PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2021.6.1079eng

UDC: 636.2:578.2:577.212.3

 

CELLULAR AND EXTRACELLULAR LEVELS OF RETROVIRUS—HOST INTERACTIONS ON THE EXAMPLE OF THE BOVINE LEUKOSE VIRUS. 2. CRITICAL STAGES — MULTIPLICITY AND VERSATILITY (review)

V.I. Glazko1, 2, G.Yu. Kosovsky2, L.M. Fedorova2, T.T. Glazko1, 2

1Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia,e-mail vigvalery@gmail.com, tglazko@rambler.ru ( corresponding author);
2Afanas’ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, 6, ul. Trudovaya, pos. Rodniki, Ramenskii Region, Moscow Province, 140143 Russia, e-mail gkosovsky@mail.ru, felami@mail.ru

ORCID:
Glazko V.I. orcid.org/0000-0002-8566-8717
Fedorova L.M. orcid.org/0000-0002-1514-3050
Kosovsky G.Yu. orcid.org/0000-0003-3808-3086
Glazko T.T. orcid.org/0000-0002-3879-6935

Received September 7, 2021

 

The wide spread of viral infections and the ease of overcoming the species-specific barriers require the identification of critical stages in the virus interaction with multicellular organisms of mammals and the analysis of key molecular genetic systems involved. To date, a large amount of data has already been accumulated on the diversity and complexity of such systems, as well as the involvement in them the wide range of metabolic pathways. In this regard, attempts to identify some common elements that are implemented in different infectious processes are of particular relevance. This paper is such attempt made on the example of the analysis of the main events of cattle infection by bovine leukemia virus (BLV). Systems involved in the entry of BLV genetic material into the cytoplasm of host cells, the suppression of innate and adaptive immunity, as well as interactions between the genomes of the BLV provirus and the host genome are the identified critical stages. The direct participants in the reception of viral proteins are parts of some host tansmembrane systems (G.Yu. Kosovsky et al., 2017; V.I. Glazko et al., 2018; L. Bai et al., 2019; H. Sato et al., 2020). During virus reproduction in host cells, host enzymes modify virus envelope proteins by (A. De Brogniez et al., 2016; W. Assi et al., 2020). Importantly, modifications of SARS-CoV-2 spike proteins, as well as BLV envelope proteins, have a significant impact on their pathogenicity (M. Hoffmann et al., 2020). Pathogenicity and depressing effect of both BLV and SARS-CoV-2 on innate and adaptive immunity is realized in part through the activation of T regulatory cells and an increase in the expression of the growth transforming factor TGF-b (L.Y. Chang et al., 2015; G.Yu. Kosovsky et al., 2017; W. Chen et al., 2020). Intracellular mechanisms of protection against retrotranspositions, recombinations between viruses and host retrotransposons, the formation of new elements of host regulatory networks such as microRNAs, and the integration of proviral DNA into the host genome are closely related and controlled by interfering RNA (RNAi) systems with the key gene dicer1 (P.V. Maillard et al., 2019; E.Z. Poirier et al., 2021; G.Y. Kosovsky et al., 2020). These systems can provide a certain «resistance» of the host genome both to the integration of exogenous genetic material and to transpositions of own mobile genetic elements. Apparently, it is the polygenicity of the control of these critical stages of viral infection that leads to difficulties in predicting their development and developing methods for their prevention.

Keywords: bovine leukemia virus, SARS-CoV-2, HIV-1, transmembrane systems, innate and adaptive immunity, interfering RNA systems, transpositions, mobile genetic elements.

