsevodstve. Doktorskaya dissertatsiya [Methods for increasing productivity and efficiency of sheep breed resources in breeding. DSc Thesis]. Michurinsk—Naukograd, 2019 (in Russ.).
  27. Glagoev A.Ch., Negreeva A.N., Shchugoreva T.E. Tekhnologii pishchevoi i pererabatyvayushchei promyshlennosti APK — produkty zdorovogo pitaniya, 2021, 1: 137-144 (in Russ.).
  28. Erokhin A.I., Karasev E.A., Yuldashbaev Yu.A., Magomadov T.A., Medvedev M.V. Izvestiya Timiryazevskoi sel'skokhozyaistvennoi akademii, 2012, 2: 126-135 (in Russ.).
  29. Muratova V.V. Myasnaya produktivnost' i otsenka kachestva myasa molodnyaka ovets edil'baevskoi porody raznykh vesovykh kategorii. Kandidatskaya dissertatsiya [Meat productivity and meat quality assessment of young Edilbaev sheep of different weight categories. PhD Thesis]. Saratov, 2020 (in Russ.).
  30. Kipkeev M.Kh., Sel'kin I.I. Sel'skokhozyaistvennyi zhurnal, 2004, 1-1: 23-28 (in Russ.).
  31. Mugaev M.A., Khatataev S.A., Grigoryan L.N. Parameters of meat quality in young sheeps of the romanovskaya breed in connection with lambing season. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 6: 110-115 (in Russ.).
  32. Liu K., Ge S., Luo H., Yue D., Yan L. Effects of dietary vitamin E on muscle vitamin E and fatty acid content in Aohan fine-wool sheep. Journal of Animal Science and Biotechnology, 2013, 4(1): 21 CrossRef
  33. Knapik J., Ropka-Molik K., Pieszka M. Genetic and nutritional factors determining the production and quality of sheep meat — a review. Annals of Animal Science, 2017, 17(1): 23-40 CrossRef
  34. Chai J., Diao Q., Zhao J., Wang H., Deng K., Qi M., Nie M., Zhang N. Effects of rearing system on meat quality, fatty acid and amino acid profiles of Hu lambs. Animal Science Journal, 2018, 89(8): 1178-1186 CrossRef
  35. Karamichou E., Richardson R.I., Nute G.R., Gibson K.P., Bishop S.C. Genetic analyses and quantitative trait loci detection, using a partial genome scan, for intramuscular fatty acid composition in Scottish Blackface sheep. Journal of Animal Science, 2006, 84(12): 3228-3238 CrossRef
  36. Daetwyler H.D., Swan A.A., van der Werf J.H., Hayes B.J. Accuracy of pedigree and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data assessed by cross-validation. Genetics Selection Evolution, 2012, 44: 33 CrossRef
  37. Mortimer S.I., van der Werf J.H.J., Jacob R.H., Hopkins D.L., Pannier L., Pearce K.L., Gardner G.E., Warner R.D., Geesink G.H., Hocking Edwards J.E., Ponnampalam E.N., Ball A.J., Gilmour A.R., Pethick D.W. Genetic parameters for meat quality traits of Australian lamb meat. Meat Science, 2014, 96(2): 1016-1024 CrossRef
  38. Bolormaa S., Hayes B.J., van der Werf J.H., Pethick D., Goddard M.E., Daetwyler H.D. Detailed phenotyping identifies genes with pleiotropic effects on body composition. BMC Genomics, 2016, 17: 224 CrossRef
  39. Rovadoscki G.A., Pertile S.F.N., Alvarenga A.B., Cesar A.S.M., Pértille F., Petrini J., Franzo V., Soares W.V.B., Morota G., Spangler M.L., Pinto L.F.B., Carvalho G.G.P., Lanna D.P.D., Coutinho L.L., Mourão G.B. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inês sheep. BMC Genomics, 2018, 19(1): 375 CrossRef
  40. van der Werf J.H.J., Kinghorn B.P., Banks R.G. Design and role of an information nucleus in sheep breeding programs. Animal Production Science, 2010, 50(12): 998-1003 CrossRef
