PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.6.1268eng

UDC: 636.085.52:579.64:577.2

 

FERMENTATION PROCESSES IN ALFALFA HAYLAGE WITHOUT ADDITIVES AND WITH INTRODUCTION OF Lactobacillus plantarum STRAIN

Yu.A. Pobednov1, A.A. Mamaev1, M.S. Shirokoryad1, E.A. Yildirim2 , G.Yu. Laptev2, L.A. Ilyina2, E.A. Brazhnik2, N.V. Tarlavin2

1Williams Federal Research Center for Fodder Production and Agroecology, 1, Nauchnii Gorodok, Lobnya, Moscow Province, 141055 Russia, e-mail yurypobednow@yandex.ru, Anton.mamaev@inbox.ru, m-latysheva@list.ru;
2JSC «Biotrof+», 19 korp. 1, Zagrebskii bulv., St. Petersburg, 192284 Russia, e-mail deniz@biotrof.ru (corresponding author ), laptev@biotrof.ru, ilina@biotrof.ru, bea@biotrof.ru, tarlav1995@biotrof.ru

ORCID:
Pobednov Yu.A. orcid.org/0000-0001-8701-009Х
Laptev G.Yu. orcid.org/0000-0002-8795-6659
Mamaev A.A. orcid.org/0000-0002-7962-4048
Ilyina L.A. orcid.org/0000-0003-2490-6942
Shirokoryad M.S. orcid.org/0000-0001-8333-752Х
Brazhnik E.A. orcid.org/0000-0003-2178-9330
Yildirim E.A. orcid.org/0000-0002-5846-4844
Tarlavin N.V. orcid.org/0000-0002-6474-9171

Received July 3, 2020

 

The optimal pH required for the functioning of proteases in alfalfa is lower than that of meadow clover or cereal grasses, and this culture is rich in protein and pectin which is not favorable for high-quality feed production. It is recommended to accelerate the acidification of the alfalfa being hayed by adding preparations of lactic acid bacteria. In the present work, for the first time in Russia, a diversity profile of haylage microbiota during fermentation was revealed using NGS sequencing. The work aimed to study the peculiarities of alfalfa fermentation during haylage with and without using Biotrof, a lactic acid bacteria-based preparation. The experiments were performed in 2018-2019. In the first experiment, the peculiarities of biochemical and microbiological processes during alfalfa haylaging were examined. Alfalfa Medicago sativa L. nothosubsp. varia (Martyn) Arcang cv. Pastbishnaya 88 was grown (experimental field, the Williams Federal Research Center for Forage Production and Agroecology, Moscow Province), cut for hay, dried in swaths for 7 hours to a dry matter content of 43.5 % and put into 0.5 l glass vessels for haylaging. The pH dynamics, ammonia, sugar and fermentation acid levels were measured on days 0, 4, 7, 14, 28, 60, and 90 of storage. The composition of the microbial community of the plant biomass and the alfalfa haylage was analyzed in dynamics using NGS sequencing according to a modified technique. In the second series of experiments, the effect of the preparation of lactic acid bacteria Biotrof (OOO Biotrof, Russia) based on Lactobacillus plantarum No. 60 on storability and biochemical parameters of the haylage from alfalfa cv.Pastbishnaya 88 biomass dried to a dry matter content of 47.6 and 51.3 %, was studied. The biomass was put into 0.5 l-containers equipped with devices for measuring evolved gases for two treatment, with no additives and upon introduction of the Biotrof preparation in the recommended dose (105CFU/g green mass). It was shown that a short-term wilting of alfalfa biomass to the haylage moisture resulted in 0.03-0.04 % ammonia and 0.08 % butyric acid concertation followed by an increase to 0.08-0.09 and 0.13-0.14 %, respectively, when haylaging. During wilting and early fermentation, the sugar contents in the biomass increased noticeably. In addition, the wilted alfalfa accumulates at least 3.7 % of malic acid which, like sugar, can be fermented by lactic acid bacteria. Butyric acid producers, the bacteria of the Clostridiaceae family, were not detected during fermentation. During haylage storage, among the bacteria of the Clostridia class the typical rumen microorganisms were identified of the families Eubacteriaceae, Lachnospiraceae, Peptostreptococcaceae, and Ruminococcaceae. We have found a relationship between an increase in the abundance of bacteria of the genus Ruminococcus and an increase in the amount of malic acid (r = 0.80, p ≤ 0.05), and also between an increase in the amount of malic acid and an increase in the number of bacteria of the phylum Bacteroides in the haylage (r = 0.84, p ≤ 0.05). The accumulation of malic acid improved the fermentability of plant biomass, causing a rapid acidification of the feed to pH 4.4-4.3 due to the introduced preparation of lactic acid bacteria Biotrof. This method improved the biochemical parameters of the feed, contributing to a decrease in the butyric acid level, however, it did not lead to a noticeable improvement in the preservation of nutrients and an increase in the energy nutritional value of the dry matter of the obtained haylage due to the favorable fermentation process in dried alfalfa biomass. Acceleration of the acidification of the dried mass with the Biotrof preparation did not have a significant effect on the reduction of ammonia formation during fermentation. Staphylococcus arlettae, Salmonella subterranea, Streptococcus gordonii, and Enterococcus cecorum capable of causing diseases in humans and animals, survived up to 4-14 days of storage in haylage without additives. In this regard, the stored haylage, if technological disturbances occur, may contain pathogens of farm animals, therefor, antimicrobial biologicals are required for conservation. Therefore, the main effect of the Biotrof application was reduced only to an improvement in the biochemical parameters of the feed without leading to a noticeable increase in its preservation.