 

REFERENCES

  1. Aida Y., Murakami H., Takahashi M., Takeshima S.N. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol., 2013, 4: 328 CrossRef
  2. Kosovskii G.Yu., Glazko V.I., Andreichenko I.A., Koval’chuk S.N., Glazko T.T. The infection hazard of carriers of proviral bovine leukemia virus and its evaluation with regard to leukocytosis. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(4): 475-482 CrossRef
  3. Glazko V.I., Kosovskii G.Yu., Glazko T.T., Donnik I.M. Cellular and extracellular levels of retrovirus—host interactions on the example of the bovine leukose virus. 1. Cell penetration and integration into the host genome (review) Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(6): 1093-1106 CrossRef
  4. Kosovskii G.Yu., Glazko V.I., Koval’chuk S.N., Arkhipova A.L., Glazko T.T. Expression of NK-lysin, blvr, ifn-a and blood cell populations in cows infected by bovine leukemia virus. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(4): 785-794 CrossRef
  5. Bai L., Sato H., Kubo Y., Wada S., Aida Y. CAT1/SLC7A1 acts as a cellular receptor for bovine leukemia virus infection. FASEB J., 2019, 33(12): 14516-14527 CrossRef
  6. Sato H., Bai L., Borjigin L., Aida Y. Overexpression of bovine leukemia virus receptor SLC7A1/CAT1 enhances cellular susceptibility to BLV infection on luminescence syncytium induction assay (LuSIA). Virol J., 2020, 17(1): 57 CrossRef
  7. Gillet N., Florins A., Boxus M., Burteau C., Nigro A., Vandermeers F., Balon H., Bouzar A.B., Defoiche J., Burny A., Reichert M., Kettmann R., Willems L. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology, 2007, 4: 18 CrossRef
  8. Manel N., Kim F.J., Kinet S., Taylor N., Sitbon M., Battini J.L. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell, 2003, 115(4): 449-459 CrossRef
  9. Ghezzi P.C., Dolcini G.L., Gutiérrez S.E., Bani P.C., Torres J.O., Arroyo G.H., Esteban E.N. Virus de la leucosis bovina (BLV): prevalencia en la Cuenca Lechera Mar y Sierras entre 1994 y 1995 [Bovine leukemia virus (BLV): prevalence in the Cuenca Lechera Mar y Sierras from 1994 to 1995]. Revista Argentina de Microbiologia, 1997, 29(3): 37-146 (in Span.">CrossRef
  10. Jones K.S., Petrow-Sadowski C., Bertolette D.C., Huang Y., Ruscetti F.W. Heparan sulfate proteoglycans mediate attachment and entry of human T-cell leukemia virus type 1 virions into CD4+ T cells. J. Virol., 2005, 79(20): 12692-12702 CrossRef
  11. Mueckler M. Facilitative glucose transporters. European Journal of Biochemistry, 1994, 219(3): 713-725 CrossRef
  12. Albritton L.M., Tseng L., Scadden D., Cunningham J.M. A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell, 1989, 57(4): 659-666 CrossRef
  13. Kim J.W., Closs E.I., Albritton L.M., Cunningham J.M. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature, 1991, 352(6337): 725-728 CrossRef
  14. Wang H., Kavanaugh M.P., North R.A., Kabat D. Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature, 1991, 352(6337): 729-731 CrossRef
  15. Albritton L.M., Kim J.W., Tseng L., Cunningham J.M. Envelope-binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses. J. Virol., 1993, 67(4): 2091-2096 CrossRef
  16. Yoshimoto T., Yoshimoto E., Meruelo D. Identification of amino acid residues critical for infection with ecotropic murine leukemia retrovirus. J. Virol., 1993, 67(3): 1310-1314 CrossRef
  17. Bae E.H., Park S.H., Jung Y.T. Role of a third extracellular domain of an ecotropic receptor in Moloney murine leukemia virus infection. J. Microbiol., 2006, 44(4): 447-452.
  18. Kakoki K., Shinohara A., Izumida M., Koizumi Y., Honda E., Kato G., Igawa T., Sakai H., Hayashi H., Matsuyama T., Morita T., Koshimoto C., Kubo Y. Susceptibility of muridae cell lines to ecotropic murine leukemia virus and the cationic amino acid transporter 1 viral receptor sequences: implications for evolution of the viral receptor. Virus Genes, 2014, 48(3): 448-456 CrossRef