  41. White J.D, Allingham P.G., Gorman C.M., Emery D.L., Hynd P., Owens J., Bell A., Siddell J., Harper G., Hayes B.J., Daetwyler H.D., Usmar J., Goddard M.E., Henshall J.M., Dominik S., Brewer H., van der Werf J.H.J., Nicholas F.W., Warner R., Hofmyer C., Longhurst T., Fisher T., Swan P., Forage R., Oddy V.H. Design and phenotyping procedures for recording wool, skin, parasite resistance, growth, carcass yield and quality traits of the SheepGENOMICS mapping flock. Animal Production Science, 2012, 52(3): 157-171 CrossRef
  42. Hu Z.L., Park C.A., Reecy J.M. Developmental progress and current status of the Animal QTLdb. Nucleic Acids Research, 2016, 44(D1): D827-D833 CrossRef
  43. Hu Z.L., Park C.A., Reecy J.M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Research, 2019, 47(D1): D701-D710 CrossRef
  44. Sumara G., Sumara O., Kim J.K., Karsenty G. Gut-derived serotonin is a multifunctional determinant to fasting adaptation. Cell Metabolism, 2012, 16(5): 588-600 CrossRef
  45. Laporta J., Hernandez L.L. Serotonin receptor expression is dynamic in the liver during the transition period in Holstein dairy cows. Domestic Animal Endocrinology, 2015, 51: 65-73 CrossRef
  46. Aliesky H.A., Pichurin P.N., Chen C.R., Williams R.W., Rapoport B., McLachlan S.M. Probing the genetic basis for thyrotropin receptor antibodies and hyperthyroidism in immunized CXB recombinant inbred mice. Endocrinology, 2006, 147(6): 2789-2800 CrossRef
  47. Cavanagh C.R., Jonas E., Hobbs M., Thomson P.C., Tammen I., Raadsma H.W. Mapping quantitative trait loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL. Genetics Selection Evolution, 2010, 42(1): 36 CrossRef
  48. Hwang D. Fatty acids and immune responses-a new perspective in searching for clues to mechanism. Annual Review of Nutrition, 2000, 20: 431-456 CrossRef
  49. Muoio D.M., MacLean P.S., Lang D.B., Li S, Houmard J.A., Way J.M., Winegar D.A., Corton J.C., Dohm G.L., Kraus W.E. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR delta. Journal of Biological Chemistry, 2002, 277(29): 26089-26097 CrossRef
  50. Yen C.-L.E., Stone S.J., Koliwad S., Harris C., Farese R.V. Jr. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. Journal of Lipid Research, 2008, 49(11): 2283-2301 CrossRef
  51. Drackley J.K. Lipid metabolism. In: Farm animal metabolism and nutrition. J.P.F. D’Mello (ed.). CABI, New York, 2000.
  52. Ross S.E., Hemati N., Longo K.A., Bennett C.N., Lucas P.C., Erickson R.L., MacDougald O.A. Inhibition of adipogenesis by Wnt signaling. Science, 2000, 289(5481): 950-953 CrossRef
  53. Takada I., Kouzmenko A.P., Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nature Reviews Rheumatology, 2009, 5(8): 442-447 CrossRef
  54. Galic S., Oakhill J.S., Steinberg G.R. Adipose tissue as an endocrine organ. Molecular and Cellular Endocrinology, 2010, 316(2): 129-139 CrossRef
  55. Cristancho A.G., Lazar M.A. Forming functional fat: a growing understanding of adipocyte differentiation. Nature Reviews Molecular Cell Biology, 2011, 12: 722-734 CrossRef
  56. Waters M., Serafini T., Rothman J. 'Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature, 1991, 349: 248-251 CrossRef
  57. Kuhajda F.P., Jenner K., Wood F.D., Hennigar R.A., Jacobs L.B., Dick J.D., Pasternack G.R. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proceedings of the National Academy of Sciences, 1994, 91(14): 6379-6383 CrossRef
  58. Niture S., Gyamfi M.A., Lin M., Chimeh U., Dong X., Zheng W., Moore J., Kumar D. TNFAIP8 regulates autophagy, cell steatosis, and promotes hepatocellular carcinoma cell proliferation. Cell Death and Disease, 2020, 11(3): 178 CrossRef