Keywords: alfalfa, haylage, proteolysis, microbiota, biologicals, lactobacteria, acidification, feed quality, NGS sequencing, quantitative PCR.

 

REFERENCES

  1. Proizvodstvo grubykh kormov (v 2-kh knigakh). Kniga 1. Pod redaktsiei D. Shpaara [Coarse feed preparation (in 2 books). Book 1]. Torzhok, 2002 (in Russ.).
  2. McKersie B.D. Effect of pH on proteolysis in ensiled legume forage. Agronomy Journal, 1983, 77, 1: 81-86.
  3. Tao L., Guo X.S., Zhou H., Undersander D.J., Nandety A. Short communication: Characteristics of proteolytic activities of endo- and exopeptidases in alfalfa herbage and their implications for proteolysis in silage. Journal of Dairy Science, 2012, 95(8): 4591-4595 CrossRef
  4. Pobednov Yu.A., Kosolapov V.M. Biology of alfalfa silage making (review). Agricultural Biology [Sel'skokhozyaistvennaya biologiya], 2018, 53(2): 258-269 CrossRef
  5. Khimiya i biokhimiya bobovykh rastenii. Pod redaktsiei M.N. Zaprometova [Chemistry and biochemistry of legumes. M.N. Zaprometov (ed.)]. Moscow, 1986 (in Russ.).
  6. Pobiednow J.A., Achlamow J.D., Otroszko S.A., Szewcow A.W. Technologie konserwacji pasz objçtościowych. In: Efektywne sposoby produkcji pasz objętościowych na łąkach i pastwiskach w zróżnicowanych warunkach siedliskowych Polski i Rosji. J. Barszczewski, W.M. Kosolapow (eds.).Falenty, 2016: 252-283.        
  7. Kurnaєv O.M. Kormi i kormovirobnitstvo. Mіzhvіdomchii tematichnii naukovii zbіrnik. Vіnnitsya, 66: 274-280.
  8. Whiter A.G., Kung L. Jr. The effect of dry or liquid application of Lactobacillus plantarum MTDI on the fermentation of alfalfa silage. Journal of Dairy Science, 2001, 84(10): 2195-2202 CrossRef
  9. Pobednov Yu.A. Kormoproizvodstvo, 2012, 8: 37-38 (in Russ.).
  10. Zheng M., Niu D., Zuo S., Mao P., Meng L., Xu C. The effect of cultivar, wilting and storage period on fermentation and the clostridial community of alfalfa silage. Italian Journal of Animal Science, 2018, 17, 2: 336-346. CrossRef
  11. Zafren S.Ya. Tekhnologiya prigotovleniya kormov [The technology of manufacturing forages]. Moscow, 1977 (in Russ.).
  12. Chukanov N.K., Popenko A.K. Mikrobiologiya konservirovaniya trudnosilosuemykh rastenii [Microbiology of hard-to-harvest plant conservation]. Alma-Ata, 1986 (in Russ.).
  13. Eikmeyer F.G., Köfinger P., Poschenel A., Jünemann S., Zakrzewski M., Heinl S., Mayrhuber E., Grabherr R., Pühler A., Schwab H., Schlüter A. Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community involved in grass ensiling. Journal of Biotechnology, 2013, 167(3): 334-343 CrossRef
  14. Ni K., Minh T.T., Tu T.T., Tsuruta T., Pang H., Nishino N. Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing. Applied Microbiology and Biotechnology, 2017, 101(4): 1385-1394 CrossRef
  15. Savoie P., Jofriet J.C. Silage storage. In: Silage science and technology, Vol. 42. D.R. Buxton, R.E. Muck, J.H. Harrison (eds.). Madison, 2015: 405-467 CrossRef