  19. Matsuura R., Inabe K., Otsuki H., Kurokawa K., Dohmae N., Aida Y. Three YXXL sequences of a bovine leukemia virus transmembrane protein are independently required for fusion activity by controlling expression on the cell membrane. Viruses, 2019, 11(12): 1140 CrossRef
  20. Vonèche V., Callebaut I., Kettmann R., Brasseur R., Burny A., Portetelle D. The 19-27 amino acid segment of gp51 adopts an amphiphilic structure and plays a key role in the fusion events induced by bovine leukemia virus. Journal of Biological Chemistry, 1992, 267(21): 15193-15197 CrossRef
  21. Johnston E.R., Radke K. The SU and TM envelope protein subunits of bovine leukemia virus are linked by disulfide bonds, both in cells and in virions. J. Virol., 2000, 74: 2930-2935 CrossRef
  22. Reth M. Antigen receptor tail clue. Nature, 1989, 338: 383-384 CrossRef
  23. Inabe K., Nishizawa M., Tajima S., Ikuta K., Aida Y. The YXXL sequences of a transmembrane protein of bovine leukemia virus are required for viral entry and incorporation of viral envelope protein into virions. J. Virol., 1999, 73(2): 1293-1301 CrossRef
  24. Ohno H., Stewart J., Fournier M.C., Bosshart H., Rhee I., Miyatake S., Saito T., Gallusser A., Kirchhausen T., Bonifacino J.S. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science, 1995, 269: 1872-1875 CrossRef
  25. Mettlen M., Chen P.H., Srinivasan S., Danuser G., Schmid S.L. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem., 2018, 87: 871-896 CrossRef
  26. Boge M., Wyss S., Bonifacino J.S., Thali M. A membrane-proximal tyrosine-based signal mediates internalization of the HIV-1 Envelope glycoprotein via interaction with the AP-2 clathrin adaptor. J. Biol. Chem., 1998, 273: 15773-15778 CrossRef
  27. Yuste E., Reeves J.D., Doms R.W., Desrosiers R.C. Modulation of Env content in virions of simian immunodeficiency virus: correlation with cell surface expression and virion infectivity. J. Virol., 2004, 78: 6775-6785 CrossRef
  28. Delamarre L., Pique C., Rosenberg A.R., Blot V., Grange M.P., Le Blanc I., Dokhélar M.C. The Y-S-L-I tyrosine-based motif in the cytoplasmic domain of the human T-cell leukemia virus type 1 envelope is essential for cell-to-cell transmission. J. Virol., 1999, 73(11): 9659-9663 CrossRef
  29. Lambele M., Labrosse B., Roch E., Moreau A., Verrier B., Barin F., Roingeard P., Mammano F., Brand D. Impact of natural polymorphism within the gp41 cytoplasmic tail of human immunodeficiency virus type 1 on the intracellular distribution of Envelope glycoproteins and viral assembly. J. Virol., 2007, 81: 125-140 CrossRef
  30. Willems L., Gatot J.S., Mammerickx M., Portetelle D., Burny A., Kerkhofs P., Kettmann R. The YXXL signalling motifs of the bovine leukemia virus transmembrane protein are required for in vivo infection and maintenance of high viral loads. J. Virol., 1995, 69(7): 4137-4141 CrossRef
  31. De Brogniez A., Mast J., Willems L. Determinants of the bovine leukemia virus envelope glycoproteins involved in infectivity, replication and pathogenesis. Viruses, 2016, 8: 88 CrossRef
  32. De Brogniez A., Bouzar A.B., Jacques J.-R., Cosse J.-P., Gillet N., Callebaut I., Reichert M., Willems L. Mutation of a single envelope N-linked glycosylation site enhances the pathogenicity of bovine leukemia virus. J. Virol., 2015, 89: 8945-8956 CrossRef
  33. Rizzo G., Forti K., Serroni A., Cagiola M., Baglivo S., Scoccia E., De Giuseppe A. Single N-glycosylation site of bovine leukemia virus SU is involved in conformation and viral escape. Vet. Microbiol., 2016, 197: 21-26 CrossRef
  34. Mamoun R.Z., Morisson M., Rebeyrotte N., Busetta B., Couez D., Kettmann R., Hospital M., Guillemain B. Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins. J. Virol., 1990, 64: 4180-4188 CrossRef
  35. Pikora C. Glycosylation of the ENV spike of primate immunodeficiency viruses and antibody neutralization. Curr. HIV Res., 2004, 2: 243-254 CrossRef
  36. Aguilar H.C., Matreyek K.A., Filone C.M., Hashimi S.T., Levroney E.L., Negrete O.A., Bertolotti-Ciarlet A., Choi D.Y., McHardy I., Fulcher J.A., Su S.V., Wolf M.C., Kohatsu L., Baum L.G., Lee B. N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. J. Virol., 2006, 80: 4878-4889 CrossRef