  59. Huang J.M., Xian H., Bacaner M. Long-chain fatty acids activate calcium channels in ventricular myocytes. Proceedings of the National Academy of Sciences, 1992, 89(14): 6452-6456 CrossRef
  60. Xiao Y.F., Gomez A.M., Morgan J.P., Lederer W.J., Leaf A. Suppression of voltage-gated L-type Ca2+ currents by polyunsaturated fatty acids in adult and neonatal rat ventricular myocytes. Proceedings of the National Academy of Sciences, 1997, 94(8): 4182-4187 CrossRef
  61. Murphy E.F., Jewell C., Hooiveld G.J., Muller M., Cashman K.D. Conjugated linoleic acid enhances transepithelial calcium transport in human intestinal-like Caco-2 cells: an insight into molecular changes. Prostaglandins, Leukotrienes & Essential Fatty Acids, 2006, 74(5): 295-301 CrossRef
  62. Leonard A.E., Pereira S.L., Sprecher H., Huang Y.S. Elongation of long-chain fatty acids. Progress in Lipid Research, 2004, 43(1): 36-54 CrossRef
  63. Shindou H., Shimizu T. Acyl-CoA:lysophospholipid acyltransferases. Journal of Biological Chemistry, 2009, 284(1): 1-5 CrossRef
  64. Kooner J.S., Chambers J.C., Aguilar-Salinas C.A., Hinds D.A., Hyde C.L., Warnes G.R., Gómez Pérez F.J., Frazer K.A., Elliott P., Scott J., Milos P.M., Cox D.R., Thompson J.F. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nature Genetics, 2008, 40: 149-151 CrossRef
  65. Füllekrug J., Ehehalt R., Poppelreuther M. Outlook: membrane junctions enable the metabolic trapping of fatty acids by intracellular acyl-CoA synthetases. Frontiers in Physiology, 2012, 3: 401 CrossRef
  66. Arora R., Kumar N.S., Sudarshan S., Fairoze M.N., Kaur M., Sharma A., Girdhar Y.M.S.R., Devatkal S.K., Ahlawat S., Vijh R.K., Manjunatha S.S. Transcriptome profiling of longissimus thoracis muscles identifies highly connected differentially expressed genes in meat type sheep of India. PLoS ONE, 2019, 14(6): e0217461 CrossRef
  67. Fischer H., Gustafsson T., Sundberg C.J., Norrbom J., Ekman M., Johansson O., Jansson E. Fatty acid binding protein 4 in human skeletal muscle. Biochemical and Biophysical Research Communications, 2006, 346(1): 125-130 CrossRef
  68. Stern J.H., Rutkowski J.M., Scherer P.E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metabolism, 2016, 23(5): 770-784 CrossRef
  69. Li B., Zerby H.N., Lee K. Heart fatty acid binding protein is upregulated during porcine adipocyte development. Journal of Animal Science, 2007, 85(7): 1651-1659 CrossRef
  70. Coe N.R., Simpson M.A., Bernlohr D.A. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. Journal of Lipid Research, 1999, 40(5): 967-972 CrossRef
  71. Furuhashi M., Saitoh S., Shimamoto K., Miura T. Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clinical Medicine Insights: Cardiology, 2015, 8(Suppl. 3): 23-33 CrossRef
  72. Xu X., Chen W., Yu S., Fan S., Ma W. Candidate genes expression affect intramuscular fat content and fatty acid composition in Tan sheep. Genetics and Molecular Research, 2020, 19(4): GMR18550 CrossRef
  73. Wolf G. Adiponectin: a regulator of energy homeostasis. Nutrition Review, 2003, 61(8): 290-292 CrossRef
  74. Kadowaki T., Yamauchi T. Adiponectin and adiponectin receptors. Endocrine Reviews, 2005, 26(3): 439-451 CrossRef
  75. An Q.M., Zhou H.T., Hu J., Luo Y.Z., Hickford J.G. Haplotypes and sequence variation in the ovine adiponectin gene (ADIPOQ). Genes, 2015, 6(4): 1230-1241 CrossRef