  16. Principles and applications of soil microbiology. D. Sylvia, J.J. Fuhrmann, P.G. Hartel, D.A. Zuberer (eds.). Pearson Prentice Hall Upper Saddle River, N.J., 2005.
  17. Iyldyrym E.A. Teoreticheskie i eksperimental'nye osnovy mikrobiologicheskoi bezopasnosti konservirovannykh kormov dlya zhvachnykh sel'skokhozyaistvennykh zhivotnykh. Doktorskaya dissertatsiya [Theoretical and experimental bases of microbiological safety of canned food for ruminant farm animals. DSc Thesis]. Dubrovitsy, 2019 (in Russ.).
  18. Zubrilin A.A., Mishustin E.M. Silosovanie kormov (teoriya voprosa) [Feed silage — theoretical aspects]. Moscow, 1958 (in Russ.).
  19. Yakushkina N.I., Bakhtenko E.Yu. Fiziologiya rastenii [Plant physiology]. Moscow, 2004 (in Russ.).
  20. Kuperman I.A., Khitrovo E.V. Dykhatel'nyi gazoobmen kak element produktivnogo protsessa rastenii [Respiratory gas exchange as an element of the productive process in plants]. Novosibirsk, 1977 (in Russ.).
  21. Eprintsev A.T. Malatdegidrogenaznaya i akonitaznaya fermentnye sistemy vysshikh rastenii: fiziologo-biokhimicheskaya kharakteristika, regulyatsiya i rol' v adaptatsii k faktoram vneshnei sredy. Avtoreferat doktorskoi dissertatsii [Malate dehydrogenase and aconitase enzyme systems of higher plants: physiological and biochemical characteristics, regulation and role in adaptation to environmental factors. DSc Thesis]. Voronezh, 1991 (in Russ.).
  22. Evglevskii A.A., Ryzhkova G.F., Evglevskaya E.P., Vanina N.V., Mikhailova I.I., Denisova A.V., Eryzhenskaya N.F. Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii,2013, 9: 67-69 (in Russ.).
  23. Kheldt G.-V. Biokhimiya rastenii /Per. s angl. M.A. Breiginoi, T.A. Vlasovoi, M.V. Titovoi, V.Yu. Shtratnikovoi [Plant biochemistry]. Moscow, 2014 (in Russ.).
  24. Yahaya M.S., Kimura A., Harai J., Nguyen H.V., Kawai M., Takahashi J., Matsuoka S. Evaluation of structural carbohydrates losses and digestibility in alfalfa and orchard grass during ensiling. Asian-Australasian Journal of Animal’s Sciences, 2001, 14(12): 1701-1704 CrossRef
  25. Li X., Tian J., Zhang Q., Jiang Y., Wu Z., Yu Z. Effect of mixing red clover with alfalfa at different ration on dynamics of proteolysis and protease activities during ensiling. Journal of Dairy Science,2018, 101(10): 8954-8964 CrossRef
  26. Maevskii E.I., Grishina E.V. Biomeditsinskii zhurnal, 2017, 18(2): 50-80 (in Russ.).
  27. Ding W.R., Long R.J., Guo X.S. Effects of plant enzyme inactivation or sterilization on lipolysis and proteolysis in alfalfa silage. Journal of Dairy Science, 2013, 96(4): 2536-2543 CrossRef
  28. Kim M., Singh D., Lai-Hoe A., Go R., Rahim R.A., Ainuddin A.N., Chun J., Adams J.M. Distinctive phyllosphere bacterial communities in tropical trees. Microbial Ecology, 2012, 63(3): 674-681 CrossRef
  29. Kielak A.M., Barreto C.C., Kowalchuk G.A., van Veen J.A., Kuramae E.E. The ecology of Acidobacteria: moving beyond genes and genomes. Frontiers in Microbiology, 2016, 7: 744 CrossRef