  37. Wei X., Decker J.M., Wang S., Hui H., Kappes J.C., Wu X., Salazar-Gonzalez J.F., Salazar M.G., Kilby J.M., Saag M.S., Komarova N.L., Nowak M.A., Hahn B.H., Kwong P.D., Shaw G.M. Antibody neutralization and escape by HIV-1. Nature, 2003, 422: 307-312 CrossRef
  38. Assi W., Hirose T., Wada S., Matsuura R., Takeshima S.N., Aida Y. PRMT5 is required for bovine leukemia virus infection in vivo and regulates BLV gene expression, syncytium formation, and glycosylation in vitro. Viruses, 2020, 12(6): 650 CrossRef
  39. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N, Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2): 271-280.e8. CrossRef
  40. Lee I.H., Lee J.W., Kong S.W. A survey of genetic variants in SARS-CoV-2 interacting domains of ACE2, TMPRSS2 and TLR3/7/8 across populations. Infect. Genet. Evol., 2020, 85: 104507 CrossRef
  41. Lei W., Liang Q., Jing L., Wang C., Wu X., He H. BoLA-DRB3 gene polymorphism and FMD resistance or susceptibility in Wanbei cattle. Mol. Biol. Rep.,2012, 39: 9203-9209 CrossRef
  42. Yoshida T., Mukoyama H., Furuta H., Kondo Y., Takeshima S.N., Aida Y., Kosugiyama M., Tomogane H. Association of the amino acid motifs of BoLA-DRB3 alleles with mastitis pathogens in Japanese Holstein cows. Anim. Sci. J., 2009, 80: 510-519 CrossRef
  43. Morales J.P.A., López-Herrera A., Zuluaga J.E. Association of BoLA DRB3 gene polymorphisms with BoHV-1 infection and zootechnical traits. Open Vet. J.,2020, 10: 331-339 CrossRef
  44. Takeshima S.-N., Ohno A., Aida Y. Bovine leukemia virus proviral load is more strongly associated with bovine major histocompatibility complex class II DRB3 polymorphism than with DQA1 polymorphism in Holstein cow in Japan. Retrovirology,2019, 16: 1-6 CrossRef
  45. Miyasaka T., Takeshima S.-N., Jimba M., Matsumoto Y., Kobayashi N., Matsuhashi T., Sentsui H., Aida Y. Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle. Tissue Antigens,2012, 81: 72-82 CrossRef
  46. Udina I.G., Karamysheva E.E., Turkova S.O., Orlova A.R., Sulimova G.E. Genetic mechanisms of resistance and susceptibility to leukemia in Ayrshire and Black Pied cattle breeds determined by allelic distribution of gene Bola-DRB3. Russ. J. Genet.,2003, 39: 306-317 CrossRef
  47. Lewin H.A. Bernoco D. Evidence for BoLA-linked resistance and susceptibility to subclinical progression of bovine leukaemia virus infection. Anim. Genet., 1986, 17(3): 197-207 CrossRef
  48. Lewin H.A. Disease resistance and immune response genes in cattle: strategies for their detection and evidence of their existence. J. Dairy Sci., 1989, 72(5): 1334-1348 CrossRef
  49. Forletti A., Lützelschwab C.M., Cepeda R., Esteban E.N., Gutiérrez S.E. Early events following bovine leukaemia virus infection in calves with different alleles of the major histocompatibility complex DRB3 gene. Vet. Res.,2020, 51: 4 CrossRef
  50. Jimba M., Takeshima S.N., Murakami H., Kohara J., Kobayashi N., Matsuhashi T., Ohmori T., Nunoya T., Aida Y. BLV-CoCoMo-qPCR: a useful tool for evaluating bovine leukemia virus infection status. BMC Vet. Res.,2012, 8: 167 CrossRef
  51. Lo C.-W., Borjigin L., Saito S., Fukunaga K., Saitou E., Okazaki K., Mizutani T., Wada S., Takeshima S.-n., Aida Y. BoLA-DRB3 polymorphism is associated with differential susceptibility to bovine leukemia virus-induced lymphoma and proviral load. Viruses,2020, 12: 352 CrossRef
  52. Rosewick N., Durkin K., Artesi M.M., Marçais A.A., Hahaut V.V., Griebel P., Arsic N.N., Avettand-Fenoel V., Burny A., Charlier C.C., Hermine O., Georges M., Van den Broeke A. Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nat. Commun.,2017, 8: 15264 CrossRef
  53. Gillet N.A., Gutiérrez G., Rodriguez S.M., De Brogniez A., Renotte N., Alvarez I., Trono K., Willems L. Massive depletion of bovine leukemia virus proviral clones located in genomic transcriptionally active sites during primary infection. PLoS Pathog.,2013, 9: e1003687 CrossRef