  76. An Q., Zhou H., Hu J., Luo Y., Hickford J.G.H. Haplotypes of the ovine adiponectin gene and their association with growth and carcass traits in New Zealand Romney lambs. Genes, 2017, 8(6): 160 CrossRef
  77. Okumoto K., Kametani Y., Fujiki Y. Two proteases, trypsin domain-containing 1 (Tysnd1) and peroxisomal lon protease (PsLon), cooperatively regulate fatty acid β-oxidation in peroxisomal matrix. Journal of Biological Chemistry, 2011, 286(52): 44367-44379 CrossRef
  78. Li B., Qiao L., An L., Wang W., Liu J., Ren Y., Pan Y., Jing J., Liu W. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition. BMC Genomics, 2018, 19(1): 338 CrossRef
  79. Deniskova T.E., Kunz E., Medugorac I., Dotsev A.V., Brem G., Zinovieva N.A. A study of genetic mechanisms underlying the fat tail phenotype in sheep: methodological approaches and identified candidate genes (review). Agricultural Biology, 2019, 54(6): 1065-1079 CrossRef
  80. Sun L., Bai M., Xiang L., Zhang G., Ma W., Jiang H. Comparative transcriptome profiling of longissimus muscle tissues from Qianhua Mutton Merino and Small Tail Han sheep. Scientific Reports, 2016, 6: 33586 CrossRef
  81. Zimmerman A.W., Veerkamp J.H. New insights into the structure and function of fatty acid-binding proteins. Cellular and Molecular Life Sciences, 2002, 59(7): 1096-1116 CrossRef
  82. Senga S., Kobayashi N., Kawaguchi K., Ando A., Fujii H. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells. Biochimica et Biophysica Acta (BBA) — Molecular and Cell Biology of Lipids, 2018, 1863(9): 1057-1067 CrossRef
  83. Corominas J., Ramayo-Caldas Y., Puig-Oliveras A., Pérez-Montarelo D., Noguera J.L., Folch J.M., Ballester M. Polymorphism in the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs. PLoS ONE, 2013, 8(1): e53687 CrossRef
  84. Miao X., Luo Q., Qin X. Genome-wide analysis reveals the differential regulations of mRNAs and miRNAs in Dorset and Small Tail Han sheep muscles. Gene, 2015, 562(2): 188-196 CrossRef
  85. Pucci S., Zonetti M., Fisco T., Polidoro C., Bocchinfuso G., Palleschi A., Novelli G., Spagnoli L.G., Mazzarelli P. Carnitine palmitoyl transferase-1A (CPT1A): a new tumor specific target in human breast cancer. Oncotarget, 2016, 7: 19982-19996 CrossRef
  86. O’Byrne J., Hunt M.C., Rai D.K., Saeki M., Alexson S.E. The human bile acid-CoA:amino acid N-acyltransferase functions in the conjugation of fatty acids to glycine. Journal of Biological Chemistry, 2003, 278(36): 34237-34244 CrossRef
  87. Anderson C.M., Stahl A. SLC27 fatty acid transport proteins. Molecular Aspects of Medicine, 2013, 34(2-3): 516-528 CrossRef
  88. Kang D., Zhou G., Zhou S., Zeng J., Wang X., Jiang Y., Yang Y., Chen Y. Comparative transcriptome analysis reveals potentially novel roles of Homeobox genes in adipose deposition in fat-tailed sheep. Scientific Reports, 2017, 7(1): 14491 CrossRef
  89. Palmer B.R., Roberts N., Hickford J.G., Bickerstaffe R. Rapid communication: PCR-RFLP for MspI and NcoI in the ovine calpastatin gene. Journal of Animal Science, 1998, 76(5): 1499-1500 CrossRef
  90. Chizhova L.N., Karpova E.D., Surzhikova E.S., Zabelina M.V. Ovtsy, kozy, sherstyanoe delo, 2021, 2: 12-15 CrossRef (in Russ.).
  91. Aali M., Moradi-Shahrbabak H., Moradi-Shahrbabak M., Sadeghi M., Yousefi R. Association of the calpastatin genotypes, haplotypes, and SNPs with meat quality and fatty acid composition in two Iranian fat- and thin-tailed sheep breeds. Small Ruminant Research, 2017, 149: 40-51 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)