  30. Fierer N., Bradford M.A., Jackson R.B. Toward an ecological classification of soil bacteria. Ecology, 2007, 88(6): 1354-1364 CrossRef
  31. McAllister T.A., Dunière L., Drouin P., Xu S., Wang Y., Munns K., Zaheer R. Silage review: Using molecular approaches to define the microbial ecology of silage. Journal of Dairy Science, 2018, 101(5): 4060-4074 CrossRef
  32. Mak-Donal'd P. Biokhimiya silosa. M., 1985.
  33. Filatov I.I., Kuznetsova T.T., Safronova L.G. Sibirskii vestnik sel'skokhozyaistvennoi nauki,1978, 5: 44-47 (in Russ.).
  34. Tarakanov B.V. Metody issledovaniya mikroflory pishchevaritel'nogo trakta sel'skokhozyaistvennykh zhivotnykh i ptitsy [Microflora of the digestive tract of farm animals and poultry: microbiology techniques]. Moscow, 2006 (in Russ.).
  35. Il'ina L.A. Izuchenie mikroflory rubtsa krupnogo rogatogo skota na osnove molekulyarno-biologicheskogo metoda T-RFLP s tsel'yu razrabotki sposobov ee optimizatsii. Kandidatskaya dissertatsiya [T-RFLP study of the cattle rumen microflora to optimize its composition. PhD Thesis]. Dubrovitsy, 2012 (in Russ.).
  36. Rodriguez-Castaño G.P., Dorris M.R., Liu X., Bolling B.W., Acosta-Gonzalez A., Rey F.E. Bacteroides thetaiotaomicron starch utilization promotes quercetin degradation and butyrate production by Eubacterium ramulus. Frontiers in Microbiology, 2019, 10: 1145 CrossRef
  37. Dinakaran V., Shankar M., Jayashree S., Rathinavel A., Gunasekaran P., Rajendhran J. Genome sequence of Staphylococcus arlettae strain CVD059, isolated from the blood of a cardiovascular disease patient. Journal of Bacteriology, 2012, 194(23): 6615-6616 CrossRef
  38. Shelobolina E.S., Sullivan S.A., O'Neill K.R., Nevin K.P., Derek R. Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp.nov. Applied and Environmental Microbiology, 2004, 70(5): 2959-2965 CrossRef
  39. Dave A.M., Ratnaraj F., Velagapudi M., Krishnan M., Gujjula N.R., Foral P.A., Preheim L. Streptococcus gordonii empyema: a case report and review of empyema. Cureus, 2017, 9(4): e1159 CrossRef
  40. Pan Y., An H., Fu T., Zhao S., Zhang C., Xiao G., Zhang J., Zhao X., Hu G. Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation. BMC Microbiology, 2018, 18(1): 182 CrossRef
  41. Jung A., Metzner M., Ryll M. Comparison of pathogenic and non-pathogenic Enterococcus cecorum strains from different animal species. BMC Microbiology, 2017, 17(1): 33 CrossRef
  42. Simu K., Hagström A. Oligotrophic bacterioplankton with a novel single-cell life strategy. Applied and Environmental Microbiology, 2004, 70(4): 2445-2451 CrossRef
  43. Pobednov Yu.A., Mamaev A.A., Ivanova M.S., Yurtaeva K.E. Zhivotnovodstvo i kormoproizvodstvo, 2018, 101, 1: 213-220 (in Russ.).
  44. Mohammed R., Stevenson D.M., Beauchemin K.A., Muck R.E., Weimer P.J. Changes in ruminal bacterial community on following feeding of alfalfa silage in occulated with a commercial silage inoculant. Journal of Dairy Science, 2012, 95(1): 328-339 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)