  54. Safari R., Hamaidia M., de Brogniez A., Gillet N., Willems L. Cis-drivers and trans-drivers of bovine leukemia virus oncogenesis. Current Opinion in Virology, 2017, 26: 15-19 CrossRef
  55. Ohnuki N., Kobayashi T., Matsuo M., Nishikaku K., Kusama K., Torii Y., Inagaki Y., Hori M., Imakawa K., Satou Y. A target enrichment high throughput sequencing system for characterization of BLV whole genome sequence, integration sites, clonality and host SNP. Sci. Rep., 2021, 11(1): 4521 CrossRef
  56. Murakami H., Yamada T., Suzuki M., Nakahara Y., Suzuki K., Sentsui H. Bovine leukemia virus integration site selection in cattle that develop leukemia. Virus Res., 2011, 156(1-2): 107-112 CrossRef
  57. Miyasaka T., Oguma K., Sentsui H. Distribution and characteristics of bovine leukemia virus integration sites in the host genome at three different clinical stages of infection. Arch. Virol., 2015, 160: 39-46 CrossRef
  58. Lo C.W., Takeshima S.N., Okada K., Saitou E., Fujita T., Matsumoto Y., Wada S., Inoko H., Aida Y. Association of bovine leukemia virus-induced lymphoma with BoLA-DRB3 polymorphisms at DNA, amino acid, and binding pocket property levels. Pathogens, 2021, 10(4): 437 CrossRef
  59. Miyazato P., Katsuya H., Fukuda A., Uchiyama Y., Matsuo M., Tokunaga M., Hino S., Nakao M., Satou Y. Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome. Sci. Rep., 2016, 6: 28324 CrossRef
  60. Rosewick N., Hahaut V., Durkin K., Artesi M., Karpe S., Wayet J., Griebel P., Arsic N., Marçais A., Hermine O., Burny A., Georges M., Van den Broeke A. An improved sequencing-based bioinformatics pipeline to track the distribution and clonal architecture of proviral integration sites. Front Microbiol., 2020, 11: 587306 CrossRef
  61. Pluta A., Jaworski J.P., Douville R.N. Regulation of Expression and latency in BLV and HTLV. Viruses, 2020, 12(10): 1079 CrossRef
  62. Arainga M., Takeda E., Aida Y. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genomics, 2012, 13: 121 CrossRef
  63. Arainga M., Murakami H. Aida Y. Visualizing spatiotemporal dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1 Tax and insights into gene expression changes using microarray-based gene expression analysis. BMC Genomics, 2012, 13: 275 CrossRef
  64. Pierard V., Guiguen A., Colin L., Wijmeersch G., Vanhulle C., Van Driessche B., Dekoninck A., Blazkova J., Cardona C., Merimi M., Vierendeel V., Calomme C., Nguyên T.L., Nuttinck M., Twizere J.C., Kettmann R., Portetelle D., Burny A., Hirsch I., Rohr O., Van Lint C. DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription factor binding. J. Biol. Chem., 2010, 285(25): 19434-19449 CrossRef
  65. Fu J., Qu Z., Yan P., Ishikawa C., Aqeilan R.I., Rabson A.B., Xiao G. The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood, 2011, 117(5): 1652-1661 CrossRef
  66. Huguet C., Crepieux P., Laudet V. Rel/NF-kappa B transcription factors and I kappa B inhibitors: evolution from a unique common ancestor. Oncogene, 1997, 15(24): 2965-2974 CrossRef
  67. Arainga M., Takeda E., Aida Y. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genomics, 2012, 13: 121 CrossRef
  68. Lendez P.A., Passucci J.A., Poli M.A., Gutierrez S.E., Dolcini G.L., Ceriani M.C. Association of TNF-a gene promoter region polymorphisms in bovine leukemia virus (BLV)-infected cattle with different proviral loads. Arch. Virol., 2015, 160(8): 2001-2007 CrossRef
  69. Kosovskii G.Yu., Glazko V.I., Koval’chuk S.N., Glazko T.T. Changes in leukocyte and erythrocyte blood profile and parameters under a combined Anaplasma marginaleand Bovine leukemia virus infection in cattle Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2017, 52(2): 391-400 CrossRef
  70. Chang L.Y., Lin Y.C., Chiang J.M., Mahalingam J., Su S.H., Huang C.T., Chen W.T., Huang C.H., Jeng W.J., Chen Y.C., Lin S.M., Sheen I.S., Lin C.Y. Blockade of TNF-a signaling benefits cancer therapy by suppressing effector regulatory T cell expansion. Oncoimmunology, 2015, 4(10): e1040215 CrossRef
  71. Ohira K., Nakahara A., Konnai S., Okagawa T., Nishimori A., Maekawa N., Ikebuchi R., Kohara J., Murata S., Ohashi K. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells. Immun. Inflamm. Dis., 2016, 4(1): 52-63 CrossRef
  72. Vlasova A.N., Saif L.J. Bovine Immunology: implications for dairy cattle. Front. Immunol., 2021, 12: 643206 CrossRef
  73. Tao S.C., Yuan T., Rui B.Y., Zhu Z.Z., Guo S.C., Zhang C.Q. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics, 2017, 7(3): 733-750 CrossRef
  74. Safari R., Jacques J.R., Brostaux Y., Willems L. Ablation of non-coding RNAs affects bovine leukemia virus B lymphocyte proliferation and abrogates oncogenesis. PLoS Pathog., 2020, 16(5): e1008502 CrossRef
  75. Zhang X., Ma X., Jing S., Zhang H., Zhang Y. Non-coding RNAs and retroviruses. Retrovirology, 2018, 15(1): 20 CrossRef
  76. Durkin K., Rosewick N., Artesi M., Hahaut V., Griebel P., Arsic N., Burny A., Georges M., Van den Broeke A. Characterization of novel Bovine Leukemia Virus (BLV) antisense transcripts by deep sequencing reveals constitutive expression in tumors and transcriptional interaction with viral microRNAs. Retrovirology, 2016, 13(1): 33 CrossRef
  77. Pluta A., Blazhko N.V., Ngirande C., Joris T., Willems L., Kuzmak J. Analysis of nucleotide sequence of Tax, miRNA and LTR of bovine leukemia virus in cattle with different levels of persistent lymphocytosis in Russia. Pathogens, 2021, 10: 246 CrossRef
  78. Herbert K.M., Nag A. A tale of two RNAs during viral infection: how viruses antagonize mRNAs and small non-coding RNAs in the host cell. Viruses, 2016, 8(6): 154 CrossRef
  79. Kincaid R.P., Chen Y., Cox J.E., Rethwilm A., Sullivan C.S. Noncanonical microRNA (miRNA) biogenesis gives rise to retroviral mimics of lymphoproliferative and immunosuppressive host miRNAs. mBio,2014, 5(2): e00074-14 CrossRef
  80. Ojha C.R., Rodriguez M., Dever S.M., Mukhopadhyay R., El-Hage N. Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections. J. Biomed. Sci., 2016, 23(1): 74 (doi 10.1186/s12929-016-0292-x">CrossRef
  81. Te Pas M.F., Madsen O., Calus M.P., Smits M.A. The importance of endophenotypes to evaluate the relationship between genotype and external phenotype. Int. J. Mol. Sci., 2017, 18(2): 472 CrossRef
  82. Braud M., Magee D.A., Park S.D.E., Sonstegard T.S., Waters S.M., MacHugh D.E., Spillane C. Genome-wide microRNA binding site variation between extinct wild aurochs and modern cattle identifies candidate microRNA-regulated domestication genes. Front. Genet., 2017, 8: 3 CrossRef
  83. Do D.N., Li R., Dudemaine P.L., Ibeagha-Awemu E.M. MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data. Sci. Rep., 2017, 7: 44605 CrossRef
  84. Wang D., Liang G., Wang B., Sun H., Liu J., Guan L.L. Systematic microRNAome profiling reveals the roles of microRNAs in milk protein metabolism and quality: insights on low-quality forage utilization. Sci. Rep., 2016, 6: 21194 CrossRef
  85. Derse D., Casey J.W. Two elements in the bovine leukemia virus long terminal repeat that regulate gene expression. Science,1986, 231: 1437-1440 CrossRef
  86. Van Driessche B., Rodari A., Delacourt N., Fauquenoy S., Vanhulle C., Burny A., Rohr O,. Van Lint C. Characterization of new RNA polymerase III and RNA polymerase II transcriptional promoters in the Bovine Leukemia Virus genome. Sci. Rep., 2016, 6: 31125 CrossRef
  87. Tan B.J., Sugata K., Reda O., Matsuo M., Uchiyama K., Miyazato P., Hahaut V., Yamagishi M., Uchimaru K., Suzuki Y., Ueno T., Suzushima H., Katsuya H., Tokunaga M., Uchiyama Y., Nakamura H., Sueoka E., Utsunomiya A., Ono M., Satou Y. HTLV-1 infection promotes excessive T cell activation and transformation into adult T cell leukemia/lymphoma. J. Clin. Invest., 2021, 131(24): e150472 CrossRef
  88. Rosewick N., Momont M., Durkin K., Takeda H., Caiment F., Cleuter Y., Vernin C., Mortreux F., Wattel E., Burny A., Georges M., Van den Broeke A. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proceedings of the National Academy of Sciences,2013, 110(6): 2306-2311 CrossRef
  89. Kincaid R.P., Burke J.M., Sullivan C.S. RNA virus microRNA that mimics a B-cell oncomiR. Proceedings of the National Academy of Sciences, 2012, 109(8): 3077-3082 CrossRef
  90. Olive V., Jiang I., He L. mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int. J. Biochem .Cell Biol.,2010, 42(8): 1348-1354 CrossRef
  91. Tajima S., Zhuang W.Z., Kato M.V., Okada K., Ikawa Y., Aida Y. Function and conformation of wild-type p53 protein are influenced by mutations in bovine leukemia virus-induced B-cell lymphosarcoma. Virology, 1998, 243: 235-246 CrossRef
  92. Dequiedt F., Kettmann R., Burny A., Willems L. Mutations in the p53 tumor-suppressor gene are frequently associated with bovine leukemia virus-induced leukemogenesis in cattle but not in sheep. Virology,1995, 209: 676-683 CrossRef
  93. Konnai S., Usui T., Ikeda M., Kohara J., Hirata T.-I., Okada K., Ohashi K., Onuma M. Tumor necrosis factor-alpha genetic polymorphism may contribute to progression of bovine leukemia virus-infection. Microbes Infect., 2006, 8: 2163-2171 CrossRef
  94. Bai L., Hirose T., Assi W., Wada S., Takeshima S.-N., Aida Y. Bovine leukemia virus infection affects host gene expression associated with DNA mismatch repair. Pathogens,2020, 9: 909 CrossRef
  95. Assi W., Hirose T., Wada S., Matsuura R., Takeshima S.-N., Aida Y. PRMT5 is required for bovine leukemia virus infection in vivo and regulates BLV gene expression, syncytium formation, and glycosylation in vitro. Viruses, 2020, 12: 650 CrossRef
  96. Frie M.C., Droscha C.J., Greenlick A.E., Coussens P.M. MicroRNAs encoded by bovine leukemia virus (BLV) are associated with reduced expression of B cell transcriptional regulators in dairy cattle naturally infected with BLV. Front. Vet. Sci., 2018, 4: 245 CrossRef
  97. Bello-Morales R., Andreu S., Ripa I., López-Guerrero J.A. HSV-1 and endogenous retroviruses as risk factors in demyelination. Int. J. Mol. Sci., 2021, 22(11): 5738 CrossRef
  98. Elsik C.G., Tellam R.L., Worley K.C. The genome sequence of taurine cattle: a window to ruminant biology and evolution. By the bovine genome sequencing and analysis consortium. Science, 2009, 324(5926): 522-528 CrossRef
  99. Gallus S., Kumar V., Bertelsen M.F., Janke A., Nilsson M.A. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla). Gene, 2015, 571(2): 271-278 CrossRef 
  100. Ivancevic A.M., Kortschak R.D., Bertozzi T., Adelson D.L. Horizontal transfer of BovB and L1 retrotransposons in eukaryotes. Genome Biol., 2018, 19(1): 85 CrossRef
  101. Glazko V.I., Gladyr E.A., Feofilov A.V., Bardukov N.V., Glazko T.T. ISSR-PCR and mobile genetic elements in genomes of farm mammalian species. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2013, 2: 71-76 CrossRef
  102. Kosovsky G.Y., Glazko V.I., Arkhipov A.V.,  Petrova I.O., Glazko T.T. Dairy cattle population-specific genetic differentiation based on ISSR-PCR markers. Russ. Agricult. Sci., 2014, 40: 463-466 CrossRef
  103. Glazko V.I., Kosovskii G.Yu., Tagmazyan A.A., Glazko T.T. Zhivye i biokosnye sistemy, 2017, 20: article 9 (in Russ.).
  104. Glazko V.I., Kosovskii G.Yu., Koval'chuk S.N., Arkhipov A.V., Petrova I.O., Dedovich G.O., Glazko T.T. Innovatsionnye tekhnologii v meditsine, 2014, 2(3): 63-79 (in Russ.).
  105. Glazko V.I., Kosovskii G.Yu., Koval'chuk S.N., Glazko T.T. Vestnik RAEN, 2015, 15(1): 75-81 (in Russ.).
  106. Babii A.V., Koval'chuk S.N., Glazko T.T., Glazko V.I., Kosovskii G.I. Functional insights into genic neighbourhood organization of helitron transposons in Bos taurus genomes. Journal of Siberian Federal University. Biology, 2018, 11(1): 60-74 CrossRef
  107. Babii A., Kovalchuk S., Glazko T., Kosovsky G., Glazko V. Helitrons and retrotransposons are co-localized in Bos taurus genomes. Curr. Genomics, 2017, 18(3): 278-286 CrossRef
  108. Glazko V., Kosovsky G., Glazko T. High density of transposable elements in sequenced sequences in cattle genomes, associated with AGC microsatellites. Global Advanced Research Journal of Agricultural Science, 2018, 7(2): 034-045e.
  109. Cohen J. Do coronavirus genes slip into human chromosomes? Science, 2021, 372(6543): 674-675 CrossRef
  110. Yin Y., Liu X.Z., He X., Zhou L.Q. Exogenous coronavirus interacts with endogenous retrotransposon in human cells. Front. Cell Infect. Microbiol., 2021, 11: 609160 CrossRef
  111. Maillard P.V., van der Veen A.G., Poirier E.Z., Reis e Sousa C. Slicing and dicing viruses: antiviral RNA interference in mammals. The EMBO Journal, 2019, 38(8): e100941 CrossRef
  112. Poirier E.Z., Buck M.D., Chakravarty P., Carvalho J., Frederico B., Cardoso A., Healy L., Ulferts R., Beale R., Reis E Sousa C. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science, 2021, 373(6551): 231-236 CrossRef
  113. Kosovsky G.Y., Glazko V.I., Glazko G.V., Zybaylov B.L., Glazko T.T. Leukocytosis and expression of bovine leukemia virus microRNAs in cattle. Front. Vet. Sci., 2020, 7: 272 CrossRef
  114. Duffy S., Shackelton L.A., Holmes E.C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet., 2008, 9(4): 267-276 CrossRef
  115. Glazko V.I., Glazko T.T. Nanotekhnologii i okhrana zdorov'ya, 2013, 5(1): 40-54 (in Russ.).
  116. Glazko V.I., Kosovsky G.Y. Structure of genes coding the envelope proteins of the avian influenza a virus and bovine leucosis virus. Russ. Agricult. Sci., 2013, 39: 511-515 CrossRef
  117. Samuilenko A.Ya., Kosovskii G.Yu., Grin' S.A., Sinkovets S.M., Glazko T.T., Glazko V.I. MaterialyMezhdunarodnoinauchno-prakticheskoikonferentsii, posvyashchennoi 45-letiyu instituta VNITIBP «Nauchnye osnovy proizvodstva i obespecheniya kachestva biologicheskikh preparatov dlya APK» [Proc. Int. Conf. «Scientific basis for the production and quality of biological products for the agro-industrial complex»]. Moscow, 2014: 106-117 (in Russ.). 
  118. Henzy J.E., Johnson W.E. Pushing the endogenous envelope. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1626): 20120506 CrossRef
  119. Moratorio G., Fischer S., Bianchi S., Tomé L., Rama G., Obal G., Carrión F., Pritsch O., Cristina J. A detailed molecular analysis of complete bovine leukemia virus genomes isolated from B-cell lymphosarcomas. Vet. Res., 2013, 44(1): 19 CrossRef
  120. Lavigne M., Helynck O., Rigolet P., Boudria-Souilah R., Nowakowski M., Baron B, Brülé S., Hoos S., Raynal B., Guittat L., Beauvineau C., Petres S., Granzhan A., Guillon J., Pratviel G., Teulade-Fichou M.P., England P., Mergny J.L., Munier-Lehmann H. SARS-CoV-2 Nsp3 unique domain SUD interacts with guanine quadruplexes and G4-ligands inhibit this interaction. Nucleic Acids Res., 2021, 49(13): 7695-7712 CrossRef
  121. Ruggiero E., Richter S.N. Viral G-quadruplexes: new frontiers in virus pathogenesis and antiviral therapy. Annu. Rep. Med. Chem., 2020, 54: 101-131 CrossRef
  122. Bohálová N., Cantara A., Bartas M., Kaura P., Št’astný J., Pecinka P., Fojta M., Brázda V. Tracing dsDNA virus—host coevolution through correlation of their G-quadruplex-forming sequences. Int. J. Mol. Sci., 2021, 22: 3433 CrossRef
  123. Chen W. A potential treatment of COVID-19 with TGF-β blockade. Int. J. Biol. Sci., 2020, 16(11): 1954-1955 CrossRef
  124. Glazko G.V., Kosovskii G.Yu., Zybailov B.L., Glazko V.I., Glazko T.T. Vestnik RAEN, 2020, 3: 18-38 (in Russ.).

